A lipocalin that was orignally characterized from human TEARS. It is expressed primarily in the LACRIMAL GLAND and the VON EBNER GLANDS. Lipocalin 1 may play a role in olfactory transduction by concentrating and delivering odorants to the ODORANT RECEPTORS.
A diverse family of extracellular proteins that bind to small hydrophobic molecules. They were originally characterized as transport proteins, however they may have additional roles such as taking part in the formation of macromolecular complexes with other proteins and binding to CELL SURFACE RECEPTORS.
Proteins that are secreted into the blood in increased or decreased quantities by hepatocytes in response to trauma, inflammation, or disease. These proteins can serve as inhibitors or mediators of the inflammatory processes. Certain acute-phase proteins have been used to diagnose and follow the course of diseases or as tumor markers.
Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
A glycoprotein component of HIGH-DENSITY LIPOPROTEINS that transports small hydrophobic ligands including CHOLESTEROL and STEROLS. It occurs in the macromolecular complex with LECITHIN CHOLESTEROL ACYLTRANSFERASE. Apo D is expressed in and secreted from a variety of tissues such as liver, placenta, brain tissue and others.
Abrupt reduction in kidney function. Acute kidney injury encompasses the entire spectrum of the syndrome including acute kidney failure; ACUTE KIDNEY TUBULAR NECROSIS; and other less severe conditions.
The fluid secreted by the lacrimal glands. This fluid moistens the CONJUNCTIVA and CORNEA.
Proteins and peptides found in SALIVA and the SALIVARY GLANDS. Some salivary proteins such as ALPHA-AMYLASES are enzymes, but their composition varies in different individuals.
Serum proteins that have the most rapid migration during ELECTROPHORESIS. This subgroup of globulins is divided into faster and slower alpha(1)- and alpha(2)-globulins.
Transport proteins that carry specific substances in the blood or across cell membranes.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
An iron-binding cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine. It is produced by E COLI and other enteric bacteria.
Globulins of milk obtained from the WHEY.
Enzymes of the isomerase class that catalyze the oxidation of one part of a molecule with a corresponding reduction of another part of the same molecule. They include enzymes converting aldoses to ketoses (ALDOSE-KETOSE ISOMERASES), enzymes shifting a carbon-carbon double bond (CARBON-CARBON DOUBLE BOND ISOMERASES), and enzymes transposing S-S bonds (SULFUR-SULFUR BOND ISOMERASES). (From Enzyme Nomenclature, 1992) EC 5.3.
A high-molecular-weight protein (approximately 22,500) containing 198 amino acid residues. It is a strong inhibitor of trypsin and human plasmin.
Downslope movements of soil and and/or rock resulting from natural phenomena or man made actions. These can be secondary effects of severe storms, VOLCANIC ERUPTIONS and EARTHQUAKES.
A 150-kDa serum glycoprotein composed of three subunits with each encoded by a different gene (C8A; C8B; and C8G). This heterotrimer contains a disulfide-linked C8alpha-C8gamma heterodimer and a noncovalently associated C8beta chain. C8 is the next component to bind the C5-7 complex forming C5b-8 that binds COMPLEMENT C9 and acts as a catalyst in the polymerization of C9.
Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994)
An extracellular cystatin subtype that is abundantly expressed in bodily fluids. It may play a role in the inhibition of interstitial CYSTEINE PROTEASES.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Creatinine is a waste product that's generated from muscle metabolism, typically filtered through the kidneys and released in urine, with increased levels in blood indicating impaired kidney function.
Proteins found in any species of insect.
A genus of softbacked TICKS, in the family ARGASIDAE, serving as the vector of BORRELIA, causing RELAPSING FEVER, and of the AFRICAN SWINE FEVER VIRUS.
A genus of the subfamily TRIATOMINAE. Rhodnius prolixus is a vector for TRYPANOSOMA CRUZI.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
Substances found in PLANTS that have antigenic activity.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
An endopeptidase that is structurally similar to MATRIX METALLOPROTEINASE 2. It degrades GELATIN types I and V; COLLAGEN TYPE IV; and COLLAGEN TYPE V.
Methods to determine in patients the nature of a disease or disorder at its early stage of progression. Generally, early diagnosis improves PROGNOSIS and TREATMENT OUTCOME.
Proteins secreted by the epididymal epithelium. These proteins are both tissue- and species-specific. They are important molecular agents in the process of sperm maturation.
Retinol binding proteins that circulate in the PLASMA. They are members of the lipocalin family of proteins and play a role in the transport of RETINOL from the LIVER to the peripheral tissues. The proteins are usually found in association with TRANSTHYRETIN.
An increase in circulating RETICULOCYTES, which is among the simplest and most reliable signs of accelerated ERYTHROCYTE production. Reticulocytosis occurs during active BLOOD regeneration (stimulation of red bone marrow) and in certain types of ANEMIA, particularly CONGENITAL HEMOLYTIC ANEMIA.
Proteins which bind with RETINOL. The retinol-binding protein found in plasma has an alpha-1 mobility on electrophoresis and a molecular weight of about 21 kDa. The retinol-protein complex (MW=80-90 kDa) circulates in plasma in the form of a protein-protein complex with prealbumin. The retinol-binding protein found in tissue has a molecular weight of 14 kDa and carries retinol as a non-covalently-bound ligand.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Compounds that contain a 1-dimethylaminonaphthalene-5-sulfonyl group.
A class of organic compounds which contain an anilino (phenylamino) group linked to a salt or ester of naphthalenesulfonic acid. They are frequently used as fluorescent dyes and sulfhydryl reagents.
Proteins produced by organs of the mother or the PLACENTA during PREGNANCY. These proteins may be pregnancy-specific (present only during pregnancy) or pregnancy-associated (present during pregnancy or under other conditions such as hormone therapy or certain malignancies.)
Orosomucoid, also known as alpha-1-acid glycoprotein, is an acute phase protein involved in the immune response, functioning as a pattern recognition receptor and having the ability to bind various ligands including drugs and hormones.
Proteins prepared by recombinant DNA technology.
Small, sacculated organs found within the DERMIS. Each gland has a single duct that emerges from a cluster of oval alveoli. Each alveolus consists of a transparent BASEMENT MEMBRANE enclosing epithelial cells. The ducts from most sebaceous glands open into a HAIR FOLLICLE, but some open on the general surface of the SKIN. Sebaceous glands secrete SEBUM.
An island republic in the eastern Mediterranean Sea. Its capital is Nicosia. It was colonized by the Phoenicians and ancient Greeks and ruled successively by the Assyrian, Persian, Ptolemaic, Roman, and Byzantine Empires. It was under various countries from the 12th to the 20th century but became independent in 1960. The name comes from the Greek Kupros, probably representing the Sumerian kabar or gabar, copper, famous in historic times for its copper mines. The cypress tree is also named after the island. (From Webster's New Geographical Dictionary, 1988, p308 & Room, Brewer's Dictionary of Names, 1992, p134)
Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid.
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A cyclic peptide consisting of three residues of delta-N-hydroxy-delta-N-acetylornithine. It acts as an iron transport agent in Ustilago sphaerogena.
Conditions with abnormally low levels of ALPHA-LIPOPROTEINS (high-density lipoproteins) in the blood. Hypoalphalipoproteinemia can be associated with mutations in genes encoding APOLIPOPROTEIN A-I; LECITHIN CHOLESTEROL ACYLTRANSFERASE; and ATP-BINDING CASSETTE TRANSPORTERS.
General dysfunction of an organ occurring immediately following its transplantation. The term most frequently refers to renal dysfunction following KIDNEY TRANSPLANTATION.
A cytokine which resembles IL-1 structurally and IL-12 functionally. It enhances the cytotoxic activity of NK CELLS and CYTOTOXIC T-LYMPHOCYTES, and appears to play a role both as neuroimmunomodulator and in the induction of mucosal immunity.
A phthalic indicator dye that appears yellow-green in normal tear film and bright green in a more alkaline medium such as the aqueous humor.
Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
A class of enzymes that catalyzes the degradation of gelatin by acting on the peptide bonds. EC 3.4.24.-.
A graphic means for assessing the ability of a screening test to discriminate between healthy and diseased persons; may also be used in other studies, e.g., distinguishing stimuli responses as to a faint stimuli or nonstimuli.
Measurement of the intensity and quality of fluorescence.
Epithelial cells that line the PULMONARY ALVEOLI.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Intracellular proteins that reversibly bind hydrophobic ligands including: saturated and unsaturated FATTY ACIDS; EICOSANOIDS; and RETINOIDS. They are considered a highly conserved and ubiquitously expressed family of proteins that may play a role in the metabolism of LIPIDS.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.

mRNAs encoding a von Ebner's-like protein and the Huntington disease protein are induced in rat male germ cells by Sertoli cells. (1/64)

The success of spermatogenesis is dependent upon closely coordinated interactions between Sertoli cells and germ cells. To identify specific molecules that mediate interactions between somatic cells and germ cells in the rat testis, Sertoli cell-germ cell co-cultures and mRNA differential display were used. Two cDNAs, clone 1 (660 nucleotides) and clone 2 (390 nucleotides) were up-regulated when Sertoli cells were co-cultured with pachytene spermatocytes or round spermatids. Northern blot analyses confirmed the differential display expression patterns. Sequence analyses indicated that clone 1 was similar to a von Ebner's gland protein (87% at the nucleotide level and 80% at the amino acid level) and clone 2 was identical to a region of the Huntington disease protein. The von Ebner's-like protein mRNA was induced after 4 h of co-culture, while the Huntington disease protein required 18 h of co-culture for expression. The von Ebner's-like protein was induced in germ cells by a secreted Sertoli cell factor(s) smaller than 10 kDa that is sensitive to freezing and thawing or boiling. The Huntington disease protein was induced in germ cells by a Sertoli cell secreted factor(s) larger than 10 kDa which survives freezing and thawing, but is inactivated by boiling.  (+info)

Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. (2/64)

High-affinity histamine-binding proteins (HBPs) were discovered in the saliva of Rhipicephalus appendiculatus ticks. Their ability to outcompete histamine receptors indicates that they suppress inflammation during blood feeding. The crystal structure of a histamine-bound HBP, determined at 1.25 A resolution, reveals a lipocalin fold novel in containing two binding sites for the same ligand. The sites are orthogonally arranged and highly rigid and form an internal surface of unusual polar character that complements the physicochemical properties of histamine. As soluble receptors of histamine, HBPs offer a new strategy for controlling histamine-based diseases.  (+info)

Abundant secretory lipocalins displaying male and lactation-specific expression in adult hamster submandibular gland. cDNA cloning and sex hormone-regulated repression. (3/64)

We have previously identified massively expressed 24- and 20.5-kDa male-specific proteins in submandibular salivary glands (SMG) of adult hamsters. Here we report the cloning of the cDNA encoding the 24-kDa protein which we have now found to be a heterogenously N-glycosylated form of the 20.5-kDa protein. The deduced amino acid sequence indicated that the protein is a member of the lipocalin family, the two most related lipocalins being rat odorant-binding protein of nasal mucosa and aphrodisin, a pheromonal protein present in vaginal discharge and saliva of female hamsters. Northern blot analysis showed that cognate mRNA is expressed in hamster SMG and lacrimal gland (LG) displaying marked sex-hormonal repression. The sex-hormonal repression patterns showed similarities and dissimilarities between SMG and LG but they were, respectively, similar to the sex-hormonal repression pattern noted for the SMG 24/20.5-kDa male-specific proteins and for an abundant female-specific 20-kDa LG secretory protein. These SMG and LG proteins were found to be immunologically similar and secretion of the SMG proteins in saliva and their excretion in urine was detected. The male-specific and abundant expression of the SMG proteins were seen at and after sexual maturity but was not dependent on androgens. Surprisingly, a temporary male-like expression of these SMG proteins was seen in lactating females which was obliterated by oestrogen administration. Our results show that despite differences in their repression by sex hormones, the gene for SMG 24/20.5-kDa proteins is similar or identical to that of LG 20-kDa protein and their marked repression by both androgens and oestrogens might be at the transcriptional level. Moreover, they might be excellent models with which to study sex hormone repression of gene expression at the molecular level. The results of homology search and the male- and lactation-specific pressure of the SMG proteins in adult saliva and urine suggests a possibility of their involvement in olfaction-mediated chemical communication between hamsters.  (+info)

Phage display reveals a novel interaction of human tear lipocalin and thioredoxin which is relevant for ligand binding. (4/64)

Human tear lipocalin (TL) is an unusual member of the lipocalin protein family, since it is known to bind a large variety of lipophilic ligands in vivo and acts as a cysteine proteinase inhibitor in vitro. It is suggested to function as a physiological protection factor by scavenging lipophilic potentially harmful compounds. Since protein-protein interaction or macromolecular complexation is a common feature of many lipocalins, we applied phage display technology to identify TL interacting proteins. By panning of a human prostate cDNA phagemid library against purified TL we isolated a thioredoxin (Trx) encoding phage clone. Biochemical analysis revealed that TL indeed interacts with Trx and is reduced by this redox protein. Reduction of the TL-specific disulfide bond is of functional relevance, since the reduced protein shows a nine-fold increase in ligand affinity when tested with retinoic acid as ligand.  (+info)

Tear lipocalins: potential lipid scavengers for the corneal surface. (5/64)

PURPOSE: To investigate the dynamic effect of tear lipocalins (TLs), the major lipid-binding protein in tears, at aqueous-cornea and lipid-aqueous interfaces, and their potential contribution to surface tension in the tear film. METHODS: Human apo- and holo-TLs were applied to the aqueous subphase in a Langmuir trough, and changes in surface pressure were measured. Changes in the contact angle of tear components were observed on Teflon and ferric-stearate-treated surfaces. A nitroxide-labeled derivative of lauric acid and a fluorescence-labeled derivative of palmitic acid were used to monitor the dynamic interaction of lipid removed from a hydrophobic surface by the major tear components in solution. RESULTS: TLs increase the surface pressure at the aqueous-air interface by penetrating, spreading, and rearranging on the surface. Apo-TLs show a longer diffusion-dependent induction time than holo-TLs due to more extensive oligomerization of the apoprotein. Kinetic analysis of relaxation time suggests that apo-TLs have more rapid surface penetration and rearrangement than holo-TLs, indicative of a more flexible structure in apo-TLs. TLs reduce the contact angle of solutions on lipid films, a property that is greater with TLs than other tear proteins. TLs, unlike lysozyme and lactoferrin, remove labeled lipids from hydrophobic surfaces and deliver them into solution. CONCLUSIONS: TLs are potent lipid-binding proteins that increase the surface pressure of aqueous solutions while scavenging lipids from hydrophobic surfaces and delivering them to the aqueous phase of tears. These data suggest important functional roles for TLs in maintaining the integrity of the tear film.  (+info)

A novel human odorant-binding protein gene family resulting from genomic duplicons at 9q34: differential expression in the oral and genital spheres. (6/64)

Lipocalins are carrier proteins for hydrophobic molecules in many biological fluids. In the oral sphere (nasal mucus, saliva, tears), they have an environmental biosensor function and are involved in the detection of odours and pheromones. Herein, we report the first identification of human lipocalins involved in odorant binding. They correspond to a gene family located on human chromosome 9q34 produced by genomic duplications: two new odorant-binding protein genes ( hOBP (IIa) and hOBP (IIb) ), the previously described tear lipocalin LCN1 gene and two new LCN1 pseudogenes. Although 95% similar in sequence, the two hOBP (II) genes were differentially expressed in secretory structures. hOBP (IIa) was strongly expressed in the nasal structures, salivary and lachrymal glands, and lung, therefore having an oral sphere profile. hOBP (IIb) was more strongly expressed in genital sphere organs such as the prostate and mammary glands. Both were expressed in the male deferent ducts and placenta. Surprisingly, alternatively spliced mRNAs resulting in proteins with different C-termini were generated from each of the two genes. The single LCN1 gene in humans generated a putative odorant-binding protein in nasal structures. Finally, based on the proposed successive genomic duplication history, we demonstrated the recruitment of exons within intronic DNA generating diversity. This is consistent with a positive selection pressure in vertebrate evolution in the intron-late hypothesis.  (+info)

Resolution of ligand positions by site-directed tryptophan fluorescence in tear lipocalin. (7/64)

The lipocalin superfamily of proteins functions in the binding and transport of a variety of important hydrophobic molecules. Tear lipocalin is a promiscuous lipid binding member of the family and serves as a paradigm to study the molecular determinants of ligand binding. Conserved regions in the lipocalins, such as the G strand and the F-G loop, may play an important role in ligand binding and delivery. We studied structural changes in the G strand of holo- and apo-tear lipocalin using spectroscopic methods including circular dichroism analysis and site-directed tryptophan fluorescence. Apo-tear lipocalin shows the same general structural characteristics as holo-tear lipocalin including alternating periodicity of a beta-strand, orientation of amino acid residues 105, 103, 101, and 99 facing the cavity, and progressive depth in the cavity from residues 105 to 99. For amino acid residues facing the internal aspect of cavity, the presence of a ligand is associated with blue shifted spectra. The collisional rate constants indicate that these residues are not less exposed to solvent in holo-tear lipocalin than in apo-tear lipocalin. Rather the spectral blue shifts may be accounted for by a ligand induced rigidity in holo-TL. Amino acid residues 94 and 95 are consistent with positions in the F-G loop and show greater exposure to solvent in the holo- than the apo-proteins. These findings are consistent with the general hypothesis that the F-G loop in the holo-proteins of the lipocalin family is available for receptor interactions and delivery of ligands to specific targets. Site-directed tryptophan fluorescence was used in combination with a nitroxide spin labeled fatty acid analog to elucidate dynamic ligand interactions with specific amino acid residues. Collisional quenching constants of the nitroxide spin label provide evidence that at least three amino acids of the G strand residues interact with the ligand. Stern-Volmer plots are inconsistent with a ligand that is held in a static position in the calyx, but rather suggest that the ligand is in motion. The combination of site-directed tryptophan fluorescence with quenching by nitroxide labeled species has broad applicability in probing specific interactions in the solution structure of proteins and provides dynamic information that is not attainable by X-ray crystallography.  (+info)

Endonuclease activity in lipocalins. (8/64)

Several lipocalins contain conserved amino acid sequences similar to the phosphodiester bond cleavage domain of sugar non-specific magnesium-dependent nucleases of the Serratia marcescens type. His-89 and Glu-127 of the S. marcescens endonuclease are believed to have a role in the active catalytic site by the attack of a water molecule at the phosphorus atom of the bridging phosphate. Tear lipocalin contains both amino acids in analogous regions, and is active as a nuclease. Two forms of beta-lactoglobulin contain only Glu-134 (analogous to Glu-127 of the Serratia nuclease) yet retain nuclease activity equal to or greater than that of tear lipocalin. However, retinol-binding protein lacks both of these motifs and shows no detectable activity. DNA-nicking activity is decreased by 80% in the mutant of tear lipocalin that replaces Glu-128 but is unchanged by mutations of His-84. The endonuclease activity of tear lipocalin is dependent on the bivalent cations Mg(2+) or Mn(2+) but is decreased at high concentrations of NaCl. These findings indicate that some lipocalins have non-specific endonuclease activity similar in characteristics to the Mg(2+)-dependent nucleases and related to the conserved sequence LEDFXR (where 'X' denotes 'any other residue'), in which the glutamic residue seems to be important for activity.  (+info)

Lipocalin 1, also known as neutrophil gelatinase-associated lipocalin (NGAL), is a protein that belongs to the lipocalin family. It is a small secreted protein with a molecular weight of approximately 25 kDa and is composed of a single polypeptide chain.

Lipocalin 1 is primarily produced by neutrophils, but can also be expressed in other tissues such as the kidney, liver, and lungs. It plays a role in the innate immune response by binding to bacterial siderophores, preventing bacterial growth by limiting their access to iron.

In addition, Lipocalin 1 has been identified as a biomarker for early detection of acute kidney injury (AKI). Its expression is rapidly upregulated in the kidney in response to injury, and its levels can be measured in urine and blood. Increased urinary Lipocalin 1 levels have been shown to predict AKI with high sensitivity and specificity, making it a promising diagnostic tool for this condition.

Lipocalins are a family of small, mostly secreted proteins characterized by their ability to bind and transport small hydrophobic molecules, including lipids, steroids, retinoids, and odorants. They share a conserved tertiary structure consisting of a beta-barrel core with an internal ligand-binding pocket. Lipocalins are involved in various biological processes such as cell signaling, immune response, and metabolic regulation. Some well-known members of this family include tear lipocalin (TLSP), retinol-binding protein 4 (RBP4), and odorant-binding proteins (OBPs).

Acute-phase proteins (APPs) are a group of plasma proteins whose concentrations change in response to various inflammatory conditions, such as infection, trauma, or tissue damage. They play crucial roles in the body's defense mechanisms and help mediate the innate immune response during the acute phase of an injury or illness.

There are several types of APPs, including:

1. C-reactive protein (CRP): Produced by the liver, CRP is one of the most sensitive markers of inflammation and increases rapidly in response to various stimuli, such as bacterial infections or tissue damage.
2. Serum amyloid A (SAA): Another liver-derived protein, SAA is involved in lipid metabolism and immune regulation. Its concentration rises quickly during the acute phase of inflammation.
3. Fibrinogen: A coagulation factor produced by the liver, fibrinogen plays a vital role in blood clotting and wound healing. Its levels increase during inflammation.
4. Haptoglobin: This protein binds free hemoglobin released from red blood cells, preventing oxidative damage to tissues. Its concentration rises during the acute phase of inflammation.
5. Alpha-1 antitrypsin (AAT): A protease inhibitor produced by the liver, AAT helps regulate the activity of enzymes involved in tissue breakdown and repair. Its levels increase during inflammation to protect tissues from excessive proteolysis.
6. Ceruloplasmin: This copper-containing protein is involved in iron metabolism and antioxidant defense. Its concentration rises during the acute phase of inflammation.
7. Ferritin: A protein responsible for storing iron, ferritin levels increase during inflammation as part of the body's response to infection or tissue damage.

These proteins have diagnostic and prognostic value in various clinical settings, such as monitoring disease activity, assessing treatment responses, and predicting outcomes in patients with infectious, autoimmune, or inflammatory conditions.

Oncogene proteins are derived from oncogenes, which are genes that have the potential to cause cancer. Normally, these genes help regulate cell growth and division, but when they become altered or mutated, they can become overactive and lead to uncontrolled cell growth and division, which is a hallmark of cancer. Oncogene proteins can contribute to tumor formation and progression by promoting processes such as cell proliferation, survival, angiogenesis, and metastasis. Examples of oncogene proteins include HER2/neu, EGFR, and BCR-ABL.

Proto-oncogene proteins are normal cellular proteins that play crucial roles in various cellular processes, such as signal transduction, cell cycle regulation, and apoptosis (programmed cell death). They are involved in the regulation of cell growth, differentiation, and survival under physiological conditions.

When proto-oncogene proteins undergo mutations or aberrations in their expression levels, they can transform into oncogenic forms, leading to uncontrolled cell growth and division. These altered proteins are then referred to as oncogene products or oncoproteins. Oncogenic mutations can occur due to various factors, including genetic predisposition, environmental exposures, and aging.

Examples of proto-oncogene proteins include:

1. Ras proteins: Involved in signal transduction pathways that regulate cell growth and differentiation. Activating mutations in Ras genes are found in various human cancers.
2. Myc proteins: Regulate gene expression related to cell cycle progression, apoptosis, and metabolism. Overexpression of Myc proteins is associated with several types of cancer.
3. EGFR (Epidermal Growth Factor Receptor): A transmembrane receptor tyrosine kinase that regulates cell proliferation, survival, and differentiation. Mutations or overexpression of EGFR are linked to various malignancies, such as lung cancer and glioblastoma.
4. Src family kinases: Intracellular tyrosine kinases that regulate signal transduction pathways involved in cell proliferation, survival, and migration. Dysregulation of Src family kinases is implicated in several types of cancer.
5. Abl kinases: Cytoplasmic tyrosine kinases that regulate various cellular processes, including cell growth, differentiation, and stress responses. Aberrant activation of Abl kinases, as seen in chronic myelogenous leukemia (CML), leads to uncontrolled cell proliferation.

Understanding the roles of proto-oncogene proteins and their dysregulation in cancer development is essential for developing targeted cancer therapies that aim to inhibit or modulate these aberrant signaling pathways.

Apolipoprotein D (apoD) is a protein that is associated with high-density lipoprotein (HDL) particles in the blood. It is one of several apolipoproteins that are involved in the transport and metabolism of lipids, such as cholesterol and triglycerides, in the body.

ApoD is produced by the APOD gene and is found in various tissues, including the brain, where it is believed to play a role in protecting nerve cells from oxidative stress. It has also been studied for its potential role in Alzheimer's disease and other neurological disorders.

In addition to its role in lipid metabolism and neuroprotection, apoD has been shown to have anti-inflammatory properties and may be involved in the regulation of immune responses. However, more research is needed to fully understand the functions and mechanisms of action of this protein.

Acute kidney injury (AKI), also known as acute renal failure, is a rapid loss of kidney function that occurs over a few hours or days. It is defined as an increase in the serum creatinine level by 0.3 mg/dL within 48 hours or an increase in the creatinine level to more than 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days, or a urine volume of less than 0.5 mL/kg per hour for six hours.

AKI can be caused by a variety of conditions, including decreased blood flow to the kidneys, obstruction of the urinary tract, exposure to toxic substances, and certain medications. Symptoms of AKI may include decreased urine output, fluid retention, electrolyte imbalances, and metabolic acidosis. Treatment typically involves addressing the underlying cause of the injury and providing supportive care, such as dialysis, to help maintain kidney function until the injury resolves.

In medical terms, "tears" are a clear, salty liquid that is produced by the tear glands (lacrimal glands) in our eyes. They serve to keep the eyes moist, protect against dust and other foreign particles, and help to provide clear vision by maintaining a smooth surface on the front of the eye. Tears consist of water, oil, and mucus, which help to prevent evaporation and ensure that the tears spread evenly across the surface of the eye. Emotional or reflexive responses, such as crying or yawning, can also stimulate the production of tears.

Salivary proteins and peptides refer to the diverse group of molecules that are present in saliva, which is the clear, slightly alkaline fluid produced by the salivary glands in the mouth. These proteins and peptides play a crucial role in maintaining oral health and contributing to various physiological functions.

Some common types of salivary proteins and peptides include:

1. **Mucins**: These are large, heavily glycosylated proteins that give saliva its viscous quality. They help to lubricate the oral cavity, protect the mucosal surfaces, and aid in food bolus formation.
2. **Amylases**: These enzymes break down carbohydrates into simpler sugars, initiating the digestive process even before food reaches the stomach.
3. **Proline-rich proteins (PRPs)**: PRPs contribute to the buffering capacity of saliva and help protect against tooth erosion by forming a protective layer on tooth enamel.
4. **Histatins**: These are small cationic peptides with antimicrobial properties, playing a significant role in maintaining oral microbial homeostasis and preventing dental caries.
5. **Lactoferrin**: An iron-binding protein that exhibits antibacterial, antifungal, and anti-inflammatory activities, contributing to the overall oral health.
6. **Statherin and Cystatins**: These proteins regulate calcium phosphate precipitation, preventing dental calculus formation and maintaining tooth mineral homeostasis.

Salivary proteins and peptides have attracted significant interest in recent years due to their potential diagnostic and therapeutic applications. Alterations in the composition of these molecules can provide valuable insights into various oral and systemic diseases, making them promising biomarkers for disease detection and monitoring.

Alpha-globulins are a group of proteins present in blood plasma, which are classified based on their electrophoretic mobility. They migrate between albumin and beta-globulins during electrophoresis. Alpha-globulins include several proteins, such as alpha-1 antitrypsin, alpha-1 acid glycoprotein, and haptoglobin. These proteins play various roles in the body, including transporting and regulating other molecules, participating in immune responses, and maintaining oncotic pressure in blood vessels.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Enterobactin is a siderophore, which is a low molecular weight compound that chelates ferric iron (Fe3+) with high affinity. It is produced by many gram-negative bacteria, including species of the genera Escherichia, Salmonella, Shigella, and Yersinia. Enterobactin is composed of a cyclic trimer of 2,3-dihydroxybenzoyl serine residues and is synthesized through the enzymatic activities of enterobactin synthase.

Enterobactin plays an important role in the pathogenesis of bacterial infections by scavenging iron from host proteins, which is essential for bacterial growth and survival. Once ferric iron is bound to enterobactin, it is transported into the bacterial cell through a specific transport system, where it is reduced to ferrous iron (Fe2+) and used for various metabolic processes.

In summary, enterobactin is a siderophore produced by gram-negative bacteria that chelates ferric iron with high affinity and plays an important role in bacterial pathogenesis by scavenging iron from host proteins.

Lactoglobulins, specifically referring to β-lactoglobulin, are a type of protein found in the whey fraction of milk from ruminant animals such as cows and sheep. They are one of the major proteins in bovine milk, making up about 10% of the total protein content.

β-lactoglobulin is a small, stable protein that is resistant to heat and acid denaturation. It has an important role in the nutrition of young mammals as it can bind to fat molecules and help with their absorption. In addition, β-lactoglobulin has been studied for its potential health benefits, including its antioxidant and anti-inflammatory properties.

However, some people may have allergies to β-lactoglobulin, which can cause symptoms such as hives, swelling, and difficulty breathing. In these cases, it is important to avoid foods that contain this protein.

Intramolecular oxidoreductases are a specific class of enzymes that catalyze the transfer of electrons within a single molecule, hence the term "intramolecular." These enzymes are involved in oxidoreduction reactions, where one part of the molecule is oxidized (loses electrons) and another part is reduced (gains electrons). This process allows for the rearrangement or modification of functional groups within the molecule.

The term "oxidoreductase" refers to enzymes that catalyze oxidation-reduction reactions, which are also known as redox reactions. These enzymes play a crucial role in various biological processes, including energy metabolism, detoxification, and biosynthesis.

It's important to note that intramolecular oxidoreductases should not be confused with intermolecular oxidoreductases, which catalyze redox reactions between two separate molecules.

Trypsin inhibitor, Kunitz soybean, also known as Bowman-Birk inhibitor, is a type of protease inhibitor found in soybeans. It is a small protein molecule that inhibits the activity of trypsin, a digestive enzyme that helps break down proteins in the body. The Kunitz soybean trypsin inhibitor has two binding sites for trypsin and is resistant to digestion, making it biologically active in the gastrointestinal tract. It can inhibit the absorption of trypsin and regulate its activity, which may have implications for protein digestion and the regulation of certain physiological processes.

I apologize for any confusion, but "landslides" is not a term typically used in medical definitions. Landslides are a geological phenomenon involving the mass movement of soil or rock down a slope. They can occur due to various factors such as heavy rainfall, earthquakes, volcanic activity, or human activities that alter the stability of a slope.

If you have any questions related to health or medicine, please provide more context so I can offer an accurate and helpful response.

Complement C8 is a protein component of the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C8 is a part of the membrane attack complex (MAC), which forms a pore in the membrane of target cells, leading to their lysis or destruction.

C8 is composed of three subunits: alpha, beta, and gamma. It is activated when it binds to the complement component C5b67 complex on the surface of a target cell. Once activated, C8 undergoes a conformational change that allows it to insert into the target cell membrane and form a pore, which disrupts the cell's membrane integrity and can lead to its death.

Deficiencies in complement components, including C8, can make individuals more susceptible to certain infections and autoimmune diseases. Additionally, mutations in the genes encoding complement proteins have been associated with various inherited disorders, such as atypical hemolytic uremic syndrome (aHUS), which is characterized by thrombotic microangiopathy and kidney failure.

Siderophores are low-molecular-weight organic compounds that are secreted by microorganisms, such as bacteria and fungi, to chelate and solubilize iron from their environment. They are able to bind ferric iron (Fe3+) with very high affinity and form a siderophore-iron complex, which can then be taken up by the microorganism through specific transport systems. This allows them to acquire iron even in environments where it is present at very low concentrations or in forms that are not readily available for uptake. Siderophores play an important role in the survival and virulence of many pathogenic microorganisms, as they help them to obtain the iron they need to grow and multiply.

Cystatin C is a protein produced by many cells in the body, including all types of nucleated cells. It is a member of the cysteine protease inhibitor family and functions as an endogenous inhibitor of cathepsins, which are proteases involved in various physiological and pathological processes such as extracellular matrix degradation, antigen presentation, and cell death.

Cystatin C is freely filtered by the glomeruli in the kidneys and almost completely reabsorbed and catabolized by the proximal tubules. Therefore, its serum concentration is a reliable marker of glomerular filtration rate (GFR) and can be used to estimate kidney function.

Increased levels of cystatin C in the blood may indicate impaired kidney function or kidney disease, while decreased levels are less common and may be associated with hyperfiltration or overproduction of cystatin C. Measuring cystatin C levels can complement or supplement traditional methods for assessing kidney function, such as estimating GFR based on serum creatinine levels.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Creatinine is a waste product that's produced by your muscles and removed from your body by your kidneys. Creatinine is a breakdown product of creatine, a compound found in meat and fish, as well as in the muscles of vertebrates, including humans.

In healthy individuals, the kidneys filter out most of the creatinine and eliminate it through urine. However, when the kidneys are not functioning properly, creatinine levels in the blood can rise. Therefore, measuring the amount of creatinine in the blood or urine is a common way to test how well the kidneys are working. High creatinine levels in the blood may indicate kidney damage or kidney disease.

I'm sorry for any confusion, but "Insect Proteins" is not a recognized medical term. However, I can provide some information about insect protein from a nutritional and food science perspective.

Insect proteins refer to the proteins that are obtained from insects. Insects are a rich source of protein, and their protein content varies by species. For example, mealworms and crickets have been found to contain approximately 47-63% and 60-72% protein by dry weight, respectively.

In recent years, insect proteins have gained attention as a potential sustainable source of nutrition due to their high protein content, low environmental impact, and the ability to convert feed into protein more efficiently compared to traditional livestock. Insect proteins can be used in various applications such as food and feed additives, nutritional supplements, and even cosmetics.

However, it's important to note that the use of insect proteins in human food is not widely accepted in many Western countries due to cultural and regulatory barriers. Nonetheless, research and development efforts continue to explore the potential benefits and applications of insect proteins in the global food system.

Ornithodoros is a genus of hard-bodied ticks that belong to the family Argasidae, also known as soft ticks. These ticks are characterized by their lack of a distinct rear end or capitulum, and they have a leathery cuticle that appears smooth and shiny when they are engorged with blood.

Ornithodoros ticks are known to be vectors of various diseases, including relapsing fever caused by Borrelia spp. They can transmit these pathogens through their saliva during feeding, which typically occurs at night. Ornithodoros ticks are also capable of surviving for long periods without food, making them efficient carriers and transmitters of disease-causing agents.

These ticks are often found in the nests or burrows of animals such as birds, reptiles, and mammals, where they feed on the host's blood. Some species of Ornithodoros ticks can also bite humans, causing skin irritation and other symptoms. It is important to take precautions when entering areas where these ticks may be present, such as wearing protective clothing and using insect repellent.

"Rhodnius" is not a medical term, but rather it refers to a genus of true bugs in the family Reduviidae. These small, wingless insects are known as "bugs" and are commonly found in tropical regions of the Americas. They feed on plant sap and are also known to be vectors for certain diseases, such as Chagas disease, which is caused by the parasite Trypanosoma cruzi. However, they are not typically associated with human medicine or medical conditions.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In plants, antigens are typically found on the surface of plant cells and may be derived from various sources such as:

1. Pathogens: Plant pathogens like bacteria, viruses, fungi, and oomycetes have unique molecules on their surfaces that can serve as antigens for the plant's immune system. These antigens are recognized by plant pattern recognition receptors (PRRs) and trigger an immune response.
2. Endogenous proteins: Some plant proteins, when expressed in abnormal locations or quantities, can be recognized as foreign by the plant's immune system and elicit an immune response. These proteins may serve as antigens and are involved in self/non-self recognition.
3. Glycoproteins: Plant cell surface glycoproteins, which contain carbohydrate moieties, can also act as antigens. They play a role in plant-microbe interactions and may be recognized by both the plant's immune system and pathogens.
4. Allergens: Certain plant proteins can cause allergic reactions in humans and animals when ingested or inhaled. These proteins, known as allergens, can also serve as antigens for the human immune system, leading to the production of IgE antibodies and triggering an allergic response.
5. Transgenic proteins: In genetically modified plants, new proteins introduced through genetic engineering may be recognized as foreign by the plant's immune system or even by the human immune system in some cases. These transgenic proteins can serve as antigens and have been a subject of concern in relation to food safety and potential allergies.

Understanding plant antigens is crucial for developing effective strategies for plant disease management, vaccine development, and improving food safety and allergy prevention.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Medical Definition:

Matrix metalloproteinase 9 (MMP-9), also known as gelatinase B or 92 kDa type IV collagenase, is a member of the matrix metalloproteinase family. These enzymes are involved in degrading and remodeling the extracellular matrix (ECM) components, playing crucial roles in various physiological and pathological processes such as wound healing, tissue repair, and tumor metastasis.

MMP-9 is secreted as an inactive zymogen and activated upon removal of its propeptide domain. It can degrade several ECM proteins, including type IV collagen, elastin, fibronectin, and gelatin. MMP-9 has been implicated in numerous diseases, such as cancer, rheumatoid arthritis, neurological disorders, and cardiovascular diseases. Its expression is regulated at the transcriptional, translational, and post-translational levels, and its activity can be controlled by endogenous inhibitors called tissue inhibitors of metalloproteinases (TIMPs).

Early diagnosis refers to the identification and detection of a medical condition or disease in its initial stages, before the appearance of significant symptoms or complications. This is typically accomplished through various screening methods, such as medical history reviews, physical examinations, laboratory tests, and imaging studies. Early diagnosis can allow for more effective treatment interventions, potentially improving outcomes and quality of life for patients, while also reducing the overall burden on healthcare systems.

Epididymal secretory proteins (ESPs) are a group of proteins that are produced and secreted by the epididymis, a long, coiled tube that lies alongside the testicle in males. The epididymis is responsible for maturing sperm cells after they have been produced in the testes.

The ESPs play a crucial role in this maturation process by interacting with the sperm and promoting their motility, survival, and fertilizing ability. These proteins are thought to protect sperm from damage during their transit through the male reproductive tract and also help to prepare them for fertilization of the egg in the female reproductive tract.

The ESPs include a variety of different protein types, such as enzymes, binding proteins, and structural proteins. Some of the specific ESPs that have been identified and studied include epididymal secretory protein E1 (also known as HE1), epididymal protease inhibitor, and lactoferrin.

Abnormalities in the expression or function of ESPs have been associated with male infertility, highlighting their importance in reproductive health.

Retinol-binding proteins (RBPs) are a group of transport proteins found in plasma that bind and carry retinol (vitamin A alcohol) in the bloodstream. The major form of RBP in humans is known as RBP4, which is synthesized primarily in the liver and secreted into the bloodstream bound to retinol.

RBP4 plays a critical role in delivering retinol from the liver to peripheral tissues, where it is converted to retinal and then to retinoic acid, which are essential for various physiological functions such as vision, immune response, and cell differentiation. RBP4 is also considered a potential biomarker for insulin resistance and metabolic syndrome.

In summary, Retinol-Binding Proteins, Plasma refer to the proteins in the blood that bind and transport retinol (vitamin A alcohol) to peripheral tissues for further metabolism and physiological functions.

Reticulocytosis is a medical term that refers to an increased number of reticulocytes in the peripheral blood. Reticulocytes are immature red blood cells produced in the bone marrow and released into the bloodstream. They still have remnants of RNA, which gives them a reticular or "net-like" appearance under a microscope when stained with certain dyes.

Reticulocytosis is typically seen in conditions associated with increased red blood cell production, such as:

1. Hemolysis: This is a condition where there is excessive destruction of red blood cells, leading to anemia. The body responds by increasing the production of reticulocytes to replace the lost red blood cells.
2. Blood loss: When there is significant blood loss, the body tries to compensate for the decrease in red blood cells by boosting the production of reticulocytes.
3. Recovery from bone marrow suppression: In cases where the bone marrow has been suppressed due to illness, medication, or chemotherapy, and then recovers, an increase in reticulocytosis may be observed as the bone marrow resumes normal red blood cell production.
4. Megaloblastic anemias: Conditions like vitamin B12 or folate deficiency can lead to megaloblastic anemia, where the red blood cells are larger and immature. Reticulocytosis may be present as the bone marrow tries to correct the anemia.
5. Congenital disorders: Certain inherited conditions, such as hereditary spherocytosis or thalassemias, can cause chronic hemolysis and lead to reticulocytosis.

It is essential to evaluate the underlying cause of reticulocytosis for appropriate diagnosis and treatment.

Retinol-binding proteins (RBPs) are specialized transport proteins that bind and carry retinol (vitamin A alcohol) in the bloodstream. The most well-known and studied RBP is serum retinol-binding protein 4 (RBP4), which is primarily produced in the liver and circulates in the bloodstream.

RBP4 plays a crucial role in delivering retinol to target tissues, where it gets converted into active forms of vitamin A, such as retinal and retinoic acid, which are essential for various physiological functions, including vision, immune response, cell growth, and differentiation. RBP4 binds to retinol in a 1:1 molar ratio, forming a complex that is stable and soluble in the bloodstream.

Additionally, RBP4 has been identified as an adipokine, a protein hormone produced by adipose tissue, and has been associated with insulin resistance, metabolic syndrome, and type 2 diabetes. However, the precise mechanisms through which RBP4 contributes to these conditions are not yet fully understood.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Dansyl compounds are fluorescent compounds that contain a dansyl group, which is a chemical group made up of a sulfonated derivative of dimethylaminonaphthalene. These compounds are often used as tracers in biochemical and medical research because they emit bright fluorescence when excited by ultraviolet or visible light. This property makes them useful for detecting and quantifying various biological molecules, such as amino acids, peptides, and proteins, in a variety of assays and techniques, including high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), and fluorescence microscopy.

The dansyl group can be attached to biological molecules through chemical reactions that involve the formation of covalent bonds between the sulfonate group in the dansyl compound and amino, thiol, or hydroxyl groups in the target molecule. The resulting dansylated molecules can then be detected and analyzed using various techniques.

Dansyl compounds are known for their high sensitivity, stability, and versatility, making them valuable tools in a wide range of research applications. However, it is important to note that the use of dansyl compounds requires careful handling and appropriate safety precautions, as they can be hazardous if mishandled or ingested.

Anilino Naphthalenesulfonates are a group of compounds that contain both aniline and naphthalene sulfonate components. Aniline is a organic compound with the formula C6H5NH2, and naphthalene sulfonate is the sodium salt of naphthalene-1,5-disulfonic acid.

Anilino Naphthalenesulfonates are commonly used as fluorescent dyes in various applications such as histology, microscopy, and flow cytometry. These compounds exhibit strong fluorescence under ultraviolet light and can be used to label and visualize specific structures or molecules of interest. Examples of Anilino Naphthalenesulfonates include Propidium Iodide, Acridine Orange, and Hoechst 33258.

It is important to note that while these compounds are widely used in research and diagnostic settings, they may also have potential hazards and should be handled with appropriate safety precautions.

"Pregnancy proteins" is not a standard medical term, but it may refer to specific proteins that are produced or have increased levels during pregnancy. Two common pregnancy-related proteins are:

1. Human Chorionic Gonadotropin (hCG): A hormone produced by the placenta shortly after fertilization. It is often detected in urine or blood tests to confirm pregnancy. Its primary function is to maintain the corpus luteum, which produces progesterone and estrogen during early pregnancy until the placenta takes over these functions.

2. Pregnancy-Specific beta-1 Glycoprotein (SP1): A protein produced by the placental trophoblasts during pregnancy. Its function is not well understood, but it may play a role in implantation, placentation, and protection against the mother's immune system. SP1 levels increase throughout pregnancy and are used as a marker for fetal growth and well-being.

These proteins have clinical significance in monitoring pregnancy progression, detecting potential complications, and diagnosing certain pregnancy-related conditions.

Orosomucoid, also known as α-1-acid glycoprotein or AAG, is a protein found in human plasma. It's a member of the acute phase proteins, which are produced in higher amounts during inflammation and infection. Orosomucoid has a molecular weight of approximately 41-43 kDa and is composed of a single polypeptide chain with five N-linked glycosylation sites. It plays a role in protecting tissues from various harmful substances, such as proteases and oxidants, by binding to them and preventing their interaction with cells. Additionally, orosomucoid has been studied as a potential biomarker for several diseases due to its altered levels during inflammation and cancer.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Sebaceous glands are microscopic, exocrine glands that are found in the dermis of mammalian skin. They are attached to hair follicles and produce an oily substance called sebum, which is composed of triglycerides, wax esters, squalene, and metabolites of fat-producing cells (fatty acids, cholesterol). Sebum is released through a duct onto the surface of the skin, where it forms a protective barrier that helps to prevent water loss, keeps the skin and hair moisturized, and has antibacterial properties.

Sebaceous glands are distributed throughout the body, but they are most numerous on the face, scalp, and upper trunk. They can also be found in other areas of the body such as the eyelids (where they are known as meibomian glands), the external ear canal, and the genital area.

Abnormalities in sebaceous gland function can lead to various skin conditions, including acne, seborrheic dermatitis, and certain types of skin cancer.

I believe there might be a misunderstanding in your question. "Cyprus" is not a medical term or condition, but rather the name of a country located in the eastern Mediterranean Sea. It is an island nation that is known for its rich history, culture, and natural beauty. If you have any questions about Cyprus' geography, history, or other non-medical topics, I would be happy to try to help answer them!

I'm sorry for any confusion, but "grasshoppers" is not a term used in medical definitions. Grasshoppers are a type of insect that belongs to the order Orthoptera and suborder Caelifera. They are known for their long hind legs which they use for jumping, and some species can jump over 20 times their own body length. If you have any questions about medical terminology or topics, I'd be happy to help with those instead!

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Ferrichrome is a type of siderophore, which is a small molecule produced by microorganisms to chelate and transport iron. Ferrichrome is composed of a cyclic hexapeptide with three iron-binding side chains, forming a hexadentate structure that binds ferric iron (Fe3+) tightly. This complex can be taken up by the microorganism through specific transporters, allowing it to acquire iron for essential metabolic processes. Ferrichrome is produced by various fungi and bacteria, and has been studied for its potential role in iron acquisition and virulence in pathogenic organisms.

Hypoalphalipoproteinemia is a condition characterized by decreased levels of alpha-lipoproteins, particularly the alpha-1 lipoprotein called high-density lipoprotein (HDL), in the blood. HDL plays a crucial role in removing excess cholesterol from tissues and carrying it back to the liver for excretion or recycling. Low levels of HDL are considered a risk factor for developing cardiovascular diseases, such as atherosclerosis, because they may lead to an accumulation of cholesterol in the blood vessels.

There are different types and causes of hypoalphalipoproteinemias, including:

1. Familial Hypoalphalipoproteinemia (FHA): An inherited condition characterized by low HDL levels due to mutations in the APOA1, APOC3, or ABCA1 genes, which are involved in HDL metabolism. FHA is often associated with an increased risk of premature cardiovascular disease.
2. Tangier Disease: A rare genetic disorder caused by mutations in the ABCA1 gene, leading to extremely low HDL levels and the accumulation of cholesterol deposits in various tissues, including the liver, spleen, and nerves. Tangier disease is characterized by enlarged, orange-colored tonsils, neuropathy, and an increased risk of cardiovascular diseases.
3. Secondary Hypoalphalipoproteinemia: Low HDL levels can also be caused by secondary factors such as obesity, physical inactivity, smoking, diabetes mellitus, chronic kidney disease, hypothyroidism, nephrotic syndrome, and the use of certain medications (e.g., corticosteroids, progestins, and beta-blockers).

In summary, hypoalphalipoproteinemia refers to a group of conditions characterized by decreased levels of alpha-lipoproteins, particularly HDL, in the blood. This can be due to genetic factors or secondary causes and may increase the risk of developing cardiovascular diseases.

Delayed graft function (DGF) is a term used in the medical field, particularly in transplant medicine. It refers to a situation where a transplanted organ, most commonly a kidney, fails to function normally immediately after the transplantation procedure. This failure to function occurs within the first week after the transplant and is usually associated with poor urine output and elevated levels of creatinine in the blood.

DGF can be caused by several factors, including pre-existing conditions in the recipient, such as diabetes or hypertension, poor quality of the donor organ, or complications during the surgery. It may also result from the immune system's reaction to the transplanted organ, known as rejection.

In many cases, DGF can be managed with medical interventions, such as administering medications to help reduce inflammation and improve blood flow to the organ. However, in some instances, it may lead to more severe complications, including acute or chronic rejection of the transplanted organ, which could require additional treatments or even another transplant.

It's important to note that not all cases of DGF lead to long-term complications, and many patients with DGF can still go on to have successful transplants with proper management and care.

Interleukin-18 (IL-18) is a pro-inflammatory cytokine, a type of signaling molecule used in intercellular communication. It belongs to the interleukin-1 (IL-1) family and is primarily produced by macrophages, although other cells such as keratinocytes, osteoblasts, and Kupffer cells can also produce it.

IL-18 plays a crucial role in the innate and adaptive immune responses. It contributes to the differentiation of Th1 (T helper 1) cells, which are critical for fighting intracellular pathogens, and enhances the cytotoxic activity of natural killer (NK) cells and CD8+ T cells. IL-18 also has a role in the production of interferon-gamma (IFN-γ), a cytokine that activates immune cells and has antiviral properties.

Dysregulation of IL-18 has been implicated in several inflammatory diseases, such as rheumatoid arthritis, Crohn's disease, and psoriasis. It is also involved in the pathogenesis of some autoimmune disorders and has been investigated as a potential therapeutic target for these conditions.

Fluorescein is not a medical condition or term, but rather a diagnostic dye used in various medical tests and procedures. Medically, it is referred to as Fluorescein Sodium, a fluorescent compound that absorbs light at one wavelength and emits light at another longer wavelength when excited.

In the field of ophthalmology (eye care), Fluorescein is commonly used in:

1. Fluorescein angiography: A diagnostic test to examine blood flow in the retina and choroid, often used to diagnose and manage conditions like diabetic retinopathy, age-related macular degeneration, and retinal vessel occlusions.
2. Tear film assessment: Fluorescein dye is used to evaluate the quality of tear film and diagnose dry eye syndrome by observing the staining pattern on the cornea.
3. Corneal abrasions/foreign body detection: Fluorescein dye can help identify corneal injuries, such as abrasions or foreign bodies, under a cobalt blue light.

In other medical fields, fluorescein is also used in procedures like:

1. Urinary tract imaging: To detect urinary tract abnormalities and evaluate kidney function.
2. Lymphangiography: A procedure to visualize the lymphatic system.
3. Surgical navigation: In some surgical procedures, fluorescein is used as a marker for better visualization of specific structures or areas.

Kidney function tests (KFTs) are a group of diagnostic tests that evaluate how well your kidneys are functioning by measuring the levels of various substances in the blood and urine. The tests typically assess the glomerular filtration rate (GFR), which is an indicator of how efficiently the kidneys filter waste from the blood, as well as the levels of electrolytes, waste products, and proteins in the body.

Some common KFTs include:

1. Serum creatinine: A waste product that's produced by normal muscle breakdown and is excreted by the kidneys. Elevated levels may indicate reduced kidney function.
2. Blood urea nitrogen (BUN): Another waste product that's produced when protein is broken down and excreted by the kidneys. Increased BUN levels can suggest impaired kidney function.
3. Estimated glomerular filtration rate (eGFR): A calculation based on serum creatinine, age, sex, and race that estimates the GFR and provides a more precise assessment of kidney function than creatinine alone.
4. Urinalysis: An examination of a urine sample to detect abnormalities such as protein, blood, or bacteria that may indicate kidney disease.
5. Electrolyte levels: Measurement of sodium, potassium, chloride, and bicarbonate in the blood to ensure they're properly balanced, which is essential for normal kidney function.

KFTs are often ordered as part of a routine check-up or when kidney disease is suspected based on symptoms or other diagnostic tests. Regular monitoring of kidney function can help detect and manage kidney disease early, potentially preventing or slowing down its progression.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

Gelatinases are a group of matrix metalloproteinases (MMPs) that have the ability to degrade gelatin, which is denatured collagen. There are two main types of gelatinases: MMP-2 (gelatinase A) and MMP-9 (gelatinase B). These enzymes play important roles in various physiological processes such as tissue remodeling and wound healing, but they have also been implicated in several pathological conditions, including cancer, cardiovascular diseases, and neurological disorders.

MMP-2 is produced by a variety of cells, including fibroblasts, endothelial cells, and immune cells. It plays a crucial role in angiogenesis (the formation of new blood vessels) and tumor cell invasion and metastasis. MMP-9 is primarily produced by inflammatory cells such as neutrophils and macrophages, and it has been associated with the degradation of the extracellular matrix during inflammation and tissue injury.

Both MMP-2 and MMP-9 are synthesized as inactive zymogens and require activation by other proteases or physicochemical factors before they can exert their enzymatic activity. The regulation of gelatinase activity is tightly controlled at multiple levels, including gene expression, protein synthesis, secretion, activation, and inhibition. Dysregulation of gelatinase activity has been linked to various diseases, making them attractive targets for therapeutic intervention.

A Receiver Operating Characteristic (ROC) curve is a graphical representation used in medical decision-making and statistical analysis to illustrate the performance of a binary classifier system, such as a diagnostic test or a machine learning algorithm. It's a plot that shows the tradeoff between the true positive rate (sensitivity) and the false positive rate (1 - specificity) for different threshold settings.

The x-axis of an ROC curve represents the false positive rate (the proportion of negative cases incorrectly classified as positive), while the y-axis represents the true positive rate (the proportion of positive cases correctly classified as positive). Each point on the curve corresponds to a specific decision threshold, with higher points indicating better performance.

The area under the ROC curve (AUC) is a commonly used summary measure that reflects the overall performance of the classifier. An AUC value of 1 indicates perfect discrimination between positive and negative cases, while an AUC value of 0.5 suggests that the classifier performs no better than chance.

ROC curves are widely used in healthcare to evaluate diagnostic tests, predictive models, and screening tools for various medical conditions, helping clinicians make informed decisions about patient care based on the balance between sensitivity and specificity.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

Pneumocytes are specialized epithelial cells that line the alveoli, which are the tiny air sacs in the lungs where gas exchange occurs. There are two main types of pneumocytes: type I and type II.

Type I pneumocytes are flat, thin cells that cover about 95% of the alveolar surface area. They play a crucial role in facilitating the diffusion of oxygen and carbon dioxide between the alveoli and the bloodstream. Type I pneumocytes also contribute to maintaining the structural integrity of the alveoli.

Type II pneumocytes are smaller, more cuboidal cells that produce and secrete surfactant, a substance composed of proteins and lipids that reduces surface tension within the alveoli, preventing their collapse and facilitating breathing. Type II pneumocytes can also function as progenitor cells, capable of differentiating into type I pneumocytes to help repair damaged lung tissue.

In summary, pneumocytes are essential for maintaining proper gas exchange in the lungs and contributing to the overall health and functioning of the respiratory system.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

Fatty acid-binding proteins (FABPs) are a group of small intracellular proteins that play a crucial role in the transport and metabolism of fatty acids within cells. They are responsible for binding long-chain fatty acids, which are hydrophobic molecules, and facilitating their movement across the cell while protecting the cells from lipotoxicity.

FABPs are expressed in various tissues, including the heart, liver, muscle, and brain, with different isoforms found in specific organs. These proteins have a high affinity for long-chain fatty acids and can regulate their intracellular concentration by controlling the uptake, storage, and metabolism of these molecules.

FABPs also play a role in modulating cell signaling pathways that are involved in various physiological processes such as inflammation, differentiation, and apoptosis. Dysregulation of FABP expression and function has been implicated in several diseases, including diabetes, obesity, cancer, and neurodegenerative disorders.

In summary, fatty acid-binding proteins are essential intracellular proteins that facilitate the transport and metabolism of long-chain fatty acids while regulating cell signaling pathways.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

The protein encoded by this gene belongs to the lipocalin family. Lipocalins are a group of extracellular proteins that are ... "Antisense down-regulation of lipocalin-interacting membrane receptor expression inhibits cellular internalization of lipocalin- ... "Antisense down-regulation of lipocalin-interacting membrane receptor expression inhibits cellular internalization of lipocalin- ... Lipocalin-1 (LCN1) is capable of binding a wide variety of lipophilic molecules along with zinc and chloride ions. Because of ...
Background and aims To investigate the value of urinary neutrophil gelatinase associated lipocalin (NGAL) kidney injury ... PS-243 The Clinical Significance Of Urinary Neutrophil Gelatinase Associated Lipocalin, Kidney Injury Molecular-1 And ... PS-243 The Clinical Significance Of Urinary Neutrophil Gelatinase Associated Lipocalin, Kidney Injury Molecular-1 And ... Conclusion In this study, our results identify that possibly urine NGAL, KIM-1 and IL-18 are more significative than Scr for ...
Tear lipocalin and the eyes front line of defence Br J Ophthalmol. 1998 Apr;82(4):453-5. doi: 10.1136/bjo.82.4.453. ... 1 Laboratoire de Biochimie Médicale, Unité INSERM U 384, Clermont Ferrand, France. ...
... are salivary lipocalin proteins: cloning and immunological characterization of the recombinant forms ... Group Details: Canis Can f 1 Lipocalin. Group References. * Konieczny,A.; Morgenstern,J.P.; Bizinkauskas,C.B.; Lilley,C.H.; ... Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. ... The major dog allergens, Can f 1 and Can f 2, ...
Plasma and urine NGAL, Cys-C, and sTREM-1 can be used as diagnostic and predictive biomarkers for AKI in critically ill ... Neutrophil gelatinase-associated lipocalin (NGAL), cystatin C (Cys-C), and soluble triggering receptor expressed on myeloid ... Both plasma and urine NGAL, Cys-C, and sTREM-1 were significantly associated with AKI development in patients with sepsis, even ... sTREM-1) are novel diagnostic biomarkers of acute kidney injury (AKI). We aimed to determine the diagnostic properties of these ...
More info for Superfamily b.60.1: Lipocalins. Timeline for Superfamily b.60.1: Lipocalins: *Superfamily b.60.1: Lipocalins ... Superfamily b.60.1: Lipocalins appears in SCOPe 2.06. *Superfamily b.60.1: Lipocalins appears in the current release, SCOPe ... bacterial metal-binding, lipocalin-like protein. automatically mapped to Pfam PF09223. *. b.60.1.5: Hypothetical protein YwiB [ ... Pfam PF05870; dimeric enzyme made of lipocalin-like subunits. *. b.60.1.7: Dinoflagellate luciferase repeat [141472] (1 protein ...
Lipocalin 2 (lcn2) is a member of the lipocalin family that binds to small hydrophobic molecules. We propose that lcn2 is an ... Lipocalin 2 (lcn2) is a member of the lipocalin family, which binds or transports lipid and other hydrophobic molecules (Flower ... Lipocalin-2 Is an Autocrine Mediator of Reactive Astrocytosis. Shinrye Lee, Jae-Yong Park, Won-Ha Lee, Ho Kim, Hae-Chul Park, ... Lipocalin-2 Is an Autocrine Mediator of Reactive Astrocytosis. Shinrye Lee, Jae-Yong Park, Won-Ha Lee, Ho Kim, Hae-Chul Park, ...
Lipocalin; Lipocalin / cytosolic fatty-acid binding protein family. * NM_006744.4 → NP_006735.2 retinol-binding protein 4 ... lipocalin_RBP_like; retinol-binding protein 4 and similar proteins. * NM_001323518.2 → NP_001310447.1 retinol-binding protein 4 ... This protein belongs to the lipocalin family and is the specific carrier for retinol (vitamin A alcohol) in the blood. It ... Conserved Domains (1) summary. cd00743. Location:22 → 192. lipocalin_RBP_like; retinol-binding protein 4 and similar proteins. ...
Liver lipocalin 2 expression in severely obese women with non alcoholic fatty liver disease. Exp. Clin. Endocrinol. Diabetes ... lipocalin 2; LXRα: liver X receptor; MO: morbidly obese women; PPARα: peroxisome-proliferator-activated receptor α; SREBP1c: ... and lipocalin 2 (LCN2) (r = 0.570, p = 0.032) in the whole population. ... Inhibition of the proliferation and invasion of hepatocellular carcinoma cells by lipocalin 2 through blockade of JNK and PI3K/ ...
Neutrophil Gelatinase-associated Lipocalin. NGAL is a 25-kD protein of the lipocalin family that is widely expressed and ... BTP, also known as lipocalin-type prostaglandin D2 synthase, is a lipocalin glycoprotein used to evaluate kidney function. In a ... Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J Clin Invest. 2010 Nov. 120(11):4065-76. [ ... Neutrophil Gelatinase-associated Lipocalin. In addition to its potential role in AKI diagnosis, NGAL may also be a useful ...
Lipocalin-1 is the acceptor protein for phospholipid transfer protein in tears. Title: Lipocalin-1 is the acceptor protein for ... Transcript Variant: This variant (1) encodes the predominant isoform (a).. Source sequence(s). AL008726, L26232 Consensus CDS. ... Location:1 → 151. BPI1; BPI/LBP/CETP N-terminal domain; Bactericidal permeability-increasing protein (BPI) / Lipopolysaccharide ... Transcript Variant: This variant (2) lacks an alternate in-frame exon compared to variant 1, resulting in an isoform (b) which ...
Up-Regulated ProteinsNeutrophil gelatinase-associated lipocalin. *Kidney injury molecule 1. *Interleukin 18 ...
Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol. 2009 Apr 15. 182(8):4947-56. [QxMD ... suppl_1:Presented at the Infectious Diseases Society of America IDWeek. San Diego, CA. October 4-8, 2017. [Full Text]. ... Identification and Characterization of NDM-1-producing Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae in China. Ann Lab ... Common klebsiellae infections in humans include (1) community-acquired pneumonia, (2) UTI, (3) nosocomial infection, (4) ...
E08L0212-48 1 plate of 48 wells, A competitive ELISA for quantitative measurement of Canin... Producent BlueGene - Gentaur ... 0 opinie o Dog Lipocalin Type Prostaglandin D Synthase ELISA kit. Dodaj opinię Twój adres e-mail niie będzie upubliczniony. ... A competitive ELISA for quantitative measurement of Canine Lipocalin Type Prostaglandin D Synthase in samples from blood, ... STOP SOLUTION*1 vial 12. WASH SOLUTION (100 x)*1 vial 13. BALANCE SOLUTION*1 vial 14. INSTRUCTION*1. Specyfikacja/Zawartość:. * ...
Lipocalin 2 in cerebrospinal fluid as a marker of acute bacterial meningitis. BMC Infect Dis. 2014;14:276. DOIPubMedGoogle ... Alain Agnememel, Eva Hong, Dario Giorgini, Viginia Nuñez-Samudio1, Ala-Eddine Deghmane, and Muhamed-Kheir Taha. ... 1 isolate from the United States, and 6 isolates from sub-Saharan African countries. Open (white) circles indicate carriage ... Figure 1. Figure 1. Neighbor-Net SplitsTree graphs generated using SplitsTree4 version 4.13.1 (http://www.splitstree.org) to ...
Plasma neutrophil gelatinase-associated lipocalin: a marker of acute pyelonephritis in children. Pediatr Nephrol. 2017 Mar. 32 ... Gauthier M, Gouin S, Phan V, Gravel J. Association of malodorous urine with urinary tract infection in children aged 1 to 36 ...
2.75 ± 0.56 mg/d hAgt RNAi) (Figure 3B). Additionally, renal neutrophil gelatinase-associated lipocalin (Ngal) mRNA expression ... Nadine Haase,1,2,3,4,5 Donald J. Foster,6 Mark W. Cunningham,7 Julia Bercher,3 Tuyen Nguyen,6 Svetlana Shulga-Morskaya,6 Stuart ... Figure 1. siRNA does not cross the placental barrier. (A) Effect of luciferase-targeting siRNA or hAgt-targeting siRNA on hAgt ... Angiotensin metabolites Ang 1-5, Ang 1-7, Ang 1-8, Ang 1-10, Ang 3-7, and Ang 3-8 were decreased in animals treated with hAgt- ...
Lipocalins. Isoforms, Variants,. Epitopes. Tria p 1.0101. Links to Molecule. Sequences. Tria p 1.0101 - Q9U6R6 - UNIPROT. ...
Lipocalin 2 is a neutrophil secreted innate immune protein that has roles in inflammation and iron homeostasis [39]. Its role ... X. Xiao, B.S. Yeoh and M. Vijay-Kumar, Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation, Annu Rev Nutr 37 ... 2 - PF4, IL8 and IL2RA, indicated in red; lipocalin-2 and IL4, indicated in green). ... IL2Ra and PF4 were independently associated with a poorer prognosis and increasing concentrations of lipocalin-2 and IL4 were ...
... lipocalin-2, LCN2; neurofilament light chain, NFL; and CCL5; AUC=0.845). The delirium-associated proteins identified as ... 1Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA ... 1Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA ... 1Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA ...
Neutrophil gelatinase-associated lipocalin (NGAL) *Osteopontin *Total protein *Other relevant kidney safety biomarkers ...
The Plastid Lipocalin LCNP is Required for Sustained Photoprotective Energy Dissipation in Arabidopsis ...
... neutrophil gelatinase associated lipocalin (NGAL) (denaturation: 95°C, 10 s; annealing: 60°C, 10 s; elongation: 72°C, 1 s), ... 1 Effects of pre-treatment with curcumin 100 mg/kg orally once daily for 9 days on the activity of ERK1/2 (a) and NF-κB protein ... 1 Effects of pre-treatment with curcumin 100 mg/kg orally once daily for 9 days on the activity of ERK1/2 (a) and NF-κB protein ... Indeed, blood KIM-1 levels were elevated in the acute kidney injury as well as chronic kidney disease conditions and functions ...
IgE antibodies to animal-derived lipocalin, kallikrein and secretoglobin are markers of bronchial inflammation in severe ... Allergy 2018; 1-17.. *Patelis A, Gunnbjornsdottir M, Alving K, et al. Allergen extract vs. component sensitization and airway ... Asthma is the most common chronic illness among children and the leading cause of hospital visits among children ages 1-15 ...
Fold b.60: Lipocalins [50813] (1 superfamily). barrel, closed or opened; n=8, S=12; meander. ... Superfamily b.60.1: Lipocalins [50814] (10 families) bind hydrophobic ligands in their interior. ... Species Rhodnius prolixus [TaxId:13249] [193297] (1 PDB entry). *. Species Zebrafish (Danio rerio) [TaxId:7955] [188731] (3 PDB ... Species Norway rat (Rattus norvegicus) [TaxId:10116] [188898] (1 PDB entry). *. ...
Colitis severity was assessed by k fecal lipocalin-2 concentration and l colon pathohistological scoring. Data are the means ±S ... Fecal lipocalin-2 quantification. As previously described46, frozen fecal samples were reconstituted in PBS containing 0.1% ... Chassaing, B., Srinivasan, G., Delgado, M. A., Young, A. N., Gewirtz, A. T. & Vijay-Kumar, M. Fecal lipocalin 2, a sensitive ... 1. Systemic flagellin administrations elicit systemic and mucosal antibodies to flagellin. a 4-week old C57BL/6 J mice, wild ...
Lipocalin gene expression is varied in developmental stages by larval nutritional stress in Drosophila. NAZLI AYHAN, PINAR ... Volume 41, Number 1 (2017) Articles. PDF. TGF-β: Its role in the differentiation and function of T regulatory and effector ... Converted carotenoid production in Dunaliella salina by using cyclization inhibitors 2-methylimidazole and 3-amino-1,2,4- ...
Increasing studies have identified the function of sirtuin-1 (SIRT1) in ocular diseases. Hence, this study is aimed at ... W. Tang, J. Ma, R. Gu et al., "Lipocalin 2 suppresses ocular inflammation by inhibiting the activation of NF-κβ pathway in ... 1,2Zhi Huang. ,3Hao Jiang. ,1Jiangfan Xiu. ,3Liying Zhang. ,1Qiurong Long. ,1Yuhan Yang. ,1Lu Yu. ,1Lu Lu. ,4and Hao Gu. 1 ... S. Ghosh, P. Shang, M. Yazdankhah et al., "Activating the AKT2-nuclear factor-κB-lipocalin-2 axis elicits an inflammatory ...
... is synthesized in the liver and structurally belongs to the lipocalin superfamily of secretory proteins, such as retinol- ... Alpha-1-Acid Glycoprotein (g/L). Target: Both males and females 1 YEARS - 5 YEARS. Target: Females only 12 YEARS - 49 YEARS. ... SSAGP - Alpha-1-Acid Glycoprotein (g/L). Variable Name: SSAGP. SAS Label: Alpha-1-Acid Glycoprotein (g/L). English Text: ... Both males and females 1 YEARS - 5 YEARS. Target: Females only 12 YEARS - 49 YEARS. Code or Value. Value Description. Count. ...

No FAQ available that match "lipocalin 1"

No images available that match "lipocalin 1"