Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration.
An enzyme of the oxidoreductase class that catalyzes the reaction between L-tyrosine, L-dopa, and oxygen to yield L-dopa, dopaquinone, and water. It is a copper protein that acts also on catechols, catalyzing some of the same reactions as CATECHOL OXIDASE. EC 1.14.18.1.
Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES.
Coloration of the skin.
Coloration or discoloration of a part by a pigment.
Melanin-containing organelles found in melanocytes and melanophores.
Naphthalene derivatives carrying one or more hydroxyl (-OH) groups at any ring position. They are often used in dyes and pigments, as antioxidants for rubber, fats, and oils, as insecticides, in pharmaceuticals, and in numerous other applications.
A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific.
General term for a number of inherited defects of amino acid metabolism in which there is a deficiency or absence of pigment in the eyes, skin, or hair.
A normally saprophytic mitosporic Chaetothyriales fungal genus. Infections in humans include PHAEOHYPHOMYCOSIS; and PERITONITIS.. Exophiala jeanselmei (previously Phialophora jeanselmei) is an etiological agent of MYCETOMA.
Excessive pigmentation of the skin, usually as a result of increased epidermal or dermal melanin pigmentation, hypermelanosis. Hyperpigmentation can be localized or generalized. The condition may arise from exposure to light, chemicals or other substances, or from a primary metabolic imbalance.
Found in large amounts in the plasma and urine of patients with malignant melanoma. It is therefore used in the diagnosis of melanoma and for the detection of postoperative metastases. Cysteinyldopa is believed to be formed by the rapid enzymatic hydrolysis of 5-S-glutathionedopa found in melanin-producing cells.
A copper-containing oxidoreductase enzyme that catalyzes the oxidation of 4-benzenediol to 4-benzosemiquinone. It also has activity towards a variety of O-quinols and P-quinols. It primarily found in FUNGI and is involved in LIGNIN degradation, pigment biosynthesis and detoxification of lignin-derived products.
A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body.
An extensive order of basidiomycetous fungi whose fruiting bodies are commonly called mushrooms.
An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1.
A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans.
Color of hair or fur.
Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA.
Disorders of increased melanin pigmentation that develop without preceding inflammatory disease.
A basic helix-loop-helix leucine zipper transcription factor that regulates the CELL DIFFERENTIATION and development of a variety of cell types including MELANOCYTES; OSTEOCLASTS; and RETINAL PIGMENT EPITHELIUM. Mutations in MITF protein have been associated with OSTEOPETROSIS and WAARDENBURG SYNDROME.
Flat keratinous structures found on the skin surface of birds. Feathers are made partly of a hollow shaft fringed with barbs. They constitute the plumage.
A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445)
Pigmentation disorders are conditions that affect the production or distribution of melanin, the pigment responsible for skin, hair, and eye color, leading to changes in the color of these bodily features.
A genus of cuttlefish in the family Sepiidae. They live in tropical, subtropical and temperate waters in most oceans.
Heterogeneous group of autosomal recessive disorders comprising at least four recognized types, all having in common varying degrees of hypopigmentation of the skin, hair, and eyes. The two most common are the tyrosinase-positive and tyrosinase-negative types.
The large pigment cells of fish, amphibia, reptiles and many invertebrates which actively disperse and aggregate their pigment granules. These cells include MELANOPHORES, erythrophores, xanthophores, leucophores and iridiophores. (In algae, chromatophores refer to CHLOROPLASTS. In phototrophic bacteria chromatophores refer to membranous organelles (BACTERIAL CHROMATOPHORES).)
Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms.
An unpigmented malignant melanoma. It is an anaplastic melanoma consisting of cells derived from melanoblasts but not forming melanin. (Dorland, 27th ed; Stedman, 25th ed)
A plant genus of the family FABACEAE.
Short-lived elementary particles found in cosmic radiation or produced from nuclear disintegration. Their mass is between that of protons and electrons and they can be negative, positive, or neutral. pi-Mesons (pions) are heavier than mu-mesons (muons) and are proposed for cancer radiotherapy because their capture and disintegration by matter produces powerful, but short-lived, secondary radiation.
Actinium. A trivalent radioactive element and the prototypical member of the actinide family. It has the atomic symbol Ac, atomic number 89, and atomic weight 227.0278. Its principal isotope is 227 and decays primarily by beta-emission.
The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system.
A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates.
A genus of beetles which infests grain products. Its larva is called mealworm.
A mitosporic Loculoascomycetes fungal genus including several plant pathogens and at least one species which produces a highly phytotoxic antibiotic. Its teleomorph is Lewia.
Peptide hormones produced by NEURONS of various regions in the HYPOTHALAMUS. They are released into the pituitary portal circulation to stimulate or inhibit PITUITARY GLAND functions. VASOPRESSIN and OXYTOCIN, though produced in the hypothalamus, are not included here for they are transported down the AXONS to the POSTERIOR LOBE OF PITUITARY before being released into the portal circulation.
Enzymes of the isomerase class that catalyze the oxidation of one part of a molecule with a corresponding reduction of another part of the same molecule. They include enzymes converting aldoses to ketoses (ALDOSE-KETOSE ISOMERASES), enzymes shifting a carbon-carbon double bond (CARBON-CARBON DOUBLE BOND ISOMERASES), and enzymes transposing S-S bonds (SULFUR-SULFUR BOND ISOMERASES). (From Enzyme Nomenclature, 1992) EC 5.3.
Substances used to obtain a lighter skin complexion or to treat HYPERPIGMENTATION disorders.

Cellular localization and role of prohormone convertases in the processing of pro-melanin concentrating hormone in mammals. (1/1585)

Melanin concentrating hormone (MCH) and neuropeptide EI (NEI) are two peptides produced from the same precursor in mammals, by cleavage at the Arg145-Arg146 site and the Lys129-Arg130 site, respectively. We performed co-localization studies to reveal simultaneously the expression of MCH mRNA and proconvertases (PCs) such as PC1/3 or PC2. In the rat hypothalamus, PC2 was present in all MCH neurons, and PC1/3 was present in about 15-20% of these cells. PC1/3 or PC2 was not found in MCH-positive cells in the spleen. In GH4C1 cells co-infected with vaccinia virus (VV):pro-MCH along with VV:furin, PACE4, PC1/3, PC2, PC5/6A, PC5/6B, or PC7, we observed only efficient cleavage at the Arg145-Arg146 site to generate mature MCH. Co-expression of pro-MCH together with PC2 and 7B2 resulted in very weak processing to NEI. Comparison of pro-MCH processing patterns in PC1/3- or PC2-transfected PC12 cells showed that PC2 but not PC1/3 generated NEI. Finally, we analyzed the pattern of pro-MCH processing in PC2 null mice. In the brain of homozygotic mutants, the production of mature NEI was dramatically reduced. In contrast, MCH content was increased in the hypothalamus of PC2 null mice. In the spleen, a single large MCH-containing peptide was identified in both wild type and PC2 null mice. Together, our data suggest that pro-MCH is processed differently in the brain and in peripheral organs of mammals. PC2 is the key enzyme that produces NEI, whereas several PCs may cleave at the Arg145-Arg146 site to generate MCH in neuronal cell types.  (+info)

Effects of lithium on pigmentation in the embryonic zebrafish (Brachydanio rerio). (2/1585)

Pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores and/or iridophores. Cell signaling mechanisms related to the development of pigmentation remain obscure. In order to examine the mechanisms involved in pigment cell signaling, we treated zebrafish embryos with various activators and inhibitors of signaling pathways. Among those chemicals tested, LiCl and LiCl/forskolin had a stimulatory effect on pigmentation, most notable in the melanophore population. We propose that the inositol phosphate (IP) pathway, is involved in pigment pattern formation in zebrafish through its involvement in the: (1) differentiation/proliferation of melanophores; (2) dispersion of melanosomes; and/or (3) synthesis/deposition of melanin. To discern at what level pigmentation was being effected we: (1) counted the number of melanophores in control and experimental animals 5 days after treatment; (2) measured tyrosinase activity and melanin content; and (3) employed immunoblotting techniques with anti-tyrosine-related protein-2 and anti-melanocyte-specific gene-1 as melanophore-specific markers. Although gross pigmentation increased dramatically in LiCl- and LiCl/forskolin treated embryos, the effect on pigmentation was not due to an increase in the proliferation of melanophores, but was possibly through an increase in melanin synthesis and/or deposition. Collectively, results from these studies suggest the involvement of an IP-signaling pathway in the stimulation of pigmentation in embryonic zebrafish through the synthesis/deposition of melanin within the neural crest-derived melanophores.  (+info)

The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. (3/1585)

Orexin-A and orexin-B (the hypocretins) are recently described neuropeptides suggested to have a physiological role in the regulation of food intake in the rat. We compared the orexigenic effect of the orexins administered intracerebroventricular (ICV) with other known stimulants of food intake, one strong, neuropeptide Y (NPY), and two weaker, melanin-concentrating hormone (MCH) and galanin. Orexin-A consistently stimulated food intake, but orexin-B only on occasions. Both peptides stimulated food intake significantly less than NPY, but to a similar extent to MCH (2 h food intake: NPY 3 nmol, 7.2+/-0.9 g vs saline, 1.5+/-0.2 g, P<0.001, MCH 3 nmol, 3.2+/-0.8 g vs saline, P<0.01, orexin-B 30 nmol, 2. 6+/-0.5 g vs saline, P=0.11) and to galanin (1 h food intake: galanin 3 nmol, 2.0+/-0.4 g vs saline, 0.8+/-0.2 g, P<0.05, orexin-A 3 nmol 2.2+/-0.4 g vs saline, P<0.01; 2 hour food intake: orexin-B 3 nmol, 2.4+/-0.3 g vs saline, 1.3+/-0.2 g, P<0.05). Following ICV orexin-A, hypothalamic c-fos, a maker of neuronal activation, was highly expressed in the paraventricular nucleus (PVN), and the arcuate nucleus (P<0.005 for both). IntraPVN injection of orexin-A stimulated 2 h food intake by one gram (orexin-A 0.03 nmol, 1.6+/-0. 3 g vs saline, 0.5+/-0.3 g, P<0.005). These findings support the suggestion that the orexins stimulate food intake. However, this effect is weak and may cast doubt upon their physiological importance in appetite regulation in the rat.  (+info)

Topical all-trans retinoic acid augments ultraviolet radiation-induced increases in activated melanocyte numbers in mice. (4/1585)

We have previously shown that daily application of 0.05% retinoic acid to the backs of lightly pigmented, hairless HRA:Skh-2 mice increases melanogenesis resulting from exposure to solar-simulated ultraviolet radiation. In this study we show that as early as 1 wk following commencement of treatment, there is a 2- fold increase in the number of epidermal 3,4-dihydroxyphenylalanine positive melanocytes in retinoic acid and ultraviolet radiation treated HRA:Skh-2 mice compared with mice that received ultraviolet radiation only. This increased to a 2.9-fold difference by 6 wk. Retinoic acid also augmented ultraviolet radiation-stimulated melanogenesis, with a 4-fold increase being observed after only 2 wk. These findings were also seen in C57BL mice. Ultraviolet radiation and retinoic acid needed to be applied to the same skin site for the augmentation in melanocyte activation to occur. Ultraviolet B rather than ultraviolet A was mainly responsible for melanogenesis and the retinoic acid primarily increased ultraviolet B-induced melanogenesis. Furthermore, retinoic acid on it's own, in the absence of ultraviolet radiation caused a small but statistically significant increase in 3,4-dihydroxyphenylalanine positive melanocyte numbers and melanogenesis. Thus topical retinoic acid is a potent modulator of melanocyte activation. Alone it is able to increase the number of activated epidermal melanocytes and make melanocytes more sensitive to activation by ultraviolet B.  (+info)

Tumor necrosis factor alpha-mediated inhibition of melanogenesis is dependent on nuclear factor kappa B activation. (5/1585)

Melanogenesis is a physiological process resulting in the synthesis of melanin pigments which play a crucial protective role against skin photocarcinogenesis. In vivo, solar ultraviolet light triggers the secretion of numerous keratinocyte-derived factors that are implicated in the regulation of melanogenesis. Among these, tumor necrosis factor alpha (TNFalpha), a cytokine implicated in the pro-inflammatory response, down-regulates pigment synthesis in vitro. In this report, we aimed to determine the molecular mechanisms by which this cytokine inhibits melanogenesis in B16 melanoma cells. First, we show that TNFalpha inhibits the activity and protein expression of tyrosinase which is the key enzyme of melanogenesis. Further, we demonstrate that this effect is subsequent to a down-regulation of the tyrosinase promoter activity in both basal and cAMP-induced melanogenesis. Finally, we present evidence indicating that the inhibitory effect of TNFalpha on melanogenesis is dependent on nuclear factor kappa B (NFkappaB) activation. Indeed, overexpression of this transcription factor in B16 cells is sufficient to inhibit tyrosinase promoter activity. Furthermore, a mutant of inhibitory kappa B (IkappaB), that prevents NFkappaB activation, is able to revert the effect of TNFalpha on the tyrosinase promoter activity. Taken together, our results clarify the mechanisms by which TNFalpha inhibits pigmentation and point out the key role of NFkappaB in the regulation of melanogenesis.  (+info)

Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. (6/1585)

We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  (+info)

Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. (7/1585)

The purpose of this study was to investigate the mechanism of fatty acid-induced regulation of melanogenesis. An apparent regulatory effect on melanogenesis was observed when cultured B16F10 melanoma cells were incubated with fatty acids, i.e., linoleic acid (unsaturated, C18:2) decreased melanin synthesis while palmitic acid (saturated, C16:0) increased it. However, mRNA levels of the melanogenic enzymes, tyrosinase, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2), were not altered. Regarding protein levels of these enzymes, the amount of tyrosinase was decreased by linoleic acid and increased by palmitic acid, whereas the amounts of TRP1 and TRP2 did not change after incubation with fatty acids. Pulse-chase assay by [35S]methionine metabolic labeling revealed that neither linoleic acid nor palmitic acid altered the synthesis of tyrosinase. Further, it was shown that linoleic acid accelerated, while palmitic acid decelerated, the proteolytic degradation of tyrosinase. These results suggest that modification of proteolytic degradation of tyrosinase is involved in regulatory effects of fatty acids on melanogenesis in cultured melanoma cells.  (+info)

Structure and developmental expression of the ascidian TRP gene: insights into the evolution of pigment cell-specific gene expression. (8/1585)

The tyrosinase family in vertebrates consists of three related melanogenic enzymes: tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2. These proteins control melanin production in pigment cells and play a crucial role in determining vertebrate coloration. We have isolated a gene from the ascidian Halocynthia roretzi which encodes a tyrosinase-related protein (HrTRP) with 45-49% identity with vertebrate TRP-1 and TRP-2. The expression of the HrTRP gene in pigment lineage a8.25 cells starts at the early-mid gastrula stage, which coincides with the stage when these cells are determined as pigment precursor cells; therefore, it provides the earliest pigment lineage-specific marker, which enables us to trace the complete cell lineage leading to two pigment cells in the larval brain. In addition, the expression pattern of the HrTRP gene appears to share similar characteristics with the mouse TRP-2 gene although structurally the HrTRP gene is more closely related to mammalian TRP-1 genes. Based on these observations and on results from molecular phylogenetic and hybridization analyses, we suggest that triplication of the tyrosinase family occurred during the early radiation of chordates. Initially, duplication of an ancestral tyrosinase gene produced a single TRP gene before the urochordate and cephalochordate-vertebrate divergence, and a subsequent duplication of the ancestral TRP gene in the vertebrate lineage gave rise to two TRP genes before the emergence of teleost fishes. Evolution of the melanin synthetic pathway and possible phylogenetic relationships among chordate pigment cells that accommodate the metabolic process are discussed. Dev Dyn 1999;215:225-237.  (+info)

Melanin is a pigment that determines the color of skin, hair, and eyes in humans and animals. It is produced by melanocytes, which are specialized cells found in the epidermis (the outer layer of the skin) and the choroid (the vascular coat of the eye). There are two main types of melanin: eumelanin and pheomelanin. Eumelanin is a black or brown pigment, while pheomelanin is a red or yellow pigment. The amount and type of melanin produced by an individual can affect their skin and hair color, as well as their susceptibility to certain diseases, such as skin cancer.

Tyrosinase, also known as monophenol monooxygenase, is an enzyme (EC 1.14.18.1) that catalyzes the ortho-hydroxylation of monophenols (like tyrosine) to o-diphenols (like L-DOPA) and the oxidation of o-diphenols to o-quinones. This enzyme plays a crucial role in melanin synthesis, which is responsible for the color of skin, hair, and eyes in humans and animals. Tyrosinase is found in various organisms, including plants, fungi, and animals. In humans, tyrosinase is primarily located in melanocytes, the cells that produce melanin. The enzyme's activity is regulated by several factors, such as pH, temperature, and metal ions like copper, which are essential for its catalytic function.

Melanocytes are specialized cells that produce, store, and transport melanin, the pigment responsible for coloring of the skin, hair, and eyes. They are located in the bottom layer of the epidermis (the outermost layer of the skin) and can also be found in the inner ear and the eye's retina. Melanocytes contain organelles called melanosomes, which produce and store melanin.

Melanin comes in two types: eumelanin (black or brown) and pheomelanin (red or yellow). The amount and type of melanin produced by melanocytes determine the color of a person's skin, hair, and eyes. Exposure to UV radiation from sunlight increases melanin production as a protective response, leading to skin tanning.

Melanocyte dysfunction or abnormalities can lead to various medical conditions, such as albinism (lack of melanin production), melasma (excessive pigmentation), and melanoma (cancerous growth of melanocytes).

Skin pigmentation is the coloration of the skin that is primarily determined by two types of melanin pigments, eumelanin and pheomelanin. These pigments are produced by melanocytes, which are specialized cells located in the epidermis. Eumelanin is responsible for brown or black coloration, while pheomelanin produces a red or yellow hue.

The amount and distribution of melanin in the skin can vary depending on genetic factors, age, sun exposure, and various other influences. Increased production of melanin in response to UV radiation from the sun helps protect the skin from damage, leading to darkening or tanning of the skin. However, excessive sun exposure can also cause irregular pigmentation, such as sunspots or freckles.

Abnormalities in skin pigmentation can result from various medical conditions, including albinism (lack of melanin production), vitiligo (loss of melanocytes leading to white patches), and melasma (excessive pigmentation often caused by hormonal changes). These conditions may require medical treatment to manage or improve the pigmentation issues.

Pigmentation, in a medical context, refers to the coloring of the skin, hair, or eyes due to the presence of pigment-producing cells called melanocytes. These cells produce a pigment called melanin, which determines the color of our skin, hair, and eyes.

There are two main types of melanin: eumelanin and pheomelanin. Eumelanin is responsible for brown or black coloration, while pheomelanin produces a red or yellow hue. The amount and type of melanin produced by melanocytes can vary from person to person, leading to differences in skin color and hair color.

Changes in pigmentation can occur due to various factors such as genetics, exposure to sunlight, hormonal changes, inflammation, or certain medical conditions. For example, hyperpigmentation refers to an excess production of melanin that results in darkened patches on the skin, while hypopigmentation is a condition where there is a decreased production of melanin leading to lighter or white patches on the skin.

Melanosomes are membrane-bound organelles found in melanocytes, the pigment-producing cells in the skin, hair, and eyes. They contain the pigment melanin, which is responsible for giving color to these tissues. Melanosomes are produced in the melanocyte and then transferred to surrounding keratinocytes in the epidermis via a process called cytocrinesis. There are four stages of melanosome development: stage I (immature), stage II (developing), stage III (mature), and stage IV (degrading). The amount and type of melanin in the melanosomes determine the color of an individual's skin, hair, and eyes. Mutations in genes involved in melanosome biogenesis or function can lead to various pigmentation disorders, such as albinism.

Naphthols are chemical compounds that consist of a naphthalene ring (a polycyclic aromatic hydrocarbon made up of two benzene rings) substituted with a hydroxyl group (-OH). They can be classified as primary or secondary naphthols, depending on whether the hydroxyl group is directly attached to the naphthalene ring (primary) or attached through a carbon atom (secondary). Naphthols are important intermediates in the synthesis of various chemical and pharmaceutical products. They have been used in the production of azo dyes, antioxidants, and pharmaceuticals such as analgesics and anti-inflammatory agents.

Dihydroxyphenylalanine is not a medical term per se, but it is a chemical compound that is often referred to in the context of biochemistry and neuroscience. It is also known as levodopa or L-DOPA for short.

L-DOPA is a precursor to dopamine, a neurotransmitter that plays a critical role in regulating movement, emotion, and cognition. In the brain, L-DOPA is converted into dopamine through the action of an enzyme called tyrosine hydroxylase.

L-DOPA is used medically to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, and bradykinesia (slowness of movement). In Parkinson's disease, the dopamine-producing neurons in the brain gradually degenerate, leading to a deficiency of dopamine. By providing L-DOPA as a replacement therapy, doctors can help alleviate some of the symptoms of the disease.

It is important to note that L-DOPA has potential side effects and risks, including nausea, dizziness, and behavioral changes. Long-term use of L-DOPA can also lead to motor complications such as dyskinesias (involuntary movements) and fluctuations in response to the medication. Therefore, it is typically used in combination with other medications and under the close supervision of a healthcare provider.

Albinism is a group of genetic disorders that result in little or no production of melanin, the pigment responsible for coloring skin, hair, and eyes. It is caused by mutations in genes involved in the production of melanin. There are several types of albinism, including oculocutaneous albinism (OCA) and ocular albinism (OA). OCA affects the skin, hair, and eyes, while OA primarily affects the eyes.

People with albinism typically have very pale skin, white or light-colored hair, and light-colored eyes. They may also have vision problems, such as sensitivity to light (photophobia), rapid eye movements (nystagmus), and decreased visual acuity. The severity of these symptoms can vary depending on the type and extent of albinism.

Albinism is inherited in an autosomal recessive manner, which means that an individual must inherit two copies of the mutated gene, one from each parent, in order to have the condition. If both parents are carriers of a mutated gene for albinism, they have a 25% chance with each pregnancy of having a child with albinism.

There is no cure for albinism, but individuals with the condition can take steps to protect their skin and eyes from the sun and use visual aids to help with vision problems. It is important for people with albinism to undergo regular eye examinations and to use sun protection, such as sunscreen, hats, and sunglasses, to prevent skin damage and skin cancer.

"Exophiala" is a genus of fungi that belongs to the family Herpotrichiellaceae. These fungi are also known as black yeasts because they can form pigmented, thick-walled cells that resemble yeast. They are widely distributed in the environment and have been found in various habitats such as soil, water, and air. Some species of Exophiala are known to cause human diseases, particularly in individuals with weakened immune systems. These infections can affect various organs, including the skin, lungs, and brain. It is important to note that while some species of Exophiala can be pathogenic, many others are not harmful to humans.

Hyperpigmentation is a medical term that refers to the darkening of skin areas due to an increase in melanin, the pigment that provides color to our skin. This condition can affect people of all races and ethnicities, but it's more noticeable in those with lighter skin tones.

Hyperpigmentation can be caused by various factors, including excessive sun exposure, hormonal changes (such as during pregnancy), inflammation, certain medications, and underlying medical conditions like Addison's disease or hemochromatosis. It can also result from skin injuries, such as cuts, burns, or acne, which leave dark spots known as post-inflammatory hyperpigmentation.

There are several types of hyperpigmentation, including:

1. Melasma: This is a common form of hyperpigmentation that typically appears as symmetrical, blotchy patches on the face, particularly the forehead, cheeks, and upper lip. It's often triggered by hormonal changes, such as those experienced during pregnancy or while taking birth control pills.
2. Solar lentigos (age spots or liver spots): These are small, darkened areas of skin that appear due to prolonged sun exposure over time. They typically occur on the face, hands, arms, and decolletage.
3. Post-inflammatory hyperpigmentation: This type of hyperpigmentation occurs when an injury or inflammation heals, leaving behind a darkened area of skin. It's more common in people with darker skin tones.

Treatment for hyperpigmentation depends on the underlying cause and may include topical creams, chemical peels, laser therapy, or microdermabrasion. Preventing further sun damage is crucial to managing hyperpigmentation, so wearing sunscreen with a high SPF and protective clothing is recommended.

Cysteinyldopa is a metabolic byproduct that is formed when the amino acid dopa (dihydroxyphenylalanine) is modified in the body. Specifically, it is created when dopa reacts with cysteine, another amino acid, through a process called protein sulfuration. Cysteinyldopa is primarily known for its role as a marker of the neurodegenerative disorder dopamine responsive dystonia (DRD), which is caused by mutations in the tyrosine hydroxylase gene.

In DRD, there is a deficiency of the enzyme tyrosine hydroxylase, which is responsible for converting the amino acid tyrosine to dopa. As a result, dopamine levels are reduced, leading to symptoms such as muscle stiffness, tremors, and difficulty with movement. Cysteinyldopa is elevated in the cerebrospinal fluid (CSF) of individuals with DRD due to the accumulation of dopa that cannot be converted to dopamine.

Therefore, measuring cysteinyldopa levels in the CSF can be helpful in diagnosing DRD and differentiating it from other movement disorders. However, it is important to note that elevated cysteinyldopa levels are not specific to DRD and can also be found in other neurological conditions such as Parkinson's disease.

Laccase is an enzyme (specifically, a type of oxidoreductase) that is widely distributed in plants, fungi, and bacteria. It catalyzes the oxidation of various phenolic compounds, including polyphenols, methoxy-substituted phenols, aromatic amines, and some inorganic ions, while reducing molecular oxygen to water. This enzyme plays a crucial role in lignin degradation, as well as in the detoxification of xenobiotic compounds and in the synthesis of various pigments and polymers. The medical relevance of laccase is linked to its potential applications in bioremediation, biofuel production, and biotechnology.

Medically, hair is defined as a threadlike structure that grows from the follicles found in the skin of mammals. It is primarily made up of a protein called keratin and consists of three parts: the medulla (the innermost part or core), the cortex (middle layer containing keratin filaments) and the cuticle (outer layer of overlapping scales).

Hair growth occurs in cycles, with each cycle consisting of a growth phase (anagen), a transitional phase (catagen), and a resting phase (telogen). The length of hair is determined by the duration of the anagen phase.

While hair plays a crucial role in protecting the skin from external factors like UV radiation, temperature changes, and physical damage, it also serves as an essential aspect of human aesthetics and identity.

Agaricales is an order of fungi that includes mushrooms, toadstools, and other gilled fungi. These fungi are characterized by their distinctive fruiting bodies, which have a cap (pileus) and stem (stipe), and gills (lamellae) on the underside of the cap where the spores are produced. Agaricales contains many well-known and economically important genera, such as Agaricus (which includes the common button mushroom), Amanita (which includes the deadly "death cap" mushroom), and Coprinus (which includes the inky cap mushrooms). The order was established by the Swedish mycologist Elias Magnus Fries in 1821.

Catechol oxidase, also known as polyphenol oxidase, is an enzyme that catalyzes the oxidation of catechols and other phenolic compounds to quinones. These quinones can then undergo further reactions to form various pigmented compounds, such as melanins. Catechol oxidase is widely distributed in nature and is found in plants, fungi, and some bacteria. In humans, catechol oxidase is involved in the metabolism of neurotransmitters such as dopamine and epinephrine.

'Cryptococcus neoformans' is a species of encapsulated, budding yeast that is an important cause of fungal infections in humans and animals. The capsule surrounding the cell wall is composed of polysaccharides and is a key virulence factor, allowing the organism to evade host immune responses. C. neoformans is found worldwide in soil, particularly in association with bird droppings, and can be inhaled, leading to pulmonary infection. In people with weakened immune systems, such as those with HIV/AIDS, hematological malignancies, or organ transplants, C. neoformans can disseminate from the lungs to other sites, most commonly the central nervous system (CNS), causing meningitis. The infection can also affect other organs, including the skin, bones, and eyes.

The diagnosis of cryptococcosis typically involves microscopic examination and culture of clinical specimens, such as sputum, blood, or cerebrospinal fluid (CSF), followed by biochemical and molecular identification of the organism. Treatment usually consists of a combination of antifungal medications, such as amphotericin B and fluconazole, along with management of any underlying immunodeficiency. The prognosis of cryptococcosis depends on various factors, including the patient's immune status, the extent and severity of infection, and the timeliness and adequacy of treatment.

I'm sorry for any confusion, but "hair color" is not a term that has a medical definition in the same way that a term like "myocardial infarction" (heart attack) does. Hair color can be described in various ways, such as being a natural hair color (like blonde, brunette, red, or black) or describing a change in hair color due to factors like aging (gray or white hairs) or hair dye usage.

However, it's worth noting that changes in hair color can sometimes be associated with certain medical conditions. For example, premature graying of the hair before the age of 30 can be a feature of certain genetic disorders or vitamin B12 deficiency. Similarly, some skin conditions like alopecia areata or vitiligo can cause patchy changes in hair color. But these associations don't provide a medical definition for 'hair color'.

I cannot provide a specific medical definition for "Melanoma, Experimental," as it is not a standardized medical term. However, I can give you information about melanoma and experimental treatments related to this disease.

Melanoma is a type of cancer that develops from pigment-producing cells known as melanocytes. It usually occurs in the skin but can rarely occur in other parts of the body, such as the eyes or internal organs. Melanoma is characterized by the uncontrolled growth and multiplication of melanocytes, forming malignant tumors.

Experimental treatments for melanoma refer to novel therapeutic strategies that are currently being researched and tested in clinical trials. These experimental treatments may include:

1. Targeted therapies: Drugs that target specific genetic mutations or molecular pathways involved in melanoma growth and progression. Examples include BRAF and MEK inhibitors, such as vemurafenib, dabrafenib, and trametinib.
2. Immunotherapies: Treatments designed to enhance the immune system's ability to recognize and destroy cancer cells. These may include checkpoint inhibitors (e.g., ipilimumab, nivolumab, pembrolizumab), adoptive cell therapies (e.g., CAR T-cell therapy), and therapeutic vaccines.
3. Oncolytic viruses: Genetically modified viruses that can selectively infect and kill cancer cells while leaving healthy cells unharmed. Talimogene laherparepvec (T-VEC) is an example of an oncolytic virus approved for the treatment of advanced melanoma.
4. Combination therapies: The use of multiple experimental treatments in combination to improve efficacy and reduce the risk of resistance. For instance, combining targeted therapies with immunotherapies or different types of immunotherapies.
5. Personalized medicine approaches: Using genetic testing and biomarker analysis to identify the most effective treatment for an individual patient based on their specific tumor characteristics.

It is essential to consult with healthcare professionals and refer to clinical trial databases, such as ClinicalTrials.gov, for up-to-date information on experimental treatments for melanoma.

Melanosis is a general term that refers to an increased deposit of melanin, the pigment responsible for coloring our skin, in the skin or other organs. It can occur in response to various factors such as sun exposure, aging, or certain medical conditions. There are several types of melanosis, including:

1. Epidermal melanosis: This type of melanosis is characterized by an increase in melanin within the epidermis, the outermost layer of the skin. It can result from sun exposure, hormonal changes, or inflammation.
2. Dermal melanosis: In this type of melanosis, there is an accumulation of melanin within the dermis, the middle layer of the skin. It can be caused by various conditions such as nevus of Ota, nevus of Ito, or melanoma metastasis.
3. Mucosal melanosis: This type of melanosis involves an increase in melanin within the mucous membranes, such as those lining the mouth, nose, and genitals. It can be a sign of systemic disorders like Addison's disease or Peutz-Jeghers syndrome.
4. Lentigo simplex: Also known as simple lentigines, these are small, benign spots that appear on sun-exposed skin. They result from an increase in melanocytes, the cells responsible for producing melanin.
5. Labial melanotic macule: This is a pigmented lesion found on the lips, typically the lower lip. It is more common in darker-skinned individuals and is usually benign but should be monitored for changes that may indicate malignancy.
6. Ocular melanosis: An increase in melanin within the eye can lead to various conditions such as ocular melanocytosis, oculodermal melanocytosis, or choroidal melanoma.

It is important to note that while some forms of melanosis are benign and harmless, others may indicate an underlying medical condition or even malignancy. Therefore, any new or changing pigmented lesions should be evaluated by a healthcare professional.

The Microphthalmia-Associated Transcription Factor (MITF) is a protein that functions as a transcription factor, which means it regulates the expression of specific genes. It belongs to the basic helix-loop-helix leucine zipper (bHLH-Zip) family of transcription factors and plays crucial roles in various biological processes such as cell growth, differentiation, and survival.

MITF is particularly well-known for its role in the development and function of melanocytes, the pigment-producing cells found in the skin, eyes, and inner ear. It regulates the expression of genes involved in melanin synthesis and thus influences hair and skin color. Mutations in the MITF gene have been associated with certain eye disorders, including microphthalmia (small or underdeveloped eyes), iris coloboma (a gap or hole in the iris), and Waardenburg syndrome type 2A (an inherited disorder characterized by hearing loss and pigmentation abnormalities).

In addition to its role in melanocytes, MITF also plays a part in the development and function of other cell types, including osteoclasts (cells involved in bone resorption), mast cells (immune cells involved in allergic reactions), and retinal pigment epithelial cells (a type of cell found in the eye).

Feathers are not a medical term, but they are a feature found in birds and some extinct theropod dinosaurs. Feathers are keratinous structures that grow from the skin and are used for various functions such as insulation, flight, waterproofing, and display. They have a complex structure consisting of a central shaft with barbs branching off on either side, which further divide into smaller barbules. The arrangement and modification of these feather structures vary widely among bird species to serve different purposes.

Melanoma is defined as a type of cancer that develops from the pigment-containing cells known as melanocytes. It typically occurs in the skin but can rarely occur in other parts of the body, including the eyes and internal organs. Melanoma is characterized by the uncontrolled growth and multiplication of melanocytes, which can form malignant tumors that invade and destroy surrounding tissue.

Melanoma is often caused by exposure to ultraviolet (UV) radiation from the sun or tanning beds, but it can also occur in areas of the body not exposed to the sun. It is more likely to develop in people with fair skin, light hair, and blue or green eyes, but it can affect anyone, regardless of their skin type.

Melanoma can be treated effectively if detected early, but if left untreated, it can spread to other parts of the body and become life-threatening. Treatment options for melanoma include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, depending on the stage and location of the cancer. Regular skin examinations and self-checks are recommended to detect any changes or abnormalities in moles or other pigmented lesions that may indicate melanoma.

Pigmentation disorders are conditions that affect the production or distribution of melanin, the pigment responsible for the color of skin, hair, and eyes. These disorders can cause changes in the color of the skin, resulting in areas that are darker (hyperpigmentation) or lighter (hypopigmentation) than normal. Examples of pigmentation disorders include melasma, age spots, albinism, and vitiligo. The causes, symptoms, and treatments for these conditions can vary widely, so it is important to consult a healthcare provider for an accurate diagnosis and treatment plan.

"Sepia" is not a term used in medical definitions. It is a color, often associated with the brownish-gray ink produced by cuttlefish, and it has been used historically in photography and dyes. In the context of human health or medicine, "sepia" does not have a specific meaning or definition.

Oculocutaneous albinism (OCA) is a group of genetic disorders characterized by reduced or complete absence of melanin pigment in the eyes, skin, and hair. Melanin is the pigment responsible for giving color to our skin, hair, and eyes. OCA affects both the eyes (oculo-) and the skin (cutaneous), hence the name oculocutaneous albinism.

There are several types of OCA, each caused by different genetic mutations affecting melanin production. The most common forms include:

1. OCA1: This type is further divided into two subtypes - OCA1A and OCA1B. OCA1A is characterized by complete absence of melanin in the eyes, skin, and hair from birth. Individuals with this condition have white hair, very light skin, and pale blue or gray irises. OCA1B, on the other hand, presents with reduced melanin production, leading to lighter-than-average skin, hair, and eye color at birth. Over time, some melanin may be produced, resulting in milder pigmentation changes compared to OCA1A.
2. OCA2: This form of albinism is caused by mutations in the tyrosinase-related protein 1 (TYRP1) gene, which plays a role in melanin production. Individuals with OCA2 typically have light brown or yellowish skin, golden or straw-colored hair, and lighter irises compared to their family members without albinism.
3. OCA3: Also known as Rufous oculocutaneous albinism (ROCA), this type is caused by mutations in the tyrosinase gene (TYR). It primarily affects people of African descent, leading to reddish-brown hair, light brown skin, and normal or near-normal eye color.
4. OCA4: This form of albinism results from mutations in the membrane-associated transporter protein (MATP) gene, which is involved in melanin transport within cells. Individuals with OCA4 usually have light brown skin, yellowish or blond hair, and lighter irises compared to their family members without albinism.

Regardless of the type, all individuals with oculocutaneous albinism face similar challenges, including reduced vision due to abnormal eye development (nystagmus, strabismus, and farsightedness) and increased sensitivity to sunlight (photophobia). Proper management, such as wearing UV-protective sunglasses, hats, and sunscreen, can help protect their skin and eyes from damage.

Chromatophores are pigment-containing cells found in various organisms, including animals and plants. In animals, chromatophores are primarily found in the skin, eyes, and hair or feathers, and they play a crucial role in color changes exhibited by many species. These cells contain pigments that can be concentrated or dispersed to change the color of the cell, allowing the animal to camouflage itself, communicate with other individuals, or regulate its body temperature.

There are several types of chromatophores, including:

1. Melanophores: These cells contain the pigment melanin and are responsible for producing dark colors such as black, brown, and gray. They are found in many animals, including mammals, birds, reptiles, amphibians, and fish.
2. Xanthophores: These cells contain yellow or orange pigments called pteridines and carotenoids. They are found in many animals, including fish, amphibians, and reptiles.
3. Iridophores: These cells do not contain pigments but instead reflect light to produce iridescent colors. They are found in many animals, including fish, reptiles, and amphibians.
4. Erythrophores: These cells contain red or pink pigments called porphyrins and are found in some species of fish and crustaceans.
5. Leucophores: These cells reflect white light and are found in some species of fish, cephalopods (such as squid and octopuses), and crustaceans.

The distribution and concentration of pigments within chromatophores can be controlled by hormones, neurotransmitters, or other signaling molecules, allowing the animal to change its color rapidly in response to environmental stimuli or social cues.

Biological pigments are substances produced by living organisms that absorb certain wavelengths of light and reflect others, resulting in the perception of color. These pigments play crucial roles in various biological processes such as photosynthesis, vision, and protection against harmful radiation. Some examples of biological pigments include melanin, hemoglobin, chlorophyll, carotenoids, and flavonoids.

Melanin is a pigment responsible for the color of skin, hair, and eyes in animals, including humans. Hemoglobin is a protein found in red blood cells that contains a porphyrin ring with an iron atom at its center, which gives blood its red color and facilitates oxygen transport. Chlorophyll is a green pigment found in plants, algae, and some bacteria that absorbs light during photosynthesis to convert carbon dioxide and water into glucose and oxygen. Carotenoids are orange, yellow, or red pigments found in fruits, vegetables, and some animals that protect against oxidative stress and help maintain membrane fluidity. Flavonoids are a class of plant pigments with antioxidant properties that have been linked to various health benefits.

Amelanotic melanoma is a type of melanoma, which is the most serious and deadly form of skin cancer. While most melanomas contain dark pigments called melanin, amelanotic melanomas lack melanin, giving them a pink, red, or white color. This absence of color can make amelanotic melanomas harder to detect and diagnose at an early stage compared to other types of melanoma.

Amelanotic melanomas may arise from existing moles or develop on their own in normal skin. They can occur anywhere on the body, but they are more common in sun-exposed areas such as the head, neck, and trunk.

Like other forms of melanoma, amelanotic melanoma can spread quickly to other parts of the body if left untreated. Therefore, it is essential to recognize any changes in the skin and consult a healthcare professional for proper evaluation and diagnosis. Treatment typically involves surgical excision, with additional therapies such as radiation therapy, immunotherapy, or targeted therapy recommended depending on the stage and specific features of the cancer.

I'm sorry for any confusion, but "Lespedeza" is not a medical term. It is a genus of plants commonly known as bush clover or lespedeza. These plants are native to warm temperate and subtropical regions of the world, including parts of North America, Asia, and Africa. They have been used in some traditional medicine practices, but there is no widely recognized medical definition associated with "Lespedeza." If you have any questions related to a specific medical term or concept, I'd be happy to help if I can!

I'm sorry for any confusion, but "Mesons" is not a term used in medical definitions. It is a concept from particle physics. Mesons are subatomic particles that are composed of one quark and one antiquark, bound together by the strong nuclear force. They are unstable and quickly decay into other particles. If you have any questions about medical terminology or concepts, I would be happy to help with those!

Actinium is a naturally occurring radioactive metallic element with the symbol Ac and atomic number 89. It was discovered in 1899 by André-Louis Debierne, a French chemist, who isolated it from uranium ore. Actinium is one of the actinides, a series of elements in the periodic table that are characterized by their radioactivity and their position in the f-block of the periodic table.

Actinium has no biological role in humans or other organisms, and exposure to its radiation can be harmful. It is not found in significant quantities in the environment, but it can be produced artificially through nuclear reactions. Actinium has a few potential medical applications, including as a component of radioactive compounds used for cancer treatment. However, its use in medicine is limited due to its radioactivity and toxicity.

Levodopa, also known as L-dopa, is a medication used primarily in the treatment of Parkinson's disease. It is a direct precursor to the neurotransmitter dopamine and works by being converted into dopamine in the brain, helping to restore the balance between dopamine and other neurotransmitters. This helps alleviate symptoms such as stiffness, tremors, spasms, and poor muscle control. Levodopa is often combined with carbidopa (a peripheral decarboxylase inhibitor) to prevent the conversion of levodopa to dopamine outside of the brain, reducing side effects like nausea and vomiting.

Alpha-MSH (α-MSH) stands for alpha-melanocyte stimulating hormone. It is a peptide hormone that is produced in the pituitary gland and other tissues in the body. Alpha-MSH plays a role in various physiological processes, including:

1. Melanin production: Alpha-MSH stimulates melanin production in the skin, which leads to skin tanning.
2. Appetite regulation: Alpha-MSH acts as a appetite suppressant by signaling to the brain that the stomach is full.
3. Inflammation and immune response: Alpha-MSH has anti-inflammatory effects and helps regulate the immune response.
4. Energy balance and metabolism: Alpha-MSH helps regulate energy balance and metabolism by signaling to the brain to increase or decrease food intake and energy expenditure.

Alpha-MSH exerts its effects by binding to melanocortin receptors, specifically MC1R, MC3R, MC4R, and MC5R. Dysregulation of alpha-MSH signaling has been implicated in various medical conditions, including obesity, anorexia nervosa, and certain skin disorders.

"Tenebrio" is the genus name for mealworm beetles, which are insects commonly found in stored grains and animal feed. The most common species is Tenebrio molitor. Mealworms and their larvae are often used as a food source for pets, such as reptiles and birds, but they can also cause damage to crops and structures if they infest them. They have been studied in various medical and scientific research fields including nutrition, toxicology, and allergies. Some people may have allergic reactions to mealworms or their byproducts.

'Alternaria' is a genus of widely distributed saprophytic fungi that are often found in soil, plant debris, and water. They produce darkly pigmented, septate hyphae and conidia (asexual spores) that are characterized by their distinctive beak-like projections.

Alternaria species can cause various types of plant diseases, including leaf spots, blights, and rots, which can result in significant crop losses. They also produce a variety of mycotoxins, which can have harmful effects on human and animal health.

In humans, Alternaria species can cause allergic reactions, such as hay fever and asthma, as well as skin and respiratory tract infections. Exposure to Alternaria spores is also a known risk factor for the development of allergic bronchopulmonary aspergillosis (ABPA), a condition characterized by inflammation and scarring of the lungs.

It's important to note that medical definitions can vary depending on the context, so it may be helpful to consult a reliable medical or scientific source for more specific information about Alternaria and its potential health effects.

Hypothalamic hormones are a group of hormones that are produced and released by the hypothalamus, a small region at the base of the brain. These hormones play a crucial role in regulating various bodily functions, including temperature, hunger, thirst, sleep, and emotional behavior.

The hypothalamus produces two main types of hormones: releasing hormones and inhibiting hormones. Releasing hormones stimulate the pituitary gland to release its own hormones, while inhibiting hormones prevent the pituitary gland from releasing hormones.

Some examples of hypothalamic hormones include:

* Thyroid-releasing hormone (TRH), which stimulates the release of thyroid-stimulating hormone (TSH) from the pituitary gland.
* Growth hormone-releasing hormone (GHRH) and somatostatin, which regulate the release of growth hormone (GH) from the pituitary gland.
* Gonadotropin-releasing hormone (GnRH), which stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the pituitary gland, which in turn regulate reproductive function.
* Corticotropin-releasing hormone (CRH), which stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland, which regulates the stress response.
* Prolactin-inhibiting hormone (PIH) and prolactin-releasing hormone (PRH), which regulate the release of prolactin from the pituitary gland, which is involved in lactation.

Overall, hypothalamic hormones play a critical role in maintaining homeostasis in the body by regulating various physiological processes.

Intramolecular oxidoreductases are a specific class of enzymes that catalyze the transfer of electrons within a single molecule, hence the term "intramolecular." These enzymes are involved in oxidoreduction reactions, where one part of the molecule is oxidized (loses electrons) and another part is reduced (gains electrons). This process allows for the rearrangement or modification of functional groups within the molecule.

The term "oxidoreductase" refers to enzymes that catalyze oxidation-reduction reactions, which are also known as redox reactions. These enzymes play a crucial role in various biological processes, including energy metabolism, detoxification, and biosynthesis.

It's important to note that intramolecular oxidoreductases should not be confused with intermolecular oxidoreductases, which catalyze redox reactions between two separate molecules.

Skin lightening preparations are topical products or cosmetic treatments that contain ingredients intended to reduce the melanin concentration or inhibit its production in the skin, leading to a lighter skin tone. These products often include active ingredients such as hydroquinone, corticosteroids, retinoic acid, kojic acid, arbutin, or vitamin C. They work by suppressing tyrosinase, an enzyme responsible for melanin production, or causing skin cell turnover to decrease melanin-rich cells' appearance on the surface of the skin. It is essential to use these products under medical supervision and follow recommended guidelines, as improper usage can lead to skin irritation, allergic reactions, or other adverse effects.

The melanin pigments are produced in a specialized group of cells known as melanocytes. There are five basic types of melanin: ... Melanins have very diverse roles and functions in various organisms. A form of melanin makes up the ink used by many ... Melanin produced by plants are sometimes referred to as 'catechol melanins' as they can yield catechol on alkali fusion. It is ... Feathers that contain melanin are also 39% more resistant to abrasion than those that do not because melanin granules help fill ...
Krewen, Nick (9 June 1994). "MUTABARUKA/Melanin Man". Ego. The Hamilton Spectator. p. 4. "Album reviews - Melanin Man by ... Melanin Man is an album by the Jamaican musician Mutabaruka, released in 1994. Mutabaruka supported the album with a North ... "Mutabaruka - Melanin Man Album Reviews, Songs & More , AllMusic" - via www.allmusic.com. Hampel, Paul (16 July 1994). "THE KING ... Sly and Robbie played on Melanin Man; Dennis Brown, Cocoa Tea, and Freddie McGregor sang on the album. The title track alludes ...
"Melanin Magic", alternatively "Melanin Magic (Pretty Brown)", is a song by American rapper Remy Ma featuring American singer ... Melanin Magic', aka 'Pretty Brown', It's amazing." On January 16, 2018, Ma shared a snippet of the song on social media. The ... "Remy Ma spreads some "Melanin Magic" with Chris Brown on new song, asks fans to choose single's cover art". ABC News Radio. ... Chris Brown - 'Melanin Magic (Pretty Brown)'". Rap-Up. January 18, 2018. Retrieved January 30, 2018. O, Drea (January 20, 2018 ...
... and paranormal powers because they have higher levels of melanin, the primary skin pigment in humans. Melanin theory posits ... the views of adherents and critics of melanin theory were dramatized in Cassandra Medley's play Relativity. In 2020, melanin ... Melanin theory is a set of pseudoscientific claims made by some proponents of Afrocentrism, which holds that black people, ... One of the most common is that humans evolved as blacks in Africa, and that whites are mutants (albinos, or melanin recessives ...
Melanin also won three individual world titles in the 20 km, in 1959, 1962 and 1963. Melanin started as a cross-country skier, ... Domestically Melanin won only two titles, in the 20 km in 1959 and 1966. After retiring from competitions Melanin worked as a ... Vladimir Melanin at Olympics at Sports-Reference.com (archived) (Articles with short description, Short description is ... Vladimir Mikhailovich Melanin (Russian: Владимир Михайлович Меланьин; 1 December 1933 - 10 August 1994) was a Soviet biathlete ...
... receptor (MCHR) Melanin-concentrating hormone receptor 1 (MCHR1) Melanin-concentrating hormone ... Melanin-concentrating hormone (MCH), also known as pro-melanin stimulating hormone (PMCH), is a cyclic 19-amino acid orexigenic ... Kemp EH, Weetman AP (November 2009). "Melanin-concentrating hormone and melanin-concentrating hormone receptors in mammalian ... Melanin-concentrating+hormone at the U.S. National Library of Medicine Medical Subject Headings (MeSH) (Protein pages needing a ...
Melanin concentrating hormone Melanin Handlon AL, Zhou H (2006). "Melanin-concentrating hormone-1 receptor antagonists for the ... Two Melanin-concentrating hormone receptors (MCHR) have recently been characterized: MCH-R1 and MCH-R2. These two receptors ... melanin-concentrating+hormone+receptor at the U.S. National Library of Medicine Medical Subject Headings (MeSH) MCHR1+protein,+ ... "Melanin-Concentrating Hormone Receptors". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and ...
... , also known as MCH1, is one of the melanin-concentrating hormone receptors found in ... "Short segment of human melanin-concentrating hormone that is sufficient for full activation of human melanin-concentrating ... high potency peptide agonist of human melanin-concentrating hormone action at human melanin-concentrating hormone receptor 1". ... Melanin concentrating hormone (MCH) S-36057 - modified MCH 6-13 fragment substituted with 3-iodotyrosine at N-terminus via ...
2001). "Short segment of human melanin-concentrating hormone that is sufficient for full activation of human melanin- ... high potency peptide agonist of human melanin-concentrating hormone action at human melanin-concentrating hormone receptor 1". ... "Comparative proteomic analysis of proteins influenced by melanin-concentrating hormone and melanin-concentrating hormone ... "Entrez Gene: MCHR2 melanin-concentrating hormone receptor 2". Mori M, Harada M, Terao Y, Sugo T, Watanabe T, Shimomura Y, Abe M ...
Melanin biosynthesis, which is quite high in C. geophilum, gives its hyphae the "jet-black" appearance, and has been linked ... Fernandez, C. W., & Koide, R. T. (2013). The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water ... Butler, M. J., & Day, A. W. (1998). Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white ... Butler, M. J., & Day, A. W. (1998). Fungal melanins: a review. Canadian Journal of Microbiology, 44(12), 1115-1136. ...
However, this is unlikely since fungal melanin is structurally and biochemically different from human melanin and other species ... The dark colour is due to the presence of the dark pigment melanin. Hyphae are septate, as is the case for species belonging to ... Cladophialophora bantiana (C. bantiana) is a melanin producing mold known to cause brain abscesses in humans. It is one of the ... It is hypothesized that predilection of this species for the central nervous system is due to the presence of melanin, which ...
Kirkpatrick, D.S., McGinness, J.E., Moorhead, W.D., Corry, P.M., and Proctor, P.H.: Melanin-Water-Ion Dielectric Interaction. ... The department had an interest in the physical properties of melanin as a possible hook to treating melanoma. While of enormous ... Kono, R. and McGinness, J.E.: Anomalous Absorption and Sound in DBA Melanins. J. Applied Physics, 50(3): 1236-1244, 1979. ... Filatovs, G.J., McGinness, J.E., Williams, L.: Statistical Analysis of Switching Melanins. Physicol. Chem. and Phys. Vol. 12, ...
Melanin also protects the fungal cell wall from hydrolysis by scavenging the free radicals and hypochlorite produced by the ... Jacobson, Eric S. (2000). "Pathogenic Roles for Fungal Melanins". Clinical Microbiology Reviews. 13 (4): 708-717. doi:10.1128/ ... mackenziei for brain tissue is unknown but has been hypothesized to involve the fungal melanin which acts as a virulence factor ...
"The chemistry of the melanins. Part V. The autoxidation of 5 : 6-dihydroxyindoles". Journal of the Chemical Society (Resumed): ... by the tyrosinase type polyphenol oxidase from tyrosine and catecholamines leading to the formation of catechol melanin. Like ...
The "melanin (polyacetylenes) bistable switch" currently is part of the chips collection of the Smithsonian Institution. In ... John McGinness; Corry, Peter; Proctor, Peter (March 1, 1974). "Amorphous Semiconductor Switching in Melanins". Science. 183 ( ...
Chemically they are closely related to dopamine, and there is a type of melanin, known as dopamine-melanin, that can be ... The melanin that darkens human skin is not of this type: it is synthesized by a pathway that uses L-DOPA as a precursor but not ... Dopamine-derived melanin probably appears in at least some other biological systems as well. Some of the dopamine in plants is ... It can be metabolized in a variety of ways, producing melanin and a variety of alkaloids as byproducts. The functions of plant ...
Generally, if more melanin is present, the color of the hair is darker; if less melanin is present, the hair is lighter. The ... Levels of melanin can vary over time causing a person's hair color to change, and it is possible to have hair follicles of more ... Gray or white hair is not caused by a true gray or white pigment, but is due to a lack of pigmentation and melanin. The clear ... Over 95% of melanin content in black and brown hair is eumelanin. Pheomelanin is generally found in elevated concentrations in ...
Daniel, Jo (28 November 2019). "Melanin Popping! Nigerian model Mary Timms slays In swimsuit photoshoot". Information Nigeria. ...
"Fred Martinx' Latest Project Honors Our African Struggles For Freedom". MELANIN MAJORITY. February 9, 2017. Retrieved October ...
Biosynthesis of melanin occurs in melanocytes, where tyrosine is converted into DOPA and then dopaquinone, which goes on to be ... l-Dopaquinone also known as o-dopaquinone is a metabolite of L-DOPA (L-dihydroxyphenylalanine) and a precursor of melanin. ... Hearing VJ (2011). "Determination of melanin synthetic pathways". J. Invest. Dermatol. 131 (E1): E8-E11. doi:10.1038/skinbio. ... Schlessinger, Daniel I.; Schlessinger, Joel (January 2020). "Biochemistry, Melanin". StatPearls Publishing. PMID 29083759. ...
"Ciara - Melanin". Apple Music. Retrieved August 21, 2020. @Ciara (August 11, 2020). "#Rooted 8.13.20" (Tweet). Retrieved August ...
"Profiles". Melanin in Medicine*. Retrieved 2020-06-06. "Episode 2: LaShyra "Lash" Nolen". podbean.com. Retrieved 2020-06-07. " ...
"Melanin Lens Magazine". Archived from the original on January 13, 2021. "Kym Scott". kymscottphotography.tumblr.com. Retrieved ... Melanin Lens Magazine. Ms. Scott specializes in fine-art photography and received a Certificate in Professional Photography ...
Vladimir Melanin, 60, Soviet/Russian biathlete and Olympian. Kay Petre, 91, Canadian motor racer. Jessie Sumner, 96, American ... "Olympedia - Vladimir Melanin". olympedia.org. OlyMADMen. Retrieved February 17, 2022. Eric Pace (August 15, 1994). "Jessie ...
"Profiles". Melanin in Medicine*. Retrieved 2020-06-17. Chen, Christine (2019-05-22). "At the Intersections: Conversations with ...
"Conversation with Sophia Danenberg: First African American to Climb Everest". Melanin Base Camp. 31 January 2018. Retrieved ...
Note on Melanin. Journal of Physiology, 35: xlvii-xlviii Durham, Florence M. 1908. A Preliminary Account of the Inheritance of ...
Melanin is also present in the inner ear, and is important for the early development of the auditory system. Melanin is also ... Melanin is a compound found in plants, animals, and protists, and is derived from the amino acid tyrosine. Melanin is a ... Disruption of melanin production does not affect the production of these pigments. Non-melanin pigments in other vertebrates ... The only pigments that mammals produce are melanins. For a mammal to be unable to chemically manufacture melanin renders it ...
Many animals have dark pigments such as melanin in their skin, eyes and fur to protect themselves against sunburn (damage to ... Pigments are coloured chemicals (such as melanin) in animal tissues. For example, the Arctic fox has a white coat in winter ( ... Hill, H. Z. (January 1992). "The function of melanin or six blind people examine an elephant". BioEssays. 14 (1): 49-56. doi: ... Proctor, P. H.; McGinness, J. E. (May 1986). "The function of melanin". Archives of Dermatology. 122 (5): 507-508. doi:10.1001/ ...
According to Welsing, the genocide of people of color is caused by white people's inability to produce melanin. The minority ... Ortiz de Montellano, B. (2001) Magic Melanin: Spreading Scientific Illiteracy to Minorities, csicop.org; accessed June 29, 2017 ... Ortiz de Montellano, Bernard R. (1993). "Melanin, afrocentricity, and pseudoscience". American Journal of Physical Anthropology ... Proponents of melanin theory, 20th-century African-American writers, 20th-century African-American women writers, 21st-century ...

No FAQ available that match "melanins"

No images available that match "melanins"