Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Elements of limited time intervals, contributing to particular results or situations.
The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material).
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output.
Methods of creating machines and devices.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The rate dynamics in chemical or physical systems.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
The technique that deals with the measurement of the size, weight, and proportions of the human or other primate body.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
Techniques for measuring blood pressure.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990)
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
A series of steps taken in order to conduct research.
Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The evaluation of incidents involving the loss of function of a device. These evaluations are used for a variety of purposes such as to determine the failure rates, the causes of failures, costs of failures, and the reliability and maintainability of devices.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression.
A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy.
Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.
Computer-based representation of physical systems and phenomena such as chemical processes.
Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease.
A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Measurement of the intensity and quality of fluorescence.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine.
The closeness of a determined value of a physical dimension to the actual value.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)
The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz.
The resistance to the flow of either alternating or direct electrical current.
Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment.
Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies.
The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The visualization of tissues during pregnancy through recording of the echoes of ultrasonic waves directed into the body. The procedure may be applied with reference to the mother or the fetus and with reference to organs or the detection of maternal or fetal disease.
Transducers that are activated by pressure changes, e.g., blood pressure.
Measuring and weighing systems and processes.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
The measurement of the dimensions of the HEAD.
Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project.

Orally exhaled nitric oxide levels are related to the degree of blood eosinophilia in atopic children with mild-intermittent asthma. (1/3761)

Increased levels of nitric oxide have been found in expired air of patients with asthma, and these are thought to be related to the airway inflammatory events that characterize this disorder. Since, in adults, bronchial inflammatory changes are present even in mild disease, the present study was designed to evaluate whether a significant proportion of children with mild-intermittent asthma could have increased exhaled air NO concentrations. Twenty-two atopic children (aged 11.1+/-0.8 yrs) with mild-intermittent asthma, treated only with inhaled beta2-adrenoreceptor agonists on demand and 22 age-matched controls were studied. NO concentrations in orally exhaled air, measured by chemiluminescence, were significantly higher in asthmatics, as compared to controls (19.4+/-3.3 parts per billion (ppb) and 4.0+/-0.5 ppb, respectively; p<0.01). Interestingly, 14 out of 22 asthmatic children had NO levels >8.8 ppb (i.e. >2 standard deviations of the mean in controls). In asthmatic patients, but not in control subjects, statistically significant correlations were found between exhaled NO levels and absolute number or percentage of blood eosinophils (r=0.63 and 0.56, respectively; p<0.01, each comparison). In contrast, exhaled NO levels were not correlated with forced expiratory volume in one second (FEV1) or forced expiratory flows at 25-75% of vital capacity (FEF25-75%) or forced vital capacity (FVC), either in control subjects, or in asthmatic patients (p>0.1, each correlation). These results suggest that a significant proportion of children with mild-intermittent asthma may have airway inflammation, as shown by the presence of elevated levels of nitric oxide in the exhaled air. The clinical relevance of this observation remains to be established.  (+info)

Increased exhaled nitric oxide on days with high outdoor air pollution is of endogenous origin. (2/3761)

The aim of this study was to assess the effect of outdoor air pollution on exhaled levels of endogenously released nitric oxide. To exclude bias from exogenous NO in the recovered exhaled air (residual NO or NO in dead volume) an experimental design was used that sampled NO of endogenous origin only. The validity of the presented experimental design was established in experiments where subjects were exposed to high levels of exogenous NO (cigarette smoke or 480 microg x m(-3) synthetic NO). Subsequent 1 min breathing and a final inhalation of NO-free air proved to be sufficient to attain pre-exposure values. Using the presented method detecting only endogenous NO in exhaled air, 18 subjects were sampled on 4 separate days with different levels of outdoor air pollution (read as an ambient NO level of 4, 30, 138 and 246 microg x m(-3)). On the 2 days with highest outdoor air pollution, exhaled NO was significantly (p<0.001) increased (67-78%) above the mean baseline value assessed on 4 days with virtually no outdoor air pollution. In conclusion, the level of endogenous nitric oxide in exhaled air is increased on days with high outdoor air pollution. The physiological implications of this findings need to be investigated further.  (+info)

Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. (3/3761)

The present study examined the ability of human monocytes to produce reactive oxygen intermediates after a contact with tumour cells. Monocytes generated oxygen radicals, as measured by luminol-enhanced chemiluminescence and superoxide anion production, after stimulation with the tumour, but not with untransformed, cells. The use of specific oxygen radical scavengers and inhibitors, superoxide dismutase, catalase, dimethyl sulphoxide and deferoxamine as well as the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide, indicated that chemiluminescence was dependent on the production of superoxide anion and hydroxyl radical and the presence of myeloperoxidase. The tumour cell-induced chemiluminescent response of monocytes showed different kinetics from that seen after activation of monocytes with phorbol ester. These results indicate that human monocytes can be directly stimulated by tumour cells for reactive oxygen intermediate production. Spontaneous monocyte-mediated cytotoxicity towards cancer cells was inhibited by superoxide dismutase, catalase, deferoxamine and hydrazide, implicating the role of superoxide anion, hydrogen peroxide, hydroxyl radical and hypohalite. We wish to suggest that so-called 'spontaneous' tumoricidal capacity of freshly isolated human monocytes may in fact be an inducible event associated with generation of reactive oxygen intermediates and perhaps other toxic mediators, resulting from a contact of monocytes with tumour cells.  (+info)

Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. (4/3761)

Detecting antibiotic resistance in Mycobacterium tuberculosis is becoming increasingly important with the global recognition of drug-resistant strains and their adverse impact on clinical outcomes. Current methods of susceptibility testing are either time-consuming or costly; rapid, reliable, simple, and inexpensive methods would be highly desirable, especially in the developing world where most tuberculosis is found. The luciferase reporter phage is a unique reagent well-suited for this purpose: upon infection with viable mycobacteria, it produces quantifiable light which is not observed in mycobacterial cells treated with active antimicrobials. In this report, we describe a modification of our original assay, which allows detection of the emitted light with a Polaroid film box designated the Bronx Box. The technique has been applied to 25 M. tuberculosis reference and clinical strains, and criteria are presented which allow rapid and simple discrimination among strains susceptible or resistant to isoniazid and rifampin, the major antituberculosis agents.  (+info)

Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. (5/3761)

Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3-(oxohexanoyl)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non-AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.  (+info)

Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. (6/3761)

BACKGROUND: Secoisolariciresinol diglucoside (SDG) is a plant lignan isolated from flaxseed. Lignans are platelet-activating factor-receptor antagonists that would inhibit the production of oxygen radicals by polymorphonuclear leukocytes. SDG is an antioxidant. Antioxidants studied thus far are known to reduce hypercholesterolemic atherosclerosis. The objective of this study was to determine the effect of SDG on various blood lipid and aortic tissue oxidative stress parameters and on the development of atherosclerosis in rabbits fed a high-cholesterol diet. METHODS AND RESULTS: Rabbits were assigned to 4 groups: group 1, control; group 2, SDG control (15 mg. kg body wt-1. d-1 PO); group 3, 1% cholesterol diet; and group 4, same as group 3 but with added SDG (15 mg. kg body wt-1. d-1 PO). Blood samples were collected before (time 0) and after 4 and 8 weeks of experimental diets for measurement of serum triglycerides, total cholesterol (TC), and LDL, HDL, and VLDL cholesterol (LDL-C, HDL-C, and VLDL-C). The aorta was removed at the end of the protocol for assessment of atherosclerotic plaques; malondialdehyde, an aortic tissue lipid peroxidation product; and aortic tissue chemiluminescence, a marker for antioxidant reserve. Serum TC, LDL-C, and the ratios LDL-C/HDL-C and TC/HDL-C increased in groups 3 and 4 compared with time 0, the increase being smaller in group 4 than in group 3. Serum HDL-C decreased in group 3 and increased in group 4 compared with time 0, but changes were lower in group 3 than in group 4. SDG reduced TC and LDL-C by 33% and 35%, respectively, at week 8 but increased HDL-C significantly, by>140%, as early as week 4. It also decreased TC/LDL-C and LDL-C/HDL-C ratios by approximately 64%. There was an increase in aortic malondialdehyde and chemiluminescence in group 3, and they were lower in group 4 than in group 3. SDG reduced hypercholesterolemic atherosclerosis by 73%. CONCLUSIONS: These results suggest that SDG reduced hypercholesterolemic atherosclerosis and that this effect was associated with a decrease in serum cholesterol, LDL-C, and lipid peroxidation product and an increase in HDL-C and antioxidant reserve.  (+info)

Expression of T lymphocyte p56(lck), a zinc-finger signal transduction protein, is elevated by dietary zinc deficiency and diet restriction in mice. (7/3761)

Compromised immune function is common to Zn deficiency, protein and energy malnutrition; however, the causative mechanisms at the molecular level have not been elucidated. The T lymphocyte signal transduction pathway contains several Zn-finger proteins, and it is possible that the in vivo functioning of these proteins could be affected by dietary deficiency of Zn and amino acids. Thus, the objective was to investigate the effects, on expression of the T lymphocyte signal transduction proteins p56(lck), phospholipase Cgamma1 (PLCgamma1) and protein kinase C (PKCalpha), of dietary Zn deficiency (ZnDF, < 1 mg Zn/kg diet) and protein-energy malnutrition syndromes [2% protein deficiency (LP), combined Zn and 2% protein deficiency (ZnDF+LP), and diet restriction (DR, body weight equal to ZnDF)] compared with control (C) mice. Indices of nutritional status and splenocyte counts were also determined. Based on serum albumin and liver lipid concentrations, the ZnDF+LP and LP groups had protein-type malnutrition, whereas the ZnDF and DR groups had energy-type malnutrition. For Western immunoblotting of the signal transduction proteins, mouse splenic T lymphocytes were isolated by immunocolumns. The expression of T lymphocyte p56(lck) was significantly elevated in the ZnDF+LP, ZnDF and DR groups compared to the C group. In contrast, the expression of PLCgamma1 and PKC was unaffected. There was a significant negative correlation between T lymphocyte p56(lck) expression and serum Zn (r= -0.65, P = 0.0007) or femur Zn (r = -0.73, P = 0.0001) concentrations. We propose that elevated T lymphocyte p56(lck) may contribute to altered thymoctye maturation, apoptosis and lymphopenia in Zn deficiency and protein-energy malnutrition syndromes.  (+info)

Intracellular trafficking pathways in the assembly of connexins into gap junctions. (8/3761)

Trafficking pathways underlying the assembly of connexins into gap junctions were examined using living COS-7 cells expressing a range of connexin-aequorin (Cx-Aeq) chimeras. By measuring the chemiluminescence of the aequorin fusion partner, the translocation of oligomerized connexins from intracellular stores to the plasma membrane was shown to occur at different rates that depended on the connexin isoform. Treatment of COS-7 cells expressing Cx32-Aeq and Cx43-Aeq with brefeldin A inhibited the movement of these chimera to the plasma membrane by 84 +/- 4 and 88 +/- 4%, respectively. Nocodazole treatment of the cells expressing Cx32-Aeq and Cx43-Aeq produced 29 +/- 16 and 4 +/- 7% inhibition, respectively. In contrast, the transport of Cx26 to the plasma membrane, studied using a construct (Cx26/43T-Aeq) in which the short cytoplasmic carboxyl-terminal tail of Cx26 was replaced with the extended carboxyl terminus of Cx43, was inhibited 89 +/- 5% by nocodazole and was minimally affected by exposure of cells to brefeldin A (17 +/-11%). The transfer of Lucifer yellow across gap junctions between cells expressing wild-type Cx32, Cx43, and the corresponding Cx32-Aeq and Cx43-Aeq chimeras was reduced by nocodazole treatment and abolished by brefeldin A treatment. However, the extent of dye coupling between cells expressing wild-type Cx26 or the Cx26/43T-Aeq chimeras was not significantly affected by brefeldin A treatment, but after nocodazole treatment, transfer of dye to neighboring cells was greatly reduced. These contrasting effects of brefeldin A and nocodazole on the trafficking properties and intercellular dye transfer are interpreted to suggest that two pathways contribute to the routing of connexins to the gap junction.  (+info)

Luminescent measurements refer to the quantitative assessment of the emission of light from a substance that has been excited, typically through some form of energy input such as electrical energy or radiation. In the context of medical diagnostics and research, luminescent measurements can be used in various applications, including bioluminescence imaging, which is used to study biological processes at the cellular and molecular level.

Bioluminescence occurs when a chemical reaction produces light within a living organism, often through the action of enzymes such as luciferase. By introducing a luciferase gene into cells or organisms, researchers can use bioluminescent measurements to track cellular processes and monitor gene expression in real time.

Luminescent measurements may also be used in medical research to study the properties of materials used in medical devices, such as LEDs or optical fibers, or to develop new diagnostic tools based on light-emitting nanoparticles or other luminescent materials.

In summary, luminescent measurements are a valuable tool in medical research and diagnostics, providing a non-invasive way to study biological processes and develop new technologies for disease detection and treatment.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Observer variation, also known as inter-observer variability or measurement agreement, refers to the difference in observations or measurements made by different observers or raters when evaluating the same subject or phenomenon. It is a common issue in various fields such as medicine, research, and quality control, where subjective assessments are involved.

In medical terms, observer variation can occur in various contexts, including:

1. Diagnostic tests: Different radiologists may interpret the same X-ray or MRI scan differently, leading to variations in diagnosis.
2. Clinical trials: Different researchers may have different interpretations of clinical outcomes or adverse events, affecting the consistency and reliability of trial results.
3. Medical records: Different healthcare providers may document medical histories, physical examinations, or treatment plans differently, leading to inconsistencies in patient care.
4. Pathology: Different pathologists may have varying interpretations of tissue samples or laboratory tests, affecting diagnostic accuracy.

Observer variation can be minimized through various methods, such as standardized assessment tools, training and calibration of observers, and statistical analysis of inter-rater reliability.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

In the context of medicine and medical devices, calibration refers to the process of checking, adjusting, or confirming the accuracy of a measurement instrument or system. This is typically done by comparing the measurements taken by the device being calibrated to those taken by a reference standard of known accuracy. The goal of calibration is to ensure that the medical device is providing accurate and reliable measurements, which is critical for making proper diagnoses and delivering effective treatment. Regular calibration is an important part of quality assurance and helps to maintain the overall performance and safety of medical devices.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Anthropometry is the scientific study of measurements and proportions of the human body. It involves the systematic measurement and analysis of various physical characteristics, such as height, weight, blood pressure, waist circumference, and other body measurements. These measurements are used in a variety of fields, including medicine, ergonomics, forensics, and fashion design, to assess health status, fitness level, or to design products and environments that fit the human body. In a medical context, anthropometry is often used to assess growth and development, health status, and disease risk factors in individuals and populations.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

Blood pressure determination is the medical procedure to measure and assess the force or pressure exerted by the blood on the walls of the arteries during a heartbeat cycle. It is typically measured in millimeters of mercury (mmHg) and is expressed as two numbers: systolic pressure (the higher number, representing the pressure when the heart beats and pushes blood out into the arteries) and diastolic pressure (the lower number, representing the pressure when the heart rests between beats). A normal blood pressure reading is typically around 120/80 mmHg. High blood pressure (hypertension) is defined as a consistently elevated blood pressure of 130/80 mmHg or higher, while low blood pressure (hypotension) is defined as a consistently low blood pressure below 90/60 mmHg. Blood pressure determination is an important vital sign and helps to evaluate overall cardiovascular health and identify potential health risks.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

In the field of medical imaging, "phantoms" refer to physical objects that are specially designed and used for calibration, quality control, and evaluation of imaging systems. These phantoms contain materials with known properties, such as attenuation coefficients or spatial resolution, which allow for standardized measurement and comparison of imaging parameters across different machines and settings.

Imaging phantoms can take various forms depending on the modality of imaging. For example, in computed tomography (CT), a common type of phantom is the "water-equivalent phantom," which contains materials with similar X-ray attenuation properties as water. This allows for consistent measurement of CT dose and image quality. In magnetic resonance imaging (MRI), phantoms may contain materials with specific relaxation times or magnetic susceptibilities, enabling assessment of signal-to-noise ratio, spatial resolution, and other imaging parameters.

By using these standardized objects, healthcare professionals can ensure the accuracy, consistency, and reliability of medical images, ultimately contributing to improved patient care and safety.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

Lung volume measurements are clinical tests that determine the amount of air inhaled, exhaled, and present in the lungs at different times during the breathing cycle. These measurements include:

1. Tidal Volume (TV): The amount of air inhaled or exhaled during normal breathing, usually around 500 mL in resting adults.
2. Inspiratory Reserve Volume (IRV): The additional air that can be inhaled after a normal inspiration, approximately 3,000 mL in adults.
3. Expiratory Reserve Volume (ERV): The extra air that can be exhaled after a normal expiration, about 1,000-1,200 mL in adults.
4. Residual Volume (RV): The air remaining in the lungs after a maximal exhalation, approximately 1,100-1,500 mL in adults.
5. Total Lung Capacity (TLC): The total amount of air the lungs can hold at full inflation, calculated as TV + IRV + ERV + RV, around 6,000 mL in adults.
6. Functional Residual Capacity (FRC): The volume of air remaining in the lungs after a normal expiration, equal to ERV + RV, about 2,100-2,700 mL in adults.
7. Inspiratory Capacity (IC): The maximum amount of air that can be inhaled after a normal expiration, equal to TV + IRV, around 3,500 mL in adults.
8. Vital Capacity (VC): The total volume of air that can be exhaled after a maximal inspiration, calculated as IC + ERV, approximately 4,200-5,600 mL in adults.

These measurements help assess lung function and identify various respiratory disorders such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Equipment Failure Analysis is a process of identifying the cause of failure in medical equipment or devices. This involves a systematic examination and evaluation of the equipment, its components, and operational history to determine why it failed. The analysis may include physical inspection, chemical testing, and review of maintenance records, as well as assessment of design, manufacturing, and usage factors that may have contributed to the failure.

The goal of Equipment Failure Analysis is to identify the root cause of the failure, so that corrective actions can be taken to prevent similar failures in the future. This is important in medical settings to ensure patient safety and maintain the reliability and effectiveness of medical equipment.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

I'm sorry for any confusion, but "Linear Models" is actually a term from the field of statistics and machine learning, rather than medicine. A linear model is a type of statistical model that is used to analyze the relationship between two or more variables. In a linear model, the relationship between the dependent variable (the outcome or result) and the independent variable(s) (the factors being studied) is assumed to be linear, meaning that it can be described by a straight line on a graph.

The equation for a simple linear model with one independent variable (x) and one dependent variable (y) looks like this:

y = β0 + β1*x + ε

In this equation, β0 is the y-intercept or the value of y when x equals zero, β1 is the slope or the change in y for each unit increase in x, and ε is the error term or the difference between the actual values of y and the predicted values of y based on the linear model.

Linear models are widely used in medical research to study the relationship between various factors (such as exposure to a risk factor or treatment) and health outcomes (such as disease incidence or mortality). They can also be used to adjust for confounding variables, which are factors that may influence both the independent variable and the dependent variable, and thus affect the observed relationship between them.

Reference standards in a medical context refer to the established and widely accepted norms or benchmarks used to compare, evaluate, or measure the performance, accuracy, or effectiveness of diagnostic tests, treatments, or procedures. These standards are often based on extensive research, clinical trials, and expert consensus, and they help ensure that healthcare practices meet certain quality and safety thresholds.

For example, in laboratory medicine, reference standards may consist of well-characterized samples with known concentrations of analytes (such as chemicals or biological markers) that are used to calibrate instruments and validate testing methods. In clinical practice, reference standards may take the form of evidence-based guidelines or best practices that define appropriate care for specific conditions or patient populations.

By adhering to these reference standards, healthcare professionals can help minimize variability in test results, reduce errors, improve diagnostic accuracy, and ensure that patients receive consistent, high-quality care.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

Computer-assisted image interpretation is the use of computer algorithms and software to assist healthcare professionals in analyzing and interpreting medical images. These systems use various techniques such as pattern recognition, machine learning, and artificial intelligence to help identify and highlight abnormalities or patterns within imaging data, such as X-rays, CT scans, MRI, and ultrasound images. The goal is to increase the accuracy, consistency, and efficiency of image interpretation, while also reducing the potential for human error. It's important to note that these systems are intended to assist healthcare professionals in their decision making process and not to replace them.

In medical terms, pressure is defined as the force applied per unit area on an object or body surface. It is often measured in millimeters of mercury (mmHg) in clinical settings. For example, blood pressure is the force exerted by circulating blood on the walls of the arteries and is recorded as two numbers: systolic pressure (when the heart beats and pushes blood out) and diastolic pressure (when the heart rests between beats).

Pressure can also refer to the pressure exerted on a wound or incision to help control bleeding, or the pressure inside the skull or spinal canal. High or low pressure in different body systems can indicate various medical conditions and require appropriate treatment.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Physiological monitoring is the continuous or intermittent observation and measurement of various body functions or parameters in a patient, with the aim of evaluating their health status, identifying any abnormalities or changes, and guiding clinical decision-making and treatment. This may involve the use of specialized medical equipment, such as cardiac monitors, pulse oximeters, blood pressure monitors, and capnographs, among others. The data collected through physiological monitoring can help healthcare professionals assess the effectiveness of treatments, detect complications early, and make timely adjustments to patient care plans.

Dimensional measurement accuracy refers to the degree of closeness with which the measured dimension of a object or feature corresponds to its true value. It is usually expressed as a tolerance, which indicates the maximum allowable deviation from the true value. This measurement accuracy can be affected by various factors such as the precision and calibration of the measuring instrument, the skill and experience of the person taking the measurement, and environmental conditions such as temperature and humidity. High dimensional measurement accuracy is essential in many fields, including manufacturing, engineering, and scientific research, to ensure that parts and products meet specified dimensions and function properly.

Biomechanics is the application of mechanical laws to living structures and systems, particularly in the field of medicine and healthcare. A biomechanical phenomenon refers to a observable event or occurrence that involves the interaction of biological tissues or systems with mechanical forces. These phenomena can be studied at various levels, from the molecular and cellular level to the tissue, organ, and whole-body level.

Examples of biomechanical phenomena include:

1. The way that bones and muscles work together to produce movement (known as joint kinematics).
2. The mechanical behavior of biological tissues such as bone, cartilage, tendons, and ligaments under various loads and stresses.
3. The response of cells and tissues to mechanical stimuli, such as the way that bone tissue adapts to changes in loading conditions (known as Wolff's law).
4. The biomechanics of injury and disease processes, such as the mechanisms of joint injury or the development of osteoarthritis.
5. The use of mechanical devices and interventions to treat medical conditions, such as orthopedic implants or assistive devices for mobility impairments.

Understanding biomechanical phenomena is essential for developing effective treatments and prevention strategies for a wide range of medical conditions, from musculoskeletal injuries to neurological disorders.

Fluorescent dyes are substances that emit light upon excitation by absorbing light of a shorter wavelength. In a medical context, these dyes are often used in various diagnostic tests and procedures to highlight or mark certain structures or substances within the body. For example, fluorescent dyes may be used in imaging techniques such as fluorescence microscopy or fluorescence angiography to help visualize cells, tissues, or blood vessels. These dyes can also be used in flow cytometry to identify and sort specific types of cells. The choice of fluorescent dye depends on the specific application and the desired properties, such as excitation and emission spectra, quantum yield, and photostability.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

I'm sorry for any confusion, but there seems to be a misunderstanding. Mathematics is not a medical term; it is a branch of science dedicated to the study of numbers, shapes, and structures. However, mathematics does have many applications in medicine, such as in modeling disease spread, analyzing medical images, or designing clinical trials. If you have any questions related to mathematics in a medical context, I'd be happy to help clarify those for you!

A transducer is a device that converts one form of energy into another. In the context of medicine and biology, transducers often refer to devices that convert a physiological parameter (such as blood pressure, temperature, or sound waves) into an electrical signal that can be measured and analyzed. Examples of medical transducers include:

1. Blood pressure transducer: Converts the mechanical force exerted by blood on the walls of an artery into an electrical signal.
2. Temperature transducer: Converts temperature changes into electrical signals.
3. ECG transducer (electrocardiogram): Converts the electrical activity of the heart into a visual representation called an electrocardiogram.
4. Ultrasound transducer: Uses sound waves to create images of internal organs and structures.
5. Piezoelectric transducer: Generates an electric charge when subjected to pressure or vibration, used in various medical devices such as hearing aids, accelerometers, and pressure sensors.

Ultrasonography, also known as sonography, is a diagnostic medical procedure that uses high-frequency sound waves (ultrasound) to produce dynamic images of organs, tissues, or blood flow inside the body. These images are captured in real-time and can be used to assess the size, shape, and structure of various internal structures, as well as detect any abnormalities such as tumors, cysts, or inflammation.

During an ultrasonography procedure, a small handheld device called a transducer is placed on the patient's skin, which emits and receives sound waves. The transducer sends high-frequency sound waves into the body, and these waves bounce back off internal structures and are recorded by the transducer. The recorded data is then processed and transformed into visual images that can be interpreted by a medical professional.

Ultrasonography is a non-invasive, painless, and safe procedure that does not use radiation like other imaging techniques such as CT scans or X-rays. It is commonly used to diagnose and monitor conditions in various parts of the body, including the abdomen, pelvis, heart, blood vessels, and musculoskeletal system.

Electric impedance is a measure of opposition to the flow of alternating current (AC) in an electrical circuit or component, caused by both resistance (ohmic) and reactance (capacitive and inductive). It is expressed as a complex number, with the real part representing resistance and the imaginary part representing reactance. The unit of electric impedance is the ohm (Ω).

In the context of medical devices, electric impedance may be used to measure various physiological parameters, such as tissue conductivity or fluid composition. For example, bioelectrical impedance analysis (BIA) uses electrical impedance to estimate body composition, including fat mass and lean muscle mass. Similarly, electrical impedance tomography (EIT) is a medical imaging technique that uses electric impedance to create images of internal organs and tissues.

The term "Theoretical Models" is used in various scientific fields, including medicine, to describe a representation of a complex system or phenomenon. It is a simplified framework that explains how different components of the system interact with each other and how they contribute to the overall behavior of the system. Theoretical models are often used in medical research to understand and predict the outcomes of diseases, treatments, or public health interventions.

A theoretical model can take many forms, such as mathematical equations, computer simulations, or conceptual diagrams. It is based on a set of assumptions and hypotheses about the underlying mechanisms that drive the system. By manipulating these variables and observing the effects on the model's output, researchers can test their assumptions and generate new insights into the system's behavior.

Theoretical models are useful for medical research because they allow scientists to explore complex systems in a controlled and systematic way. They can help identify key drivers of disease or treatment outcomes, inform the design of clinical trials, and guide the development of new interventions. However, it is important to recognize that theoretical models are simplifications of reality and may not capture all the nuances and complexities of real-world systems. Therefore, they should be used in conjunction with other forms of evidence, such as experimental data and observational studies, to inform medical decision-making.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Environmental monitoring is the systematic and ongoing surveillance, measurement, and assessment of environmental parameters, pollutants, or other stressors in order to evaluate potential impacts on human health, ecological systems, or compliance with regulatory standards. This process typically involves collecting and analyzing data from various sources, such as air, water, soil, and biota, and using this information to inform decisions related to public health, environmental protection, and resource management.

In medical terms, environmental monitoring may refer specifically to the assessment of environmental factors that can impact human health, such as air quality, water contamination, or exposure to hazardous substances. This type of monitoring is often conducted in occupational settings, where workers may be exposed to potential health hazards, as well as in community-based settings, where environmental factors may contribute to public health issues. The goal of environmental monitoring in a medical context is to identify and mitigate potential health risks associated with environmental exposures, and to promote healthy and safe environments for individuals and communities.

Pain measurement, in a medical context, refers to the quantification or evaluation of the intensity and/or unpleasantness of a patient's subjective pain experience. This is typically accomplished through the use of standardized self-report measures such as numerical rating scales (NRS), visual analog scales (VAS), or categorical scales (mild, moderate, severe). In some cases, physiological measures like heart rate, blood pressure, and facial expressions may also be used to supplement self-reported pain ratings. The goal of pain measurement is to help healthcare providers better understand the nature and severity of a patient's pain in order to develop an effective treatment plan.

Radiation scattering is a physical process in which radiation particles or waves deviate from their original direction due to interaction with matter. This phenomenon can occur through various mechanisms such as:

1. Elastic Scattering: Also known as Thomson scattering or Rayleigh scattering, it occurs when the energy of the scattered particle or wave remains unchanged after the collision. In the case of electromagnetic radiation (e.g., light), this results in a change of direction without any loss of energy.
2. Inelastic Scattering: This type of scattering involves an exchange of energy between the scattered particle and the target medium, leading to a change in both direction and energy of the scattered particle or wave. An example is Compton scattering, where high-energy photons (e.g., X-rays or gamma rays) interact with charged particles (usually electrons), resulting in a decrease in photon energy and an increase in electron kinetic energy.
3. Coherent Scattering: In this process, the scattered radiation maintains its phase relationship with the incident radiation, leading to constructive and destructive interference patterns. An example is Bragg scattering, which occurs when X-rays interact with a crystal lattice, resulting in diffraction patterns that reveal information about the crystal structure.

In medical contexts, radiation scattering can have both beneficial and harmful effects. For instance, in diagnostic imaging techniques like computed tomography (CT) scans, radiation scattering contributes to image noise and reduces contrast resolution. However, in radiation therapy for cancer treatment, controlled scattering of therapeutic radiation beams can help ensure that the tumor receives a uniform dose while minimizing exposure to healthy tissues.

Prenatal ultrasonography, also known as obstetric ultrasound, is a medical diagnostic procedure that uses high-frequency sound waves to create images of the developing fetus, placenta, and amniotic fluid inside the uterus. It is a non-invasive and painless test that is widely used during pregnancy to monitor the growth and development of the fetus, detect any potential abnormalities or complications, and determine the due date.

During the procedure, a transducer (a small handheld device) is placed on the mother's abdomen and moved around to capture images from different angles. The sound waves travel through the mother's body and bounce back off the fetus, producing echoes that are then converted into electrical signals and displayed as images on a screen.

Prenatal ultrasonography can be performed at various stages of pregnancy, including early pregnancy to confirm the pregnancy and detect the number of fetuses, mid-pregnancy to assess the growth and development of the fetus, and late pregnancy to evaluate the position of the fetus and determine if it is head down or breech. It can also be used to guide invasive procedures such as amniocentesis or chorionic villus sampling.

Overall, prenatal ultrasonography is a valuable tool in modern obstetrics that helps ensure the health and well-being of both the mother and the developing fetus.

A pressure transducer is a device that converts a mechanical force or pressure exerted upon it into an electrical signal which can be measured and standardized. In medical terms, pressure transducers are often used to measure various bodily pressures such as blood pressure, intracranial pressure, or intraocular pressure. These transducers typically consist of a diaphragm that is deflected by the pressure being measured, which then generates an electrical signal proportional to the amount of deflection. This signal can be processed and displayed in various ways, such as on a monitor or within an electronic medical record system.

I'm sorry for any confusion, but "Weights and Measures" is not a term that has a specific medical definition. It is a term used in various fields, including science, engineering, and commerce, to refer to systems and standards used to measure weight, length, volume, and other physical quantities.

However, if you're asking about the use of weights and measures in a medical context, it might refer to the standardized units of measurement used to quantify various aspects of health, disease, and treatment. For example:

* Weight: Measured in kilograms (kg) or pounds (lb), this is a measure of a person's mass.
* Height: Measured in meters (m) or feet/inches (ft/in), this is a measure of a person's height.
* Blood pressure: Measured in millimeters of mercury (mmHg), this is a measure of the force exerted by blood on the walls of the arteries.
* Temperature: Measured in degrees Celsius (°C) or Fahrenheit (°F), this is a measure of body temperature.
* Laboratory values: Various substances in the body, such as glucose or cholesterol, are measured in standardized units, such as millimoles per liter (mmol/L) or milligrams per deciliter (mg/dL).

These measurements help healthcare professionals assess a person's health status, diagnose medical conditions, and monitor the effects of treatment.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

A laser is not a medical term per se, but a physical concept that has important applications in medicine. The term "LASER" stands for "Light Amplification by Stimulated Emission of Radiation." It refers to a device that produces and amplifies light with specific characteristics, such as monochromaticity (single wavelength), coherence (all waves moving in the same direction), and high intensity.

In medicine, lasers are used for various therapeutic and diagnostic purposes, including surgery, dermatology, ophthalmology, and dentistry. They can be used to cut, coagulate, or vaporize tissues with great precision, minimizing damage to surrounding structures. Additionally, lasers can be used to detect and measure physiological parameters, such as blood flow and oxygen saturation.

It's important to note that while lasers are powerful tools in medicine, they must be used by trained professionals to ensure safe and effective treatment.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Carbon dioxide (CO2) is a colorless, odorless gas that is naturally present in the Earth's atmosphere. It is a normal byproduct of cellular respiration in humans, animals, and plants, and is also produced through the combustion of fossil fuels such as coal, oil, and natural gas.

In medical terms, carbon dioxide is often used as a respiratory stimulant and to maintain the pH balance of blood. It is also used during certain medical procedures, such as laparoscopic surgery, to insufflate (inflate) the abdominal cavity and create a working space for the surgeon.

Elevated levels of carbon dioxide in the body can lead to respiratory acidosis, a condition characterized by an increased concentration of carbon dioxide in the blood and a decrease in pH. This can occur in conditions such as chronic obstructive pulmonary disease (COPD), asthma, or other lung diseases that impair breathing and gas exchange. Symptoms of respiratory acidosis may include shortness of breath, confusion, headache, and in severe cases, coma or death.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Cephalometry is a medical term that refers to the measurement and analysis of the skull, particularly the head face relations. It is commonly used in orthodontics and maxillofacial surgery to assess and plan treatment for abnormalities related to the teeth, jaws, and facial structures. The process typically involves taking X-ray images called cephalograms, which provide a lateral view of the head, and then using various landmarks and reference lines to make measurements and evaluate skeletal and dental relationships. This information can help clinicians diagnose problems, plan treatment, and assess treatment outcomes.

A feasibility study is a preliminary investigation or analysis conducted to determine the viability of a proposed project, program, or product. In the medical field, feasibility studies are often conducted before implementing new treatments, procedures, equipment, or facilities. These studies help to assess the practicality and effectiveness of the proposed intervention, as well as its potential benefits and risks.

Feasibility studies in healthcare typically involve several steps:

1. Problem identification: Clearly define the problem that the proposed project, program, or product aims to address.
2. Objectives setting: Establish specific, measurable, achievable, relevant, and time-bound (SMART) objectives for the study.
3. Literature review: Conduct a thorough review of existing research and best practices related to the proposed intervention.
4. Methodology development: Design a methodology for data collection and analysis that will help answer the research questions and achieve the study's objectives.
5. Resource assessment: Evaluate the availability and adequacy of resources, including personnel, time, and finances, required to carry out the proposed intervention.
6. Risk assessment: Identify potential risks and challenges associated with the implementation of the proposed intervention and develop strategies to mitigate them.
7. Cost-benefit analysis: Estimate the costs and benefits of the proposed intervention, including direct and indirect costs, as well as short-term and long-term benefits.
8. Stakeholder engagement: Engage relevant stakeholders, such as patients, healthcare providers, administrators, and policymakers, to gather their input and support for the proposed intervention.
9. Decision-making: Based on the findings of the feasibility study, make an informed decision about whether or not to proceed with the proposed project, program, or product.

Feasibility studies are essential in healthcare as they help ensure that resources are allocated efficiently and effectively, and that interventions are evidence-based, safe, and beneficial for patients.

... luminescent measurements MeSH E05.196.712.516.200 - chemiluminescent measurements MeSH E05.196.712.516.600 - fluorometry MeSH ...
Measurements of the external gamma dose are also carried out. A network of 62 monitoring points with thermal-luminescent ... dosimeters for the measurement of the gamma dose has been established around the power plant and across an area with a radius ...
... for in-vivo electrochemical measurements. They also have potential applications as luminescent probes for the detection of ...
... calculations External field perturbation measurements are used to determine axial symmetry and orientation of luminescent ... A tighter lower bound for the nuclear coherence time was found by averaging the top 10% highest measurements per time, ... the structure of the T centre was uncovered using spectroscopic measurements. The presence of carbon as the main constituent ...
After the final measurements are recorded, sample loss can be determined quantitatively. This procedure avoids the need for any ... When a radioactive particle decays and strikes the photo luminescent material a photon is released. This photon is multiplied ... For extra sensitive measurements high-pure germanium detectors are used under a liquid nitrogen environment. Scintillation ... This can be accomplished by a laboratories continual effort to maintain instrument calibration, measurement reproducibility, ...
Phosphor thermometry is the measurement technique used for determining the past temperatures of THCs, whereby the luminescent ... The temperature range that THCs provide accurate temperature measurements in is 900 °C to 1400 °C with an accuracy of ±10 °C. ... This allows for point measurements to be made across the coated surfaces of components and allows thermal analysis to be ... Thermocouple Thermocrystal Pyrometer J. P. Feist, J. R. Nicholls, M. J. Fraser, A. L. Heyes (2006) "Luminescent material ...
... and biorhythm assays based on the luminescent detection of ATP. Time-resolved fluorescence (TRF) measurement is very similar to ... The only difference is the timing of the excitation/measurement process. When measuring FI, the excitation and emission ... This results in lower measurement backgrounds than in standard FI assays. The drawbacks are that the instrumentation and ... Some plate readers offer filter wheel or tunable wavelength monochromator optical systems for selecting specific luminescent ...
... point as confirmed with rope and stone measurement methods by local guides in the area Lake Kaco is reported to be luminescent ...
It was later demonstrated that pure, Cs4PbBr6 NCs were non-luminescent, and that these could be converted to luminescent CsPbX3 ... The lifetime measurements were carried out utilizing both time correlated single photon counting equipment as well as a ... but it is also an indirect-semiconductor and is non-luminescent. The non-luminescent nature of this phase was further ... If the B-X-B angle deviates too far from 180°, phase transitions towards non-luminescent or all-together non-perovskite phases ...
Hui, Rongqing; O'Sullivan, Maurice (2009). "Basic Instrumentation for Optical Measurement". Fiber Optic Measurement Techniques ... "Method for manufacturing a metallized luminescent screen for a cathode-ray tube Patent", published 1998-09-01 US 5178906A, " ... Most oscilloscopes have a graticule as part of the visual display, to facilitate measurements. The graticule may be permanently ... Various phosphors are available depending upon the needs of the measurement or display application. The brightness, color, and ...
The latter is most commonly used for temperature measurement. The first mention of temperature measurement utilizing a phosphor ... Early works considered the integration of luminescent materials as erosion sensors in TBCs. The notion of a "thermal barrier ... Measurement Science and Technology, 30(7), 072001. J.L. Kennedy and N. Djeu (2002), "Operation of Yb:YAG fiber optic ... A temperature sensor based on direct decay time measurement has been shown to reach a temperature from 1000 to as high as 1,600 ...
New luminescent phases of strontium vanadate were also discovered during the course of this program. "Lauren Rohwer". Sandia ... This work led to the development of a measurement standard for CL luminous efficiency of phosphor powders and films. She ... Rohwer researches synthesis and characterization of nanoscale luminescent materials with applications to solid-state lighting. ... Rohwer's dissertation was titled Development of efficient, small particle size luminescent oxides using combustion synthesis. ...
... polyaminocarboxylates as luminescent sensors in time-resolved luminescent (TRL) immunoassays. Optimization of analytical ... Measurements can be done under physiological conditions in vitro with genetically encoded dyes, and often in vivo as well. The ... The luminescent probe may for instance serve to localize the MRI contrast agent. This has helped to visualize the delivery of ... Protonation of basic sites in systems comprising a chromophore and a luminescent metal center leads the way for pH sensors. ...
In vitro measurements Other tests measure the antioxidant capacity of a fraction. Some make use of the 2,2'-azino-bis(3- ... Detection can be made by recombinant luminescent bacterial sensors. Phenolic profiling can be achieved with liquid ... Some methods for quantification of total phenolic content are based on colorimetric measurements. Total phenols (or antioxidant ... "Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors". Chemosphere. 64 (11): 1910 ...
It has a calculated density of 4.045 g/cm3, and a tested density of 4.00 g/cm3, agreeing favorably, since measurements used to ... Crystals are not luminescent or fluorescent. Jerrygibbsite forms orthorhombic crystals with an imperfect cleavage along the { ...
In November, KLA-Tencor acquired the Quantox line of oxide monitoring products from Solon, Ohio-based measurement and ... In 2014, the company acquired computational lithography and inspection company Luminescent Technologies, Inc. In 2017, the ... The company initially focused on making precise measurements of semiconductor film layer thickness, and in 1984, developed ... In 2008, the company acquired test and measurement company ICOS Vision Systems Corporation NV, and the Microelectronic ...
In luminescent/fluorescent chemosensing these two parts can be 'spaced' out or connected with a covalent spacer. The ... This can be achieved through either a single measurement or through the use of continuous monitoring. The signalling moiety ... F., Callan, J.; P., de Silva, A.; C., Magri, D. (2005). "Luminescent sensors and switches in the early 21st century". ... Ashton, Trent D.; Jolliffe, Katrina A.; Pfeffer, Frederick M. (2015-07-07). "Luminescent probes for the bioimaging of small ...
Quinoline based sensors have been developed that form luminescent complexes with Cd(II) and fluorescent ones with Zn(II). It is ... Fluorophores are essential to our measurement of the metal binding event, and indirectly, metal concentration. There are many ... hypothesized to function by changing its lowest luminescent state from n-π* to π-π* when coordinating to a metal. When the ...
As a result, for crystalline ML materials, XRD measurement may not able to detect changes before and after mechanical stimuli ... Mechanochromic luminescence (ML) references to intensity and/or color changes of (solid-state) luminescent materials induced by ... "A mechanistic investigation of mechanochromic luminescent organoboron materials". Journal of Materials Chemistry. 22 (33): ...
Since luminescent ink or luminescent paper are only delivered to specialist printers, tagging also serves as an anti- ... Clinch, C. E. E. (1981). "British postal engineering". IEE Proceedings A - Physical Science, Measurement and Instrumentation, ... Deutsche Post of the GDR did not use luminescent tagging on stamps. Luminescent tagging has been added to postage stamps of the ... Tagging of postage stamps means that the stamps are printed on luminescent paper or with luminescent ink to facilitate ...
"TISS nanobiosensor for salivary cortisol measurement by aptamer Ag nanocluster SAIE supraparticle structure". Sensors and ... "Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles". ...
Experiments using luminescent Photobacterium leiognathi and non-luminescent mutants have shown that luminescence attracts ... The applications of bioluminescent bacteria include biosensors for detection of contaminants, measurement of pollutant toxicity ... Nevertheless, all bio-luminescent bacteria share a common gene sequence: the enzymatic oxidation of Aldehyde and reduced Flavin ... Reaction: FMNH2 + O2 + RCHO → FMN + RCOOH + H2O + light Of all light emitters in the ocean, bio-luminescent bacteria is the ...
Nanothermometers are classified as luminescent thermometers (if they use light to measure temperature) and non-luminescent ... These measurements are used to initialize weather forecast models. Thermometers are used in roadways in cold weather climates ... T.D. McGee (1988) Principles and Methods of Temperature Measurement ISBN 0-471-62767-4 Middleton, W. E. K. (1966). A history of ... T.D. McGee (1988) Principles and Methods of Temperature Measurement page 3, ISBN 0-471-62767-4 Middleton, W. E. K. (1966). A ...
Y 2SiO 5:Ce3+ degrades by loss of luminescent Ce3+ ions. Zn 2SiO 4:Mn (P1) degrades by desorption of oxygen under electron ... Phosphor thermometry is a temperature measurement approach that uses the temperature dependence of certain phosphors. For this ... Postage stamps are sometimes collected by whether or not they are "tagged" with phosphor (or printed on luminescent paper). ... to create luminescent paint for dials of watches and instruments (radium dials). Between 1913 and 1950 radium-228 and radium- ...
This is a holdover from early erroneous measurements of electron configurations. Lev Landau and Evgeny Lifshitz pointed out in ... Because of such instability, radium is luminescent, glowing a faint blue. Radium, in the form of radium chloride, was ...
However, the direct measurement of nitrogen in the platelets by EELS (an analytical technique of electron microscopy) revealed ... it was noted that not all dislocations are luminescent, and there is no correlation between the dislocation type and the ... Tucker, O.; Newton, M.; Baker, J. (1994). "EPR and N14 electron-nuclear double-resonance measurements on the ionized nearest- ... Twitchen, D.; Newton, M.; Baker, J.; Anthony, T.; Banholzer, W. (1999). "Electron-paramagnetic-resonance measurements on the ...
In this stage the electrons and holes are captured potential paths by the luminescent center, and then the electrons and hole ... Knoll, Glenn F. (2000). Radiation Detection and Measurement. John Wiley & Sons. ISBN 978-0-471-07338-3. Nikl, Martin (2006-02- ... Blasse, G. (1989-05-01). "New luminescent materials". Chemistry of Materials. 1 (3): 294-301. doi:10.1021/cm00003a005. ISSN ... 10). "Scintillation detectors for x-rays". Measurement Science and Technology. 17 (4): R37-R54. doi:10.1088/0957-0233/17/4/r01 ...
Turro, N.J.; Yekta, A. (1978). "Luminescent probes for detergent solutions. A simple procedure for determination of the mean ... 2)". In Bills, Donald D.; Mussinan, Cynthia J. (eds.). Characterization and Measurement of Flavor Compounds. ACS Symposium ...
Eymers graduated cum laude with a PhD in 1935 and did postdoctoral research in biophysics, specifically on luminescent bacteria ... Ornstein, L. S.; Kapuscinski, W.; Eymers, J. G. (1928). "Intensity measurements in the secondary spectrum of hydrogen". ...
Combining luminescent atomically precise clusters with mesoflowers and nanofibres, he developed sensors at sub-zeptomole levels ... Measurements and Interpretation as an Icosahedral Ag152(SCH2CH2Ph)60 Cluster". Nano Letters. 12 (11): 5861-5866. Bibcode: ... A number of atomically precise luminescent clusters have been made in proteins and their growth involves inter-protein metal ... Udaya Bhaskara Rao, T.; Pradeep, T. (2010). "Luminescent Ag7 and Ag8 Clusters by Interfacial Synthesis". Angewandte Chemie ...
Spectroscopic measurements indicated virtually no re-absorption losses on distances of tens of centimeters. Photon harvesting ... The luminescent component might be a dopant in the material of some or all of the transparent medium, or it might be in the ... whereas doping with stable inorganic luminescent agents usually is not practical except in inorganic glasses. Luminescent ... Alternatively the luminescent materials can be configured into thin films that emit light into transparent passive media that ...
... was a French scientist and a pioneer in the study of electric and luminescent phenomena. He was born at Châtillon-sur-Loing ( ... In 1825 he invented a differential galvanometer for the accurate measurement of electrical resistance. In 1829 he invented a ...
... performance recording automated machine action altered through measurement segregation/rejection according to measurement ... and thus even more expensive when compared to wind energy harvesters or luminescent solar concentrators). For simplification, ... measurement selected signaling control, e.g. hydro power control ...
  • Photoluminescence Quantum Yield (PLQY) measurements are critical for a broad range of applications, including new material development, photovoltaics and the development of new fluorescence probes. (horiba.com)
  • The QuantaPhi-2 is a new internal photoluminescence quantum yield (PLQY) and CIE measurement accessory for compatible HORIBA fluorescence spectrometers. (horiba.com)
  • AAT Bioquest are well known for their photometric detection fluorescence and luminescent technologies. (stratech.co.uk)
  • Photon counting mode gives the best sensitivity and is the best mode for luminescence measurement while analog mode works better with high intensities of light and is popular for fluorescence measurements. (berthold.com)
  • Measurement of the intensity and quality of fluorescence. (jefferson.edu)
  • Using the quantum efficiency measurement application of LabSolutions RF software allows determining the fluorescence quantum efficiency easily using intuitive software commands. (shimadzu.com)
  • Even tedious fluorescence quantum efficiency calculations can be performed readily using the LabSolutions RF quantum efficiency measurement function. (shimadzu.com)
  • This example shows 3D fluorescence measurement (Excitation vs Emission) data for three types of calcite. (shimadzu.com)
  • The first part mainly focuses on the development of various MIP-based bioassays that convert the rebinding of template to the imprinted cavities into measurable luminescent signals, including fluorescence, phosphorescence, Raman scattering, diffraction, and the like. (ox.ac.uk)
  • Berthold Technologies is the worldwide leader in luminescence measurement. (berthold.com)
  • E. L. Hull, M. G. Nichols, and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance," Applied Optics , vol. 37, no. 13, pp. 2755-2765, 1998. (hindawi.com)
  • The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. (cdc.gov)
  • Two fast avalanche photodiodes (APD, Micro-Photonic devices, 100 ps time resolution) and Hybrid Photomultiplier Detector Assembly (PicoQuant) which are used for luminescence decay and photon correlation measurements (100 ps time resolution). (lu.se)
  • The method is based on advanced measurements of luminescence and luminescence excitation polarization allows for monitoring of energy transfer in individual nanoantenna. (lu.se)
  • Luminescence decay of strongly luminescent photostable objects (like semiconductor nanowires) can be measured with 2 ps time resolution under excitation by 200 fs pulses from Ti-Sapphire laser. (lu.se)
  • This luminescent assay, which is suitable for both 96- and 384-well plate formats, has been achieved by stably expressing the alpha and beta subunits of a mutated form of sGC in Chinese hamster ovary cells. (nih.gov)
  • For NHANES 2001, the HybritechTandem-MP Ostase ImmunoEnzymetric assay was used for quantitative measurement of Bone Alkaline Phosphatase (BAP), an indicator of osteoblastic activity, in human serum. (cdc.gov)
  • Luminescent spectral rulers for non-invasive strain measurement throug" by Melissa M. Rogalski, Nakul Ravikumar et al. (clemson.edu)
  • We are developing luminescent spectral rulers to evaluate strain on the surface of these devices to mechanically monitor fracture healing and aid in detection of hardware fatigue (e.g. load sharing, implant loosening, and non-union). (clemson.edu)
  • A spectral correction function, allowing the accurate measurement of spectral shapes in real time, is also included standard. (shimadzu.com)
  • As one of the most important phosphorescent emitters, tetradentate cyclometalated platinum(II) complexes have attracted much attention in recent years, because of the high luminescent efficiency, emission spectra, and color tuned easily, especially for the development of high-efficient deep-blue and "pure" blue emitters and single-doped white organic light-emitting diodes (OLEDs). (intechopen.com)
  • Tristar 5 - our new high-performance reader equipped with independent, user-selectable filters and monochromators on both, the excitation and emission side for any measurement. (berthold.com)
  • Figure 1: (a) The ratio of pressure sensitivity between conventional method and differential luminescent method, and (b) Differential luminescent measurement system. (nd.edu)
  • Pressure sensitivity of an unsteady PSP measurement can be controlled by the differential method. (nd.edu)
  • ODO/CT: Optical Dissolved Oxygen/Conductivity/Temperature probe assembly for salinity-compensated DO measurements. (ysi.com)
  • Dissolved oxygen measurement technology has advanced from electrochemical sensors, such as polarographic and galvanic, to luminescent-based, optical sensors. (ysi.com)
  • YSI optical DO sensors are non-consumptive, meaning oxygen is not consumed during the measurement. (ysi.com)
  • It provides exceptional accuracy and uses luminescent dissolved oxygen technology. (rshydro.co.uk)
  • The measurement of the sample, and of a non-fluorescent blank, allows for the direct measurement of the quantum yield of a solid, powder or solution sample. (horiba.com)
  • This KP will test the feasibility of using luminescent coatings to assess mechanical strain with a view to their ultimate use as an in-situ non-destructive optical measuring sensor in moving components such as wind and tidal turbine blades. (ed.ac.uk)
  • Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philosophical Transactions of the Royal Society of London Series B Biological Sciences , vol. 352, no. 1354, pp. 661-668, 1997. (hindawi.com)
  • S. R. Arridge and M. Schweiger, "Photon-measurement density functions. (hindawi.com)
  • The strain sensors contain two patterned surfaces: (1) an “encoder†patterned with alternating luminescent lines, and (2) a transparent “analyzer mask†patterned with opaque lines that overlay and mask a portion of the encoder below. (clemson.edu)
  • In addition, there is the opportunity to integrate in flexible microelectronic sensing technology for internal strain measurements using the wafer grinding technology for thinning down silicon IC technology. (ed.ac.uk)
  • This KP will characterise and optimise the dispersion of relatively inexpensive multi-walled CNTs in thick glass and carbon fibre laminates via well-dispersed CNT modified resins or the powder-epoxy process, will characterise the damage-sensing capabilities of the CNT networks and will develop methods of electrical resistivity measurement suitable for large composite structures and for light-weight pressure vessels. (ed.ac.uk)
  • In this paper, we report on an original way, taking place at room temperature and ambient pressure, to replace the silicon oxide shell of luminescent Si nanocrystals with capping involving organic residues. (fzu.cz)
  • A relatively recent breakthrough in the optical measurement methods is the development of a Europium based luminescent molecule that displays outstanding lifetime properties. (unibw.de)
  • Electroluminescent quantum yield (ELQY) measurements of light-emitting devices, such as LEDs, OLEDs, and other luminescent sources, are fully accommodated by the QuantaPhi-2. (horiba.com)
  • In this thesis, we applied the 2D POLIM technique to investigate the fundamental optoelectronic process in different types of luminescent materials. (lu.se)
  • Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. (nih.gov)
  • The following shows the results of a 3D measurement of DNA marked by two different kinds of DNA probes. (shimadzu.com)
  • Radiation measurements results received before and after the chopper installation in the linac and additionally problems with radiation levels while the beam current is increasing to the designed 500mA value will be presented. (lu.se)
  • The results of these measurements will be used in future assessments of the radiological impact of ESS. (lu.se)
  • Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. (nih.gov)
  • The modification of surface passivation is evidenced by both Fourier transform infrared spectroscopy and nuclear magnetic resonance measurements. (fzu.cz)
  • Peak-to-peak acoustic pressure measurement of ±200 Pa using the present method is shown as an example below. (nd.edu)
  • A model based on single funnel approximation (SFA) is applied to fit the 2D polarization portrait obtained from 2D POLIM measurements. (lu.se)
  • Measurements were again taken after an overhead light simulation, some days later, in order to test the sharks' response to light. (abc.net.au)
  • Co-authors outside our institution contributed by applying single-nanocrystal spectroscopy and performing NMR, FTIR, STM and dynamic light-scattering measurements. (fzu.cz)
  • This graph shows the total number of publications written about "Luminescent Measurements" by people in this website by year, and whether "Luminescent Measurements" was a major or minor topic of these publications. (wakehealth.edu)
  • Acoustic pressure obtained by the differential luminescent imaging. (nd.edu)
  • Use these social-bookmarking links to share Luminescent sharks become invisible . (abc.net.au)
  • Below are the most recent publications written about "Luminescent Measurements" by people in Profiles. (wakehealth.edu)
  • A multi-center evaluation of a device for measurement of bilirubin binding capacity in neonates: the effects of gestational age, Intralipid exposure and illness severity. (jefferson.edu)

No images available that match "luminescent measurements"