A plant species of the family FABACEAE used to study GENETICS because it is DIPLOID, self fertile, has a small genome, and short generation time.
A plant genus of the family FABACEAE. It is distinct from Sweet Clover (MELILOTUS), from Bush Clover (LESPEDEZA), and from Red Clover (TRIFOLIUM).
A plant species of the family FABACEAE widely cultivated for ANIMAL FEED.
A species of gram-negative, aerobic bacteria that causes formation of root nodules on some, but not all, types of sweet clover, MEDICAGO SATIVA, and fenugreek.
Knobbed structures formed from and attached to plant roots, especially of LEGUMES, which result from symbiotic infection by nitrogen fixing bacteria such as RHIZOBIUM or FRANKIA. Root nodules are structures related to MYCORRHIZAE formed by symbiotic associations with fungi.
The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other.
The formation of a nitrogen-fixing cell mass on PLANT ROOTS following symbiotic infection by nitrogen-fixing bacteria such as RHIZOBIUM or FRANKIA.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
Symbiotic combination (dual organism) of the MYCELIUM of FUNGI with the roots of plants (PLANT ROOTS). The roots of almost all higher plants exhibit this mutually beneficial relationship, whereby the fungus supplies water and mineral salts to the plant, and the plant supplies CARBOHYDRATES to the fungus. There are two major types of mycorrhizae: ectomycorrhizae and endomycorrhizae.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds.
The functional hereditary units of PLANTS.
A genus of OOMYCETES in the family Saprolegniaceae. It causes root rot in plants and is also a pathogen of FISHES.
A plant genus of the family FABACEAE. This genus was formerly known as Tetragonolobus. The common name of lotus is also used for NYMPHAEA and NELUMBO.
The genetic complement of a plant (PLANTS) as represented in its DNA.
PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.
A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
A genus of gram-negative, aerobic, nonsporeforming rods which usually contain granules of poly-beta-hydroxybutyrate. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
Deoxyribonucleic acid that makes up the genetic material of plants.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.
The presence of two or more genetic loci on the same chromosome. Extensions of this original definition refer to the similarity in content and organization between chromosomes, of different species for example.
Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed)
Naphthalene derivatives containing the -CH2CCO2H radical at the 1-position, the 2-position, or both. Compounds are used as plant growth regulators to delay sprouting, exert weed control, thin fruit, etc.
Plant hormones that promote the separation of daughter cells after mitotic division of a parent cell. Frequently they are purine derivatives.
The relationships of groups of organisms as reflected by their genetic makeup.
Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived.
A phylum of fungi that are mutualistic symbionts and form ARBUSCULAR MYCORRHIZAE with PLANT ROOTS.
A genus of mitosporic Phyllachoraceae fungi which contains at least 40 species of plant parasites. They have teleomorphs in the genus Glomerella (see PHYLLACHORALES).
Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins.
New immature growth of a plant including stem, leaves, tips of branches, and SEEDLINGS.
A plant genus of the FABACEAE family known for the seeds used as food.
A genus of gram negative, aerobic, rod-shaped bacteria found in soil, plants, and marine mud.
Derivatives of ethylene, a simple organic gas of biological origin with many industrial and biological use.
Diseases of plants.
Very young plant after GERMINATION of SEEDS.
A group of cells at the base of a leaf in certain plants that, by rapidly losing water, brings about changes in the position of the leaves. (Concise Dictionary of Biology, 1990)
Dimers and oligomers of flavan-3-ol units (CATECHIN analogs) linked mainly through C4 to C8 bonds to leucoanthocyanidins. They are structurally similar to ANTHOCYANINS but are the result of a different fork in biosynthetic pathways.
A thioredoxin subtype that is ubiquitously found in the plant kingdom. It reduces a variety of seed storage proteins and may play a role in the germination process of seeds.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.
A variable annual leguminous vine (Pisum sativum) that is cultivated for its rounded smooth or wrinkled edible protein-rich seeds, the seed of the pea, and the immature pods with their included seeds. (From Webster's New Collegiate Dictionary, 1973)
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
A thin layer of cells forming the outer integument of seed plants and ferns. (Random House Unabridged Dictionary, 2d ed)
A plant genus of the family OROBANCHACEAE. Lacking chlorophyll, they are nonphotosynthetic parasitic plants. The common name is similar to Broom or Scotch Broom (CYTISUS) or Butcher's Broom (RUSCUS) or Desert Broom (BACCHARIS) or Spanish Broom (SPARTIUM) or Brome (BROMUS).
A strand of primary conductive plant tissue consisting essentially of XYLEM, PHLOEM, and CAMBIUM.
Plant tissue that carries nutrients, especially sucrose, by turgor pressure. Movement is bidirectional, in contrast to XYLEM where it is only upward. Phloem originates and grows outwards from meristematic cells (MERISTEM) in the vascular cambium. P-proteins, a type of LECTINS, are characteristically found in phloem.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990)
A family (Aphididae) of small insects, in the suborder Sternorrhyncha, that suck the juices of plants. Important genera include Schizaphis and Myzus. The latter is known to carry more than 100 virus diseases between plants.
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS.
A plant genus of the family FABACEAE that is a source of SPARTEINE, lupanine and other lupin alkaloids.
A hemoglobin-like oxygen-binding hemeprotein present in the nitrogen-fixing root nodules of leguminous plants. The red pigment has a molecular weight approximately 1/4 that of hemoglobin and has been suggested to act as an oxido-reduction catalyst in symbiotic nitrogen fixation.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A group of plant cells that are capable of dividing infinitely and whose main function is the production of new growth at the growing tip of a root or stem. (From Concise Dictionary of Biology, 1990)
The reproductive organs of plants.
The most abundant natural aromatic organic polymer found in all vascular plants. Lignin together with cellulose and hemicellulose are the major cell wall components of the fibers of all wood and grass species. Lignin is composed of coniferyl, p-coumaryl, and sinapyl alcohols in varying ratios in different plant species. (From Merck Index, 11th ed)
Any method used for determining the location of and relative distances between genes on a chromosome.
Microscopy in which the image is formed by ultraviolet radiation and is displayed and recorded by means of photographic film.
Membrane proteins that are involved in the active transport of phosphate.

Microbial products trigger amino acid exudation from plant roots. (1/446)

Plants naturally cycle amino acids across root cell plasma membranes, and any net efflux is termed exudation. The dominant ecological view is that microorganisms and roots passively compete for amino acids in the soil solution, yet the innate capacity of roots to recover amino acids present in ecologically relevant concentrations is unknown. We find that, in the absence of culturable microorganisms, the influx rates of 16 amino acids (each supplied at 2.5 microm) exceed efflux rates by 5% to 545% in roots of alfalfa (Medicago sativa), Medicago truncatula, maize (Zea mays), and wheat (Triticum aestivum). Several microbial products, which are produced by common soil microorganisms such as Pseudomonas bacteria and Fusarium fungi, significantly enhanced the net efflux (i.e. exudation) of amino acids from roots of these four plant species. In alfalfa, treating roots with 200 microm phenazine, 2,4-diacetylphloroglucinol, or zearalenone increased total net efflux of 16 amino acids 200% to 2,600% in 3 h. Data from (15)N tests suggest that 2,4-diacetylphloroglucinol blocks amino acid uptake, whereas zearalenone enhances efflux. Thus, amino acid exudation under normal conditions is a phenomenon that probably reflects both active manipulation and passive uptake by microorganisms, as well as diffusion and adsorption to soil, all of which help overcome the innate capacity of plant roots to reabsorb amino acids. The importance of identifying potential enhancers of root exudation lies in understanding that such compounds may represent regulatory linkages between the larger soil food web and the internal carbon metabolism of the plant.  (+info)

Nod factor-treated Medicago truncatula roots and seeds show an increased number of nodules when inoculated with a limiting population of Sinorhizobium meliloti. (2/446)

Medicago truncatula is a model legume plant that interacts symbiotically with Sinorhizobium meliloti, the alfalfa symbiont. This process involves a molecular dialogue between the bacterium and the plant. Legume roots exude flavonoids that induce the expression of a set of rhizobial genes, the nod genes, which are essential for nodulation and determination of the host range. In turn, nod genes control the synthesis of lipo-chito-oligosaccharides (LCOs), Nod factors, which are bacteria-to-plant signal molecules mediating recognition and nodule organogenesis. M. truncatula roots or seeds have been treated with Nod factors and hydroponically growing seedlings have been inoculated with a limiting population of S. meliloti. It has been shown that submicromolar concentrations of Nod factors increase the number of nodules per plant on M. truncatula. Compared with roots, this increase is more noticeable when seeds are treated. M. truncatula seeds are receptive to submicromolar concentrations of Nod factors, suggesting the possibility of a high affinity LCO perception system in seeds or embryos as well.  (+info)

The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. (3/446)

Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.  (+info)

Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. (4/446)

Two nitrogen-fixing root nodule symbioses between soil bacteria and higher plants have been described: the symbiosis between legume and rhizobia and actinorhizal symbioses between plants belonging to eight angiosperm families and the actinomycete Frankia. We have recently shown that the subtilisin-like Ser protease gene cg12 (isolated from the actinorhizal plant Casuarina glauca) is specifically expressed during plant cell infection by Frankia. Here we report on the study of C. glauca cg12 promoter activity in the transgenic legume Medicago truncatula. We found that cg12 promoter activation is associated with plant cell infection by Sinorhizobium meliloti. Furthermore, applications of purified Nod factors and mycorrhizal inoculation failed to trigger expression of the cg12-reporter gene construct. This indicates that at least part of the transcriptional environment in plant cells infected by endosymbiotic nitrogen-fixing bacteria is conserved between legume and actinorhizal plants. These results are discussed in view of recent data concerning molecular phylogeny that suggest a common evolutionary origin of all plants entering nitrogen-fixing root nodule symbioses.  (+info)

Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. (5/446)

In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are good candidates to play a role in the regulation of the symbiotic program. This represents substantial progress toward a better understanding of this complex developmental program.  (+info)

Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression. (6/446)

Rhizobium nodulation (Nod) factors are specific lipochito-oligosaccharide signals essential for initiating in root hairs of the host legume developmental responses that are required for controlled entry of the microsymbiont. In this article, we focus on the Nod factor signal transduction pathway leading to specific and cell autonomous gene activation in Medicago truncatula cv Jemalong in a study making use of the Nod factor-inducible MtENOD11 gene. First, we show that pharmacological antagonists that interfere with intracellular ion channel and Ca2+ pump activities are efficient blockers of Nod factor-elicited pMtENOD11-beta-glucuronidase (GUS) expression in root hairs of transgenic M. truncatula. These results indicate that intracellular Ca2+ release and recycling activities, essential for Ca2+ spiking, are also required for specific gene activation. Second, pharmacological effectors that inhibit phospholipase D and phosphoinositide-dependent phospholipase C activities are also able to block pMtENOD11-GUS activation, thus underlining a central role for multiple phospholipid signaling pathways in Nod factor signal transduction. Finally, pMtENOD11-GUS was introduced into all three Nod-/Myc- dmi M. truncatula mutant backgrounds, and gene expression was evaluated in response to the mastoparan peptide agonist Mas7. We found that Mas7 elicits root hair MtENOD11 expression in dmi1 and dmi2 mutants, but not in the dmi3 mutant, suggesting that the agonist acts downstream of DMI1/DMI2 and upstream of DMI3. In light of these results and the recently discovered identities of the DMI gene products, we propose an integrated cellular model for Nod factor signaling in legume root hairs in which phospholipids play a key role in linking the Nod factor perception apparatus to downstream components such as Ca2+ spiking and ENOD gene expression.  (+info)

Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. (7/446)

Transcriptome profiling based on cDNA array hybridizations and in silico screening was used to identify Medicago truncatula genes induced in both root nodules and arbuscular mycorrhiza (AM). By array hybridizations, we detected several hundred genes that were upregulated in the root nodule and the AM symbiosis, respectively, with a total of 75 genes being induced during both interactions. The second approach based on in silico data mining yielded several hundred additional candidate genes with a predicted symbiosis-enhanced expression. A subset of the genes identified by either expression profiling tool was subjected to quantitative real-time reverse-transcription polymerase chain reaction for a verification of their symbiosis-induced expression. That way, induction in root nodules and AM was confirmed for 26 genes, most of them being reported as symbiosis-induced for the first time. In addition to delivering a number of novel symbiosis-induced genes, our approach identified several genes that were induced in only one of the two root endosymbioses. The spatial expression patterns of two symbiosis-induced genes encoding an annexin and a beta-tubulin were characterized in transgenic roots using promoter-reporter gene fusions.  (+info)

nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. (8/446)

To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions.  (+info)

'Medicago truncatula' is not a medical term, but a scientific name for a plant species. It is commonly known as barrel medic or yellow trefoil and is native to the Mediterranean region. It is a model organism in the field of plant genetics and molecular biology due to its small genome size and ease of transformation. While it does not have direct medical applications, studies on this plant can contribute to our understanding of fundamental biological processes and may have indirect implications for human health.

"Medicago" is a genus of flowering plants in the family Fabaceae, also known as the legume or pea family. It includes several species that are important forage crops and green manure, such as Medicago sativa (alfalfa or lucerne) and Medicago lupulina (black medic). These plants have the ability to fix nitrogen from the atmosphere through their root nodules, which benefits the soil and other nearby plants. They are often used in rotational grazing systems and for erosion control.

'Medicago sativa' is the scientific name for a plant species more commonly known as alfalfa. In a medical context, alfalfa is often considered a herbal supplement and its medicinal properties include being a source of vitamins, minerals, and antioxidants. It has been used in traditional medicine to treat a variety of conditions such as kidney problems, asthma, arthritis, and high cholesterol levels. However, it's important to note that the effectiveness of alfalfa for these uses is not conclusively established by scientific research and its use may have potential risks or interactions with certain medications. Always consult a healthcare provider before starting any new supplement regimen.

"Sinorhizobium meliloti" is a species of nitrogen-fixing bacteria that forms nodules on the roots of leguminous plants, such as alfalfa and clover. These bacteria have the ability to convert atmospheric nitrogen into ammonia, which can then be used by the plant for growth and development. This symbiotic relationship benefits both the bacterium and the plant, as the plant provides carbon sources to the bacterium, while the bacterium provides the plant with a source of nitrogen.

"Sinorhizobium meliloti" is gram-negative, motile, and rod-shaped, and it can be found in soil and root nodules of leguminous plants. It has a complex genome consisting of a circular chromosome and several plasmids, which carry genes involved in nitrogen fixation and other important functions. The bacteria are able to sense and respond to various environmental signals, allowing them to adapt to changing conditions and establish successful symbioses with their host plants.

In addition to its agricultural importance, "Sinorhizobium meliloti" is also a model organism for studying the molecular mechanisms of symbiotic nitrogen fixation and bacterial genetics.

Root nodules in plants refer to the specialized structures formed through the symbiotic relationship between certain leguminous plants and nitrogen-fixing bacteria, most commonly belonging to the genus Rhizobia. These nodules typically develop on the roots of the host plant, providing an ideal environment for the bacteria to convert atmospheric nitrogen into ammonia, a form that can be directly utilized by the plant for growth and development.

The formation of root nodules begins with the infection of the plant's root hair cells by Rhizobia bacteria. This interaction triggers a series of molecular signals leading to the differentiation of root cortical cells into nodule primordia, which eventually develop into mature nodules. The nitrogen-fixing bacteria reside within these nodules in membrane-bound compartments called symbiosomes, where they reduce atmospheric nitrogen into ammonia through an enzyme called nitrogenase.

The plant, in turn, provides the bacteria with carbon sources and other essential nutrients required for their growth and survival within the nodules. The fixed nitrogen is then transported from the root nodules to other parts of the plant, enhancing its overall nitrogen nutrition and promoting sustainable growth without the need for external nitrogen fertilizers.

In summary, root nodules in plants are essential structures formed through symbiotic associations with nitrogen-fixing bacteria, allowing leguminous plants to convert atmospheric nitrogen into a usable form while also benefiting the environment by reducing the reliance on chemical nitrogen fertilizers.

In the context of medicine and biology, symbiosis is a type of close and long-term biological interaction between two different biological organisms. Generally, one organism, called the symbiont, lives inside or on another organism, called the host. This interaction can be mutually beneficial (mutualistic), harmful to the host organism (parasitic), or have no effect on either organism (commensal).

Examples of mutualistic symbiotic relationships in humans include the bacteria that live in our gut and help us digest food, as well as the algae that live inside corals and provide them with nutrients. Parasitic symbioses, on the other hand, involve organisms like viruses or parasitic worms that live inside a host and cause harm to it.

It's worth noting that while the term "symbiosis" is often used in popular culture to refer to any close relationship between two organisms, in scientific contexts it has a more specific meaning related to long-term biological interactions.

Plant root nodulation is a type of symbiotic relationship between certain plants (mostly legumes) and nitrogen-fixing bacteria, such as Rhizobia species. This process involves the formation of specialized structures called nodules on the roots of the host plant. The bacteria inhabit these nodules and convert atmospheric nitrogen into ammonia, a form of nitrogen that plants can use for growth. In return, the plant provides the bacteria with carbon sources and a protected environment for growth. This mutualistic relationship helps improve soil fertility and promotes sustainable agriculture.

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

Mycorrhizae are symbiotic associations between fungi and the roots of most plant species. In a mycorrhizal association, fungi colonize the root tissues of plants and extend their mycelial networks into the surrounding soil. This association enhances the nutrient uptake capacity of the host plant, particularly with regards to phosphorus and nitrogen, while the fungi receive carbohydrates from the plant for their own growth and metabolism.

Mycorrhizal fungi can be broadly classified into two types: ectomycorrhizae and endomycorrhizae (or arbuscular mycorrhizae). Ectomycorrhizae form a sheath around the root surface, while endomycorrhizae penetrate the root cells and form structures called arbuscules, where nutrient exchange occurs. Mycorrhizal associations play crucial roles in maintaining ecosystem stability, promoting plant growth, and improving soil structure and fertility.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Gene expression regulation in plants refers to the processes that control the production of proteins and RNA from the genes present in the plant's DNA. This regulation is crucial for normal growth, development, and response to environmental stimuli in plants. It can occur at various levels, including transcription (the first step in gene expression, where the DNA sequence is copied into RNA), RNA processing (such as alternative splicing, which generates different mRNA molecules from a single gene), translation (where the information in the mRNA is used to produce a protein), and post-translational modification (where proteins are chemically modified after they have been synthesized).

In plants, gene expression regulation can be influenced by various factors such as hormones, light, temperature, and stress. Plants use complex networks of transcription factors, chromatin remodeling complexes, and small RNAs to regulate gene expression in response to these signals. Understanding the mechanisms of gene expression regulation in plants is important for basic research, as well as for developing crops with improved traits such as increased yield, stress tolerance, and disease resistance.

Nitrogen fixation is a process by which nitrogen gas (N2) in the air is converted into ammonia (NH3) or other chemically reactive forms, making it available to plants and other organisms for use as a nutrient. This process is essential for the nitrogen cycle and for the growth of many types of plants, as most plants cannot utilize nitrogen gas directly from the air.

In the medical field, nitrogen fixation is not a commonly used term. However, in the context of microbiology and infectious diseases, some bacteria are capable of fixing nitrogen and this ability can contribute to their pathogenicity. For example, certain species of bacteria that colonize the human body, such as those found in the gut or on the skin, may be able to fix nitrogen and use it for their own growth and survival. In some cases, these bacteria may also release fixed nitrogen into the environment, which can have implications for the ecology and health of the host and surrounding ecosystems.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

Aphanomyces is a genus of fungi-like oomycetes that are widely distributed in various environments, including soil and water. These organisms are known to cause diseases in plants, particularly in crops such as rice, corn, and legumes. The most well-known species is Aphanomyces euteiches, which causes a serious disease in peas and other legumes called "root rot." This disease can lead to significant yield losses in affected crops.

It's worth noting that while Aphanomyces species are often referred to as water molds, they are not true fungi but rather stramenopiles, which are more closely related to brown algae and diatoms. Nonetheless, they share many characteristics with fungi and are commonly studied in mycology, the branch of biology that deals with fungi.

I'm sorry for any confusion, but the term "Lotus" does not have a specific medical definition in the context of human health or medicine. The lotus is a flowering plant that is often used as a symbol in various cultural and spiritual contexts, but it does not directly relate to medical terminology. If you have any questions related to medical topics, I'd be happy to help answer those!

A plant genome refers to the complete set of genetic material or DNA present in the cells of a plant. It contains all the hereditary information necessary for the development and functioning of the plant, including its structural and functional characteristics. The plant genome includes both coding regions that contain instructions for producing proteins and non-coding regions that have various regulatory functions.

The plant genome is composed of several types of DNA molecules, including chromosomes, which are located in the nucleus of the cell. Each chromosome contains one or more genes, which are segments of DNA that code for specific proteins or RNA molecules. Plants typically have multiple sets of chromosomes, with each set containing a complete copy of the genome.

The study of plant genomes is an active area of research in modern biology, with important applications in areas such as crop improvement, evolutionary biology, and medical research. Advances in DNA sequencing technologies have made it possible to determine the complete sequences of many plant genomes, providing valuable insights into their structure, function, and evolution.

Genetically modified plants (GMPs) are plants that have had their DNA altered through genetic engineering techniques to exhibit desired traits. These modifications can be made to enhance certain characteristics such as increased resistance to pests, improved tolerance to environmental stresses like drought or salinity, or enhanced nutritional content. The process often involves introducing genes from other organisms, such as bacteria or viruses, into the plant's genome. Examples of GMPs include Bt cotton, which has a gene from the bacterium Bacillus thuringiensis that makes it resistant to certain pests, and golden rice, which is engineered to contain higher levels of beta-carotene, a precursor to vitamin A. It's important to note that genetically modified plants are subject to rigorous testing and regulation to ensure their safety for human consumption and environmental impact before they are approved for commercial use.

Rhizobium is not a medical term, but rather a term used in microbiology and agriculture. It refers to a genus of gram-negative bacteria that can fix nitrogen from the atmosphere into ammonia, which can then be used by plants as a nutrient. These bacteria live in the root nodules of leguminous plants (such as beans, peas, and clover) and form a symbiotic relationship with them.

The host plant provides Rhizobium with carbon sources and a protected environment within the root nodule, while the bacteria provide the plant with fixed nitrogen. This mutualistic interaction plays a crucial role in maintaining soil fertility and promoting plant growth.

While Rhizobium itself is not directly related to human health or medicine, understanding its symbiotic relationship with plants can have implications for agricultural practices, sustainable farming, and global food security.

"Sinorhizobium" is a genus of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as beans and alfalfa. These bacteria are able to convert atmospheric nitrogen into ammonia, which the plant can then use for growth. This symbiotic relationship benefits both the plant and the bacteria - the plant receives a source of nitrogen, while the bacteria receive carbon and other nutrients from the plant.

The genus "Sinorhizobium" is part of the family Rhizobiaceae and includes several species that are important for agriculture and the global nitrogen cycle. Some examples of "Sinorhizobium" species include S. meliloti, which forms nodules on alfalfa and other Medicago species, and S. fredii, which forms nodules on soybeans and other Glycine species.

It's worth noting that the taxonomy of nitrogen-fixing bacteria has undergone significant revisions in recent years, and some "Sinorhizobium" species have been reclassified as members of other genera. However, the genus "Sinorhizobium" remains a valid and important group of nitrogen-fixing bacteria.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Fabaceae is the scientific name for a family of flowering plants commonly known as the legume, pea, or bean family. This family includes a wide variety of plants that are important economically, agriculturally, and ecologically. Many members of Fabaceae have compound leaves and produce fruits that are legumes, which are long, thin pods that contain seeds. Some well-known examples of plants in this family include beans, peas, lentils, peanuts, clover, and alfalfa.

In addition to their importance as food crops, many Fabaceae species have the ability to fix nitrogen from the atmosphere into the soil through a symbiotic relationship with bacteria that live in nodules on their roots. This makes them valuable for improving soil fertility and is one reason why they are often used in crop rotation and as cover crops.

It's worth noting that Fabaceae is sometimes still referred to by its older scientific name, Leguminosae.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

DNA, or deoxyribonucleic acid, is the genetic material present in the cells of all living organisms, including plants. In plants, DNA is located in the nucleus of a cell, as well as in chloroplasts and mitochondria. Plant DNA contains the instructions for the development, growth, and function of the plant, and is passed down from one generation to the next through the process of reproduction.

The structure of DNA is a double helix, formed by two strands of nucleotides that are linked together by hydrogen bonds. Each nucleotide contains a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. There are four types of nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine pairs with thymine, and guanine pairs with cytosine, forming the rungs of the ladder that make up the double helix.

The genetic information in DNA is encoded in the sequence of these nitrogenous bases. Large sequences of bases form genes, which provide the instructions for the production of proteins. The process of gene expression involves transcribing the DNA sequence into a complementary RNA molecule, which is then translated into a protein.

Plant DNA is similar to animal DNA in many ways, but there are also some differences. For example, plant DNA contains a higher proportion of repetitive sequences and transposable elements, which are mobile genetic elements that can move around the genome and cause mutations. Additionally, plant cells have cell walls and chloroplasts, which are not present in animal cells, and these structures contain their own DNA.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

Ribonucleic acid (RNA) in plants refers to the long, single-stranded molecules that are essential for the translation of genetic information from deoxyribonucleic acid (DNA) into proteins. RNA is a nucleic acid, like DNA, and it is composed of a ribose sugar backbone with attached nitrogenous bases (adenine, uracil, guanine, and cytosine).

In plants, there are several types of RNA that play specific roles in the gene expression process:

1. Messenger RNA (mRNA): This type of RNA carries genetic information copied from DNA in the form of a sequence of three-base code units called codons. These codons specify the order of amino acids in a protein.
2. Transfer RNA (tRNA): tRNAs are small RNA molecules that serve as adaptors between the mRNA and the amino acids during protein synthesis. Each tRNA has a specific anticodon sequence that base-pairs with a complementary codon on the mRNA, and it carries a specific amino acid that corresponds to that codon.
3. Ribosomal RNA (rRNA): rRNAs are structural components of ribosomes, which are large macromolecular complexes where protein synthesis occurs. In plants, there are several types of rRNAs, including the 18S, 5.8S, and 25S/28S rRNAs, that form the core of the ribosome and help catalyze peptide bond formation during protein synthesis.
4. Small nuclear RNA (snRNA): These are small RNA molecules that play a role in RNA processing, such as splicing, where introns (non-coding sequences) are removed from pre-mRNA and exons (coding sequences) are joined together to form mature mRNAs.
5. MicroRNA (miRNA): These are small non-coding RNAs that regulate gene expression by binding to complementary sequences in target mRNAs, leading to their degradation or translation inhibition.

Overall, these different types of RNAs play crucial roles in various aspects of RNA metabolism, gene regulation, and protein synthesis in plants.

Synteny, in the context of genetics and genomics, refers to the presence of two or more genetic loci (regions) on the same chromosome, in the same relative order and orientation. This term is often used to describe conserved gene organization between different species, indicating a common ancestry.

It's important to note that synteny should not be confused with "colinearity," which refers to the conservation of gene content and order within a genome or between genomes of closely related species. Synteny is a broader concept that can also include conserved gene order across more distantly related species, even if some genes have been lost or gained in the process.

In medical research, synteny analysis can be useful for identifying conserved genetic elements and regulatory regions that may play important roles in disease susceptibility or other biological processes.

Indole-3-acetic acid (IAA) is not exactly a medical term, but rather a scientific term used in the field of biochemistry and physiology. It is a type of auxin, which is a plant hormone that regulates various growth and development processes in plants. IAA is the most abundant and best-studied natural auxin.

Medically, indole-3-acetic acid may be mentioned in the context of certain medical conditions or treatments related to plants or plant-derived substances. For example, some research has investigated the potential use of IAA in promoting wound healing in plants or in agricultural applications. However, it is not a substance that is typically used in medical treatment for humans or animals.

Naphthaleneacetic acids (NAAs) are a type of synthetic auxin, which is a plant hormone that promotes growth and development. Specifically, NAAs are derivatives of naphthalene, a polycyclic aromatic hydrocarbon, with a carboxylic acid group attached to one of the carbon atoms in the ring structure.

NAAs are commonly used in horticulture and agriculture as plant growth regulators. They can stimulate rooting in cuttings, promote fruit set and growth, and inhibit vegetative growth. NAAs can also be used in plant tissue culture to regulate cell division and differentiation.

In medical terms, NAAs are not typically used as therapeutic agents. However, they have been studied for their potential use in cancer therapy due to their ability to regulate cell growth and differentiation. Some research has suggested that NAAs may be able to inhibit the growth of certain types of cancer cells, although more studies are needed to confirm these findings and determine the safety and efficacy of NAAs as a cancer treatment.

Cytokinins are a type of plant growth hormone that play a crucial role in cell division, differentiation, and growth. They were first discovered in 1950s and named for their ability to promote cytokinesis, the process of cell division. Cytokinins belong to a class of compounds called adenine derivatives, which are structurally similar to nucleotides, the building blocks of DNA and RNA.

Cytokinins are produced in the roots and shoots of plants and are transported throughout the plant via the vascular system. They have been shown to regulate various aspects of plant growth and development, including shoot initiation, leaf expansion, apical dominance, and senescence. Cytokinins also interact with other hormones such as auxins, gibberellins, and abscisic acid to modulate plant responses to environmental stresses.

Cytokinins have been used in horticulture and agriculture to enhance crop yields, improve plant quality, and delay senescence. They are also being studied for their potential role in human health, particularly in the context of cancer research.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Expressed Sequence Tags (ESTs) are short, single-pass DNA sequences that are derived from cDNA libraries. They represent a quick and cost-effective method for large-scale sequencing of gene transcripts and provide an unbiased view of the genes being actively expressed in a particular tissue or developmental stage. ESTs can be used to identify and study new genes, to analyze patterns of gene expression, and to develop molecular markers for genetic mapping and genome analysis.

Glomeromycota is a phylum of fungi that form arbuscular mycorrhizae, which are symbiotic associations with the roots of most land plants. These fungi exist exclusively as tiny, threadlike structures called hyphae, which penetrate the cells of plant roots and form unique structures called arbuscules where nutrient exchange occurs. The fungi receive carbon from the plant in the form of sugars, while they provide essential mineral nutrients like phosphorus and nitrogen to the plant.

Glomeromycota fungi have a mutualistic relationship with plants, helping them to grow and survive in nutrient-poor soils. They also play a crucial role in soil ecology by promoting aggregate formation, improving soil structure, and increasing its water-holding capacity. These fungi are found worldwide and can be detected in almost all terrestrial ecosystems.

It is worth noting that Glomeromycota fungi lack a sexual reproductive stage, and their identification and classification rely on the morphology of their vegetative structures and molecular data.

'Colletotrichum' is a genus of fungi that are known to cause various plant diseases, including anthracnose. These fungi are characterized by the production of specialized structures called acervuli, which produce conidia (asexual spores) in a slimy matrix. The conidia are often dispersed by rainwater and splashing, leading to the spread of the disease. Some species of Colletotrichum can also cause diseases in humans, particularly in immunocompromised individuals.

Plant growth regulators (PGRs) are natural or synthetic chemical substances that, when present in low concentrations, can influence various physiological and biochemical processes in plants. These processes include cell division, elongation, and differentiation; flowering and fruiting; leaf senescence; and stress responses. PGRs can be classified into several categories based on their mode of action and chemical structure, including auxins, gibberellins, cytokinins, abscisic acid, ethylene, and others. They are widely used in agriculture to improve crop yield and quality, regulate plant growth and development, and enhance stress tolerance.

A medical definition for "plant shoots" may not be readily available, as the term is primarily used in botany and horticulture. However, I can provide you with a general definition:

Plant shoots refer to the above-ground portion of a plant, which typically includes structures like stems, leaves, flowers, and buds. Shoots originate from the seed or the growing tip of the plant and are responsible for photosynthesis, nutrient absorption, and reproduction. In some contexts, "plant shoots" might also refer to new growth that emerges from an existing plant, such as when a leaf or stem sprouts a new branch or flower.

I'm sorry for any confusion, but "Lens Plant" is not a term commonly used in medicine. It seems that you might be referring to a type of plant that is known by that name in some contexts. The Len's Plant, also known as *Lenophyllum consanguineum*, is a species of flowering plant in the family Crassulaceae, which is native to Texas and Mexico. It is a small, low-growing succulent with fleshy leaves that forms mats or cushions.

If you were asking about a medical condition related to the eye's lens, there are various conditions that can affect the lens of the eye, such as cataracts (clouding of the lens), presbyopia (age-related loss of near vision due to hardening of the lens), or astigmatism (irregular curvature of the lens). If you have any concerns about your eyes or vision, I would recommend consulting with an eye care professional.

'Agrobacterium' is a genus of Gram-negative, rod-shaped bacteria that are known for their ability to genetically transform plants. The most well-known species in this genus is 'Agrobacterium tumefaciens,' which causes a plant disease called crown gall. This bacterium has the natural ability to transfer a portion of its own DNA (called T-DNA) into the plant's genome, leading to the overproduction of certain plant hormones and ultimately resulting in the formation of tumor-like growths on the infected plant tissue.

This unique ability to transfer genetic material between species has made 'Agrobacterium' a valuable tool in molecular biology and genetic engineering. Scientists can use this bacterium as a vector to introduce foreign DNA into plants, allowing for the study and manipulation of plant genes. This technique is widely used in research and agriculture to create genetically modified organisms (GMOs) with desired traits such as resistance to pests, improved nutritional content, or increased yield.

I believe there might be a misunderstanding in your question. "Ethylenes" is not a medical term or a medical condition. Ethylene is actually a colorless gas with a sweet and musky odor, which belongs to the class of hydrocarbons called alkenes. It is used widely in industry, including the production of polyethylene, antifreeze, and other chemicals.

However, if you meant something else or need information on a specific medical topic related to ethylene or its derivatives, please provide more context or clarify your question, and I would be happy to help.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

I'm sorry for any confusion, but "seedling" is not a term that has a specific medical definition. It is an agricultural and horticultural term that refers to a young plant grown from a seed, typically during the early stages of its growth. If you have any questions related to health or medicine, I'd be happy to try to help with those!

A pulvinus is not a term that has a specific medical definition, but it is a term used in anatomy. A pulvinus refers to a small cushion-like structure, usually made up of modified muscle or nerve tissue. It is found in various parts of the body and serves to provide support, protection, or flexibility.

For example, in the eye, there are pulvinar nuclei, which are clusters of neurons located within the thalamus that play a role in visual processing. In botany, a pulvinus is a swelling at the base of a leaf petiole that helps control the movement of the leaf.

Therefore, while "pulvinus" may not have a specific medical definition, it is still a term used in anatomy and physiology to describe certain structures with similar characteristics.

Proanthocyanidins are a type of polyphenolic compound that are found in various plants, including fruits, vegetables, and bark. They are also known as condensed tannins or oligomeric procyanidins (OPCs). These compounds are characterized by their ability to form complex structures through the linkage of flavan-3-ol units.

Proanthocyanidins have been studied for their potential health benefits, which may include antioxidant, anti-inflammatory, and cardiovascular protective effects. They have also been shown to have a positive impact on collagen stability, which may contribute to their potential role in promoting skin and joint health.

Foods that are rich in proanthocyanidins include grapes (and red wine), berries, apples, cocoa, and green tea. These compounds can be difficult for the body to absorb, but supplements containing standardized extracts of proanthocyanidins are also available.

It's important to note that while proanthocyanidins have shown promise in laboratory and animal studies, more research is needed to fully understand their potential health benefits and safety profile in humans. As with any supplement, it's always a good idea to talk to your healthcare provider before starting to take proanthocyanidins.

Thioredoxin h is also known as Thioredoxin-related protein 14 or TXNDC14. It is a member of the thioredoxin superfamily, which are small proteins containing a redox-active disulfide bond. These proteins play crucial roles in various cellular processes such as redox regulation, protein folding, and antioxidant defense.

Thioredoxin h is localized to the mitochondria and has been shown to have oxidoreductase activity. It contains a conserved active site sequence (WCGPC) that is involved in its redox function. Thioredoxin h may play a role in regulating the redox state of proteins within the mitochondria, which can impact various cellular functions such as energy metabolism and apoptosis.

However, it's important to note that research on Thioredoxin h is still ongoing, and its specific functions and mechanisms are not yet fully understood.

Chromosomes in plants are thread-like structures that contain genetic material, DNA, and proteins. They are present in the nucleus of every cell and are inherited from the parent plants during sexual reproduction. Chromosomes come in pairs, with each pair consisting of one chromosome from each parent.

In plants, like in other organisms, chromosomes play a crucial role in inheritance, development, and reproduction. They carry genetic information that determines various traits and characteristics of the plant, such as its physical appearance, growth patterns, and resistance to diseases.

Plant chromosomes are typically much larger than those found in animals, making them easier to study under a microscope. The number of chromosomes varies among different plant species, ranging from as few as 2 in some ferns to over 1000 in certain varieties of wheat.

During cell division, the chromosomes replicate and then separate into two identical sets, ensuring that each new cell receives a complete set of genetic information. This process is critical for the growth and development of the plant, as well as for the production of viable seeds and offspring.

I'm sorry for any confusion, but "peas" is not a term typically used in medical definitions. Peas are a type of legume that is commonly consumed as a vegetable. They are rich in nutrients such as protein, fiber, vitamin C, and vitamin K. If you have any questions about the health benefits or potential risks of consuming peas, I would be happy to try to help with that.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

I apologize for the confusion, but "Plant Epidermis" is not a medical term. Instead, it is a term used in botany to describe the outermost layer of cells in plant tissues. The epidermis serves as a protective barrier for the plant, regulating gas exchange and water loss through stomata, and producing cutin, a waxy substance that helps prevent water loss.

In summary, "Plant Epidermis" is a term related to plant biology and not medicine.

Orobanche is not a medical term, but a genus of parasitic plants in the family Orobanchaceae. These plants are known as broomrapes and are holoparasites, meaning they rely entirely on other plants for nutrients. They have no chlorophyll and cannot photosynthesize. Instead, they tap into the roots of nearby host plants to extract water and nutrients.

While Orobanche itself is not a medical term, some species of this plant can have negative impacts on human health. For example, if these parasitic plants infect crops, they can reduce yield and quality, leading to economic losses for farmers. In addition, some people may have allergic reactions to the pollen of these plants. However, it's important to note that direct contact with Orobanche plants is unlikely to cause any significant health problems for most people.

A plant vascular bundle is not a medical term, but rather a term used in botany to describe the arrangement of specialized tissues that transport water, nutrients, and sugars within plants. Here's a brief overview of its anatomy:

A vascular bundle typically consists of two types of conducting tissues: xylem and phloem. Xylem is responsible for water transportation from the roots to other parts of the plant, while phloem translocates sugars and other organic nutrients throughout the plant. These tissues are encased in a protective sheath called the bundle sheath, which may contain additional supportive cells.

In some plants, vascular bundles can also include meristematic tissue (cambium) that facilitates secondary growth by producing new xylem and phloem cells. The arrangement of these tissues within a vascular bundle varies among plant species, but the primary function remains consistent: to provide structural support and enable long-distance transport of essential resources for plant survival and growth.

Phloem is the living tissue in vascular plants that transports organic nutrients, particularly sucrose, a sugar, from leaves, where they are produced in photosynthesis, to other parts of the plant such as roots and stems. It also transports amino acids and other substances. Phloem is one of the two types of vascular tissue, the other being xylem; both are found in the vascular bundles of stems and roots. The term "phloem" comes from the Greek word for bark, as it often lies beneath the bark in trees and shrubs.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

In the context of medical terminology, "germination" is not typically used as a term to describe a physiological process in humans or animals. It is primarily used in the field of botany to refer to the process by which a seed or spore sprouts and begins to grow into a new plant.

However, if you are referring to the concept of germination in the context of bacterial or viral growth, then it could be defined as:

The process by which bacteria, viruses, or other microorganisms become active and start to multiply, often after a period of dormancy or latency. This can occur when the microorganisms encounter favorable conditions, such as moisture, warmth, or nutrients, that allow them to grow and reproduce. In medical contexts, this term is more commonly used in relation to infectious diseases caused by these microorganisms.

Aphids, also known as plant lice, are small sap-sucking insects that belong to the superfamily Aphidoidea in the order Hemiptera. They are soft-bodied and pear-shaped, with most species measuring less than 1/8 inch (3 millimeters) long.

Aphids feed on a wide variety of plants by inserting their needle-like mouthparts into the plant's vascular system to extract phloem sap. This feeding can cause stunted growth, yellowing, curling, or distortion of leaves and flowers, and may even lead to the death of the plant in severe infestations.

Aphids reproduce rapidly and can produce several generations per year. Many species give birth to live young (nymphs) rather than laying eggs, which allows them to increase their population numbers quickly. Aphids also have a complex life cycle that may involve sexual reproduction, parthenogenesis (reproduction without fertilization), and winged or wingless forms.

Aphids are an important pest in agriculture and horticulture, causing significant damage to crops and ornamental plants. They can also transmit plant viruses and produce honeydew, a sticky substance that attracts ants and supports the growth of sooty mold fungi.

Controlling aphids may involve cultural practices such as pruning, watering, and removing weeds; biological control using natural enemies such as lady beetles, lacewings, and parasitic wasps; or chemical control using insecticides.

I'm sorry for any confusion, but "soybeans" are not a medical term. They are a type of legume that is commonly used in agriculture and food production. The medical community might discuss soybeans in the context of nutrition or allergies, but there isn't a formal medical definition for this term.

Here's some general information: Soybeans, scientifically known as Glycine max, are native to East Asia and are now grown worldwide. They are a significant source of plant-based protein and oil. Soybeans contain various nutrients, including essential amino acids, fiber, B vitamins, and minerals like calcium, iron, magnesium, and zinc. They are used in various food products such as tofu, soy milk, tempeh, and miso. Additionally, soybeans are also used in the production of industrial products, including biodiesel, plastics, and inks. Some people may have allergic reactions to soybeans or soy products.

"Lupinus" is not a medical term. It is the genus name for the group of plants commonly known as lupines or bluebonnets. Some people may use "lupinus" in a medical context to refer to an allergy or sensitivity to lupine beans or other parts of the lupine plant, which can cause symptoms such as rash, itching, and digestive issues. However, this is not a widely recognized medical condition and reactions to lupines are relatively rare. If you have any concerns about a potential allergy or sensitivity to lupines, it is best to consult with a healthcare professional for proper evaluation and treatment.

Leghemoglobin is a type of protein known as a hemeprotein, found in the root nodules of leguminous plants (plants belonging to the family Fabaceae or Leguminosae). These root nodules are formed through a symbiotic relationship with nitrogen-fixing bacteria called Rhizobia.

The primary function of leghemoglobin is to facilitate the process of nitrogen fixation by maintaining an optimal oxygen concentration within the root nodule cells, where the Rhizobia reside. By binding and releasing oxygen reversibly, leghemoglobin protects the nitrogen-fixing enzyme, nitrogenase, from being inactivated by excess oxygen. This ensures that the Rhizobia can effectively convert atmospheric nitrogen gas (N2) into ammonia (NH3), which is then utilized by the plant for its growth and development.

In summary, leghemoglobin is a crucial protein in the process of biological nitrogen fixation, allowing leguminous plants to grow without the need for added nitrogen fertilizers.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A meristem, in the context of plant biology, refers to a type of tissue found in plants that is responsible for their growth. These tissues are composed of cells that have the ability to divide and differentiate into various specialized cell types. Meristems are typically located at the tips of roots and shoots (apical meristems), as well as within the vascular bundles (cambial meristems) and in the cork layers (phellogen meristems). They contribute to the increase in length and girth of plant organs, allowing plants to grow throughout their life.

I'm sorry for any confusion, but "flowers" is not a term that has a medical definition. The term "flowers" is commonly used to refer to the reproductive structures of flowering plants (angiosperms), which are characterized by having both male and female reproductive organs or separate male and female flowers.

If you have any questions related to medical terminology or health conditions, I would be happy to try to help answer those for you!

I'm sorry for any confusion, but "Lignin" is not a medical term. It is a term used in the field of biology and chemistry, particularly in botany and wood science. Lignin is a complex organic polymer that binds cellulose fibers together, providing strength and rigidity to the cell walls of plants. It is a major component of wood and bark.

If you have any medical terms you would like defined or any other questions, please let me know!

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Ultraviolet microscopy (UV microscopy) is a type of microscopy that uses ultraviolet light to visualize specimens. In this technique, ultraviolet radiation is used as the illumination source, and a special objective lens and filter are used to detect the resulting fluorescence emitted by the specimen.

The sample is usually stained with a fluorescent dye that absorbs the ultraviolet light and re-emits it at a longer wavelength, which can then be detected by the microscope's detector system. This technique allows for the visualization of structures or components within the specimen that may not be visible using traditional brightfield microscopy.

UV microscopy is commonly used in biological research to study the structure and function of cells, tissues, and proteins. It can also be used in forensic science to analyze evidence such as fingerprints, fibers, and other trace materials. However, it's important to note that UV radiation can be harmful to living tissue, so special precautions must be taken when using this technique.

Phosphate transport proteins are membrane-bound proteins responsible for the active transport of phosphate ions across cell membranes. They play a crucial role in maintaining appropriate phosphate concentrations within cells and between intracellular compartments, which is essential for various biological processes such as energy metabolism, signal transduction, and bone formation.

These proteins utilize the energy derived from ATP hydrolysis or other sources to move phosphate ions against their concentration gradient, thereby facilitating cellular uptake of phosphate even when extracellular concentrations are low. Phosphate transport proteins can be classified based on their structure, function, and localization into different types, including sodium-dependent and sodium-independent transporters, secondary active transporters, and channels.

Dysregulation of phosphate transport proteins has been implicated in several pathological conditions, such as renal Fanconi syndrome, tumoral calcinosis, and hypophosphatemic rickets. Therefore, understanding the molecular mechanisms underlying phosphate transport protein function is essential for developing targeted therapies to treat these disorders.

The Medicago truncatula Consortium Medicago truncatula Hapmap Project TIGRs link to Genome Browser and Gene Index The Medicago ... NCGR European Research Programmes on the model legume Medicago truncatula Why sequence medicago truncatula? Wikispecies has ... Medicago truncatula, the barrelclover, strong-spined medick, barrel medic, or barrel medick, is a small annual legume native to ... USDA, NRCS (n.d.). "Medicago truncatula". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant ...
Crystal Structure of Histidine-containing Phosphotransfer Protein MtHPt1 from Medicago truncatula ... Medicago truncatula. Mutation(s): 0 Gene Names: MtHPt, 11441941, MTR_2g020770, MtrunA17_Chr2g0286781. EC: 2.7.3. ... Here, we report the crystal structure of an HPt protein from Medicago truncatula (MtHPt1) determined at 1.45 Å resolution and ... Medicago truncatula histidine-containing phosphotransfer protein: Structural and biochemical insights into the cytokinin ...
Timeline for Species Medicago truncatula [TaxId:3880] from d.126.1.6 automated matches: *Species Medicago truncatula [TaxId: ... PDB entries in Species: Medicago truncatula [TaxId: 3880]:. *Domain(s) for 6nib: *. Domain d6niba_: 6nib A: [366587]. automated ... Lineage for Species: Medicago truncatula [TaxId: 3880]. *Root: SCOPe 2.07 *. Class d: Alpha and beta proteins (a+b) [53931] ( ... Species Medicago truncatula [TaxId:3880] from d.126.1.6 automated matches appears in the current release, SCOPe 2.08. ...
They overexpressed two genes (MtPHY1 and MtPAP1) involved in phosphate production in legume Medicago truncatula. ... Improved Phosphate Uptake in Alfalfa Seeds by Overexpression of Genes from Medicago truncatula. September 23, 2011 ... Improved Phosphate Uptake in Alfalfa Seeds by Overexpression of Genes from Medicago truncatula ... Improved Phosphate Uptake in Alfalfa Seeds by Overexpression of Genes from Medicago truncatula ...
Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic ... Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic ... from Arabidopsis thaliana to the legume Medicago truncatula. Constitutive EFR expression led to EFR accumulation and activation ... Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on ...
The response of Medicago truncatula/Sinorhizobium medicae symbiotic plants supplied exclusively by symbiotic nitrogen fixation ... The response of Medicago truncatula/Sinorhizobium medicae symbiotic plants supplied exclusively by symbiotic nitrogen fixation ... A localized osmotic stress activates systemic responses to N-limitation in Medicago truncatula-Sinorhizobium symbiotic plants. ... A localized osmotic stress activates systemic responses to N-limitation in Medicago truncatula-Sinorhizobium symbiotic plants. ...
Usage rights: Images are licensed under a Creative Commons Attribution-NonCommercial (CC BY NC) 3.0 Australia licence. Copyright: © University of Melbourne 2018 ...
Distribution Policy According to the Decree no.458/2003 to the Act no.148/2003 on plant genetic resources in the Czech Republic users are allowed to order maximum of 30 generatively and 10 vegetatively propagated samples per year (our business year is from November until October). Shipments are processed in the order of acceptance. The average handling time is 10 working days. Plant germplasm is distributed to scientists, educators, producers and other bona fide research and education entities. Distribution of germplasm from National Plant Germplasm collections (NPG) to fulfil requests from individuals seeking free germplasm strictly for home use is generally considered as inappropriate use of limited resources and conflicts with Government policy of not competing with commercial enterprises. Requestors can be asked, in an appropriate manner, to justify the use of specific NPG instead of suitable commercially available germplasm Accessions listed in the Germplasm Resources Information Network ...
Annotated by 1 database (miRBase). Found in the Medicago truncatula reference genome. ... This miRNA sequence is 21 nucleotides long and is found in Medicago truncatula. ...
Mtr-B- mte1 : Medicago truncatula BAC "EcoRI" Library. International name Mtr-B- mte1. Restriction enzyme EcoRI. ...
Medicago. ,. truncatula. ,. Records. Medicago truncatula Gaertn.. Point records by: Google Maps. Records of this taxon are ... UK Flora: Species information: Records of: Medicago truncatula. https://www.ukflora.info/speciesdata/species-display.php? ...
Distribution Policy According to the Decree no.458/2003 to the Act no.148/2003 on plant genetic resources in the Czech Republic users are allowed to order maximum of 30 generatively and 10 vegetatively propagated samples per year (our business year is from November until October). Shipments are processed in the order of acceptance. The average handling time is 10 working days. Plant germplasm is distributed to scientists, educators, producers and other bona fide research and education entities. Distribution of germplasm from National Plant Germplasm collections (NPG) to fulfil requests from individuals seeking free germplasm strictly for home use is generally considered as inappropriate use of limited resources and conflicts with Government policy of not competing with commercial enterprises. Requestors can be asked, in an appropriate manner, to justify the use of specific NPG instead of suitable commercially available germplasm Accessions listed in the Germplasm Resources Information Network ...
Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic ... Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic ... Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic ... Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic ...
Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. Culinaris Phan, H.; Ellwood, Simon; Hane, J.; Ford, ... Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. ... We are using the model legume Medicago truncatula Gaertn. to develop such markers in legumes of importance to Australian ... PHAN HTT , ELLWOOD SR, FORD R, THOMAS S &OLIVER R (2006) Differences in syntenic complexity between Medicago truncatula with ...
Kecskés Maconkai, Zsuzsanna (2020) Medicago truncatula szegregáló populáció előállítása és vizsgálata kettős mutáns létrehozása ... Constructing and characterizing a segregating population of Medicago truncatula to generate a double mutant ...
miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula ... We identified several conserved microRNAs that showed differential expression in Medicago truncatula plants subjected to water ... miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 231 (3). pp. 705-716. ... truncatula. Also, miR398 up-regulation is inversely correlated with the down-regulation of copper superoxide dismutase, CSD1, ...
... an economically important necrotrophic pathogen of Medicago spp., was examined in the model legume M. truncatula. ... recessive quantitative trait loci correlate with resistance to spring black stem ad leaf spot in Medicago truncatula. 164369_ ... recessive quantitative trait loci correlate with resistance to spring black stem ad leaf spot in Medicago truncatula. BMC Plant ...
Targeted mutagenesis of Medicago truncatula Nodule-specific Cysteine-Rich (NCR) genes using the Agrobacterium rhizogenes- ...
The response of Medicago truncatula/Sinorhizobium medicae symbiotic plants supplied exclusively by symbiotic nitrogen fixation ... The response of Medicago truncatula/Sinorhizobium medicae symbiotic plants supplied exclusively by symbiotic nitrogen fixation ... A localized osmotic stress activates systemic responses to N-limitation in Medicago truncatula-Sinorhizobium symbiotic plants. ... A localized osmotic stress activates systemic responses to N-limitation in Medicago truncatula-Sinorhizobium symbiotic plants. ...
However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of ... However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of ... keywords = "Medicago truncatula, gene expression, genome-wide identification, heavy metals, metal tolerance protein (MTP)", ... However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. A total of ...
Pathway-specific metabolome analysis with ¹⁸ O ₂ -labeled Medicago truncatula via a mass spectrometry-based approach. Read our ...
Medicago truncatula transporter database : A comprehensive database resource for M. truncatula transporters. In: BMC genomics. ... Medicago truncatula transporter database: A comprehensive database resource for M. truncatula transporters. / Miao, Zhenyan; Li ... title = "Medicago truncatula transporter database: A comprehensive database resource for M. truncatula transporters", ... Medicago truncatula transporter database: A comprehensive database resource for M. truncatula transporters. ...
Expression of Medicago truncatula ecto-apyrase MtAPY1;1 in leaves of Nicotiana benthamiana restricts necrotic lesions induced ... Dive into the research topics of Expression of Medicago truncatula ecto-apyrase MtAPY1;1 in leaves of Nicotiana benthamiana ...
... verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic ... truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, ... Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell. 2000;12:1647-66. ... Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. *Gennaro ...
Medicago truncatula interacting with Clavibacter michiganensis subsp. insidiosus, a pathosystem in the making (Abstract Only) ( ...
Species abbreviations: Atha, Arabidopsis thaliana; Mtru, Medicago truncatula; Osat, Oryza sativa; Ppat, Physcomitrella patens; ... Thus, homologs of PLDα1-2, PLDα3, PLDε, PLDβ1-2, and PLDδ are found also in poplar and Medicago, although multiple duplications ... 10-exon PLD class named PLDν and defined originally for rice has clear orthologs in both poplar and Medicago but not in ... LPP genes cluster into two separate clades together with other investigated eudicots LPP genes including Populus and Medicago. ...
Medicago truncatula PlantCyc DEOXYADENOSINE. Micromonas commoda RCC299 PlantCyc DEOXYADENOSINE. Micromonas pusilla CCMP1545 ...
Medicago truncatula PlantCyc ACETONE. Mimulus guttatus PlantCyc ACETONE. Musa acuminata PlantCyc ACETONE. ...
Title: ISOLATION AND CHARACTERIZATION OF MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE ACCUMULATION Author. Nakata ... Isolation and characterization of medicago truncatula mutants with increased calcium oxalate accumulation [abstract]. 2005 ... In this study we report the identification and characterization of M. truncatula mutants with increased calcium oxalate content ... The mod mutants were isolated by visually screening leaves from an ethyl methanesulfonate (EMS) mutagenized M. truncatula ...
  • They overexpressed two genes (MtPHY1 and MtPAP1 ) involved in phosphate production in legume Medicago truncatula . (isaaa.org)
  • To test this in a direct reductionist approach, we transferred the Brassicaceae-specific PRR ELONGATION FACTOR-THERMO UNSTABLE RECEPTOR (EFR), conferring recognition of the bacterial EF-Tu protein, from Arabidopsis thaliana to the legume Medicago truncatula. (jic.ac.uk)
  • We are using the model legume Medicago truncatula Gaertn. (edu.au)
  • A gene expression atlas of the model legume Medicago truncatula. (mpg.de)
  • Delineating the Tnt1 Insertion Landscape of the Model Legume Medicago truncatula cv. (bvsalud.org)
  • Medicago truncatula Gaertn. (edu.au)
  • The up-regulation of miR398a/b and miR408 and the clear down-regulation of their respective target genes, which encode the copper proteins COX5b (subunit 5b of mitochondrial cytochrome c oxidase) and plantacyanin, highlight the involvement of these miRNAs in response to water deprivation in M. truncatula. (uea.ac.uk)
  • The regulation of genes encoding copper proteins by miR398a/b and miR408 suggests a link between copper homeostasis and M. truncatula adaptation to progressive water deficit. (uea.ac.uk)
  • A total of 12 potential MTP candidate genes in the M. truncatula genome were successfully identified and analyzed for a phylogenetic relationship, chromosomal distributions, gene structures, docking analysis, gene ontology, and previous gene expression. (uaeu.ac.ae)
  • RNA-seq and gene ontology analysis revealed the significant role of MTP genes in the growth and development of M. truncatula. (uaeu.ac.ae)
  • In addition, we have provided a way to explore the expression of putative M. truncatula transporter genes under stress treatments.Conclusions: In summary, the MTDB enables the exploration and comparative analysis of putative transporters in M. truncatula. (wustl.edu)
  • Researchers have constructed a draft genome of Medicago truncatula , a model species for the study of legumes, which covers around 94% of its genes. (natureasia.com)
  • The researchers propose a way in which M. truncatula developed the ability to interact with the bacteria after the older genes were modified following the full genome duplication event. (natureasia.com)
  • The gene sequence also revealed that M. truncatula has a 764 nucleotide long binding site and leucine-rich repeat (NBS-LRR) genes, which are genes that play a role in disease detection - more than any other plant sequenced. (natureasia.com)
  • In this study, we identified five genes to encode PSK-α precursors in M. truncatula . (techscience.com)
  • The draft sequence of the genome of M. truncatula cultivar A17 was published in the journal Nature in 2011. (wikipedia.org)
  • The assembly of the genome sequence in M. truncatula was based on bacterial artificial chromosomes (BACs). (wikipedia.org)
  • A parallel group known as the International Medicago Gene Annotation Group (IMGAG) is responsible for identifying and describing putative gene sequences within the genome sequence. (wikipedia.org)
  • We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. (edu.au)
  • A total of 3,665 putative transporters have been annotated based on International Medicago Genome Annotated Group (IMGAG) V3.5 V3 and the M. truncatula Gene Index (MTGI) V10.0 releases and assigned to 162 families according to the transporter classification system. (wustl.edu)
  • The model plant Arabidopsis thaliana does not form either symbiosis, making M. truncatula an important tool for studying these processes. (wikipedia.org)
  • Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis. (jic.ac.uk)
  • Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on disease resistance against a bacterial pathogen. (jic.ac.uk)
  • The characterization of dynamic changes in the translatome of Medicago truncatula roots at early stages of the root nodule symbiosis led us to the identification of mRNAs that significantly increased or decreased their levels of association with polysomes, some of which play essential roles in nodulation (e.g., pectate lyase, SINA and NCR secreted peptides). (conicet.gov.ar)
  • Among the Papilionoideae, we compared ESTs from the phylogenetically distant species, M. truncatula, Lupinus albus and Glycine max, to produce 500 intron-targeted amplified polymorphic markers (ITAPs). (edu.au)
  • In addition to 126 M. truncatula cross-species markers from Department of Plant Pathology, University of California (USA), these markers were used to generate comparative genetic maps of lentil (Lens culinaris Medik. (edu.au)
  • Background: Medicago truncatula has been chosen as a model species for genomic studies. (wustl.edu)
  • Although studies have effectively characterized individual M. truncatula transporters in several databases, until now there has been no available systematic database that includes all transporters in M. truncatula.Description: The M. truncatula transporter database (MTDB) contains comprehensive information on the transporters in M. truncatula. (wustl.edu)
  • Genomic Inventory and Transcriptional Analysis of Medicago truncatula Transporters. (mpg.de)
  • Medicago truncatula, the barrelclover, strong-spined medick, barrel medic, or barrel medick, is a small annual legume native to the Mediterranean region that is used in genomic research. (wikipedia.org)
  • This will enable the construction of comparative genetic maps, help to determine patterns of chromosomal evolution in the legume family, and characterise syntenic relationships between M. truncatula and cultivated legumes. (edu.au)
  • Notably, in some legumes, LFY orthologs such as Medicago truncatula SINGLE LEAFLET (SGL1) are essential in maintaining an undifferentiated and proliferating fate required for leaflet formation. (researchgate.net)
  • Especially legumes like Glycine max or Medicago truncatula have an increased numbers of MOT1-family members for supplying their symbionts with molybdate for nitrogenase activity. (bvsalud.org)
  • In this study we report the identification and characterization of M. truncatula mutants with increased calcium oxalate content. (usda.gov)
  • The mod mutants were isolated by visually screening leaves from an ethyl methanesulfonate (EMS) mutagenized M. truncatula population [Penmetsa and Cook, 2000] using a light microscope and partially polarized light for increased druse crystal abundance in the mesophyll cells. (usda.gov)
  • We identified several conserved microRNAs that showed differential expression in Medicago truncatula plants subjected to water deficit: miR169 is down-regulated only in the roots and miR398a/b and miR408 are strongly up-regulated in both shoots and roots. (uea.ac.uk)
  • Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. (mpg.de)
  • We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita . (biomedcentral.com)
  • Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. (mpg.de)
  • Overall, our study provides a novel insight into the evolution of the MTP gene family in M. truncatula and paves the way for additional functional characterization of this gene family. (uaeu.ac.ae)
  • The interaction of M. truncatula with the bacterial symbiont Sinorhizobium meliloti is characterized by the formation of root nodules that fix atmospheric nitrogen. (jic.ac.uk)
  • Importantly, the M. truncatula lines expressing EFR were substantially more resistant to the root bacterial pathogen Ralstonia solanacearum. (jic.ac.uk)
  • Giulia works with the model legume plant Medicago truncatula to investigate the role of calcium signalling in root endosymbiosis. (jic.ac.uk)
  • Here, we report the crystal structure of an HPt protein from Medicago truncatula (MtHPt1) determined at 1.45 Å resolution and refined to an R-factor of 16.7% using low-temperature synchrotron-radiation X-ray diffraction data. (rcsb.org)
  • Our results showed that 90% of the ITAPs markers amplified genomic DNA in M. truncatula, 80% in Lupinus albus, and 70% in Lens culinaris. (edu.au)
  • was examined in the model legume M. truncatula. (edu.au)
  • As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. (uni-koeln.de)
  • Researcher Toby Kiers of VU University Amsterdam and associates used M. truncatula to study symbioses between plants and fungi - and to see whether the partners in the relationship could distinguish between good and bad traders/suppliers. (wikipedia.org)
  • One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. (uni-koeln.de)
  • In this study, the cytology and genetics of resistance to spring black stem and leaf spot caused by Phoma medicaginis, an economically important necrotrophic pathogen of Medicago spp. (edu.au)
  • However, the molecular behaviors and biological functions of this family in Medicago truncatula are scarcely known. (uaeu.ac.ae)
  • Although nodule numbers were slightly reduced at an early stage of the infection in EFR-Medicago when compared to control lines, nodulation was similar in all lines at later stages. (jic.ac.uk)
  • Despite its importance, functions of PSK-α in M. truncatula growth remains unknown. (techscience.com)
  • M. truncatula MTPs (MtMTPs) were further classified into three major cation diffusion facilitator (CDFs) groups: Mn-CDFs, Zn-CDFs, and Fe/Zn-CDFs. (uaeu.ac.ae)

No images available that match "medicago truncatula"