A genus of the family RETROVIRIDAE consisting of non-oncogenic retroviruses that produce multi-organ diseases characterized by long incubation periods and persistent infection. Lentiviruses are unique in that they contain open reading frames (ORFs) between the pol and env genes and in the 3' env region. Five serogroups are recognized, reflecting the mammalian hosts with which they are associated. HIV-1 is the type species.
Virus diseases caused by the Lentivirus genus. They are multi-organ diseases characterized by long incubation periods and persistent infection.
A subgenus of LENTIVIRUS comprising viruses that produce multi-organ disease with long incubation periods in sheep and goats.
A species of LENTIVIRUS, subgenus ovine-caprine lentiviruses (LENTIVIRUSES, OVINE-CAPRINE), that can cause chronic pneumonia (maedi), mastitis, arthritis, and encephalomyelitis (visna) in sheep. Maedi is a progressive pneumonia of sheep which is similar to but not the same as jaagsiekte (PULMONARY ADENOMATOSIS, OVINE). Visna is a demyelinating leukoencephalomyelitis of sheep which is similar to but not the same as SCRAPIE.
A species of LENTIVIRUS, subgenus equine lentiviruses (LENTIVIRUSES, EQUINE), causing acute and chronic infection in horses. It is transmitted mechanically by biting flies, mosquitoes, and midges, and iatrogenically through unsterilized equipment. Chronic infection often consists of acute episodes with remissions.
Demyelinating leukoencephalomyelitis of sheep caused by the VISNA-MAEDI VIRUS. It is similar to but not the same as SCRAPIE.
A species of LENTIVIRUS, subgenus feline lentiviruses (LENTIVIRUSES, FELINE) isolated from cats with a chronic wasting syndrome, presumed to be immune deficiency. There are 3 strains: Petaluma (FIP-P), Oma (FIP-O) and Puma lentivirus (PLV). There is no antigenic relationship between FIV and HIV, nor does FIV grow in human T-cells.
Chronic respiratory disease caused by the VISNA-MAEDI VIRUS. It was formerly believed to be identical with jaagsiekte (PULMONARY ADENOMATOSIS, OVINE) but is now recognized as a separate entity.
A species of LENTIVIRUS, subgenus ovine-caprine lentiviruses (LENTIVIRUSES, OVINE-CAPRINE), closely related to VISNA-MAEDI VIRUS and causing acute encephalomyelitis; chronic arthritis; PNEUMONIA; MASTITIS; and GLOMERULONEPHRITIS in goats. It is transmitted mainly in the colostrum and milk.
A subgenus of LENTIVIRUS comprising viruses that produce immunodeficiencies in primates, including humans.
A subgenus of LENTIVIRUS comprising viruses that produce multi-organ disease with long incubation periods in cattle.
DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.
The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE.
A genus in the family FELIDAE comprising one species, Puma concolor. It is a large, long-tailed, feline of uniform color. The names puma, cougar, and mountain lion are used interchangeably for this species. There are more than 20 subspecies.
Viral disease of horses caused by the equine infectious anemia virus (EIAV; INFECTIOUS ANEMIA VIRUS, EQUINE). It is characterized by intermittent fever, weakness, and anemia. Chronic infection consists of acute episodes with remissions.
Acquired defect of cellular immunity that occurs in cats infected with feline immunodeficiency virus (FIV) and in some cats infected with feline leukemia virus (FeLV).
Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP.
A genus of Old World monkeys found in Africa although some species have been introduced into the West Indies. This genus is composed of at least twenty species: C. AETHIOPS, C. ascanius, C. campbelli, C. cephus, C. denti, C. diana, C. dryas, C. erythrogaster, C. erythrotis, C. hamlyni, C. lhoesti, C. mitis, C. mona, C. neglectus, C. nictitans, C. petaurista, C. pogonias, C. preussi, C. salongo, and C. wolfi.
Large, chiefly nocturnal mammals of the cat family FELIDAE, species Panthera leo. They are found in Africa and southern Asia.
Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV.
A subgenus of LENTIVIRUS comprising viruses that produce multi-organ disease with long incubation periods in cats.
Diseases of domestic and mountain sheep of the genus Ovis.
Diseases of the domestic or wild goat of the genus Capra.
A genus of the family Lemuridae consisting of five species: L. catta (ring-tailed lemur), L. fulvus, L. macaco (acoumba or black lemur), L. mongoz (mongoose lemur), and L. variegatus (white lemur). Most members of this genus occur in forested areas on Madagascar and the Comoro Islands.
The type species of LENTIVIRUS, subgenus bovine lentiviruses (LENTIVIRUSES, BOVINE), found in cattle and causing lymphadenopathy, LYMPHOCYTOSIS, central nervous system lesions, progressive weakness, and emaciation. It has immunological cross-reactivity with other lentiviruses including HIV.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
The introduction of functional (usually cloned) GENES into cells. A variety of techniques and naturally occurring processes are used for the gene transfer such as cell hybridization, LIPOSOMES or microcell-mediated gene transfer, ELECTROPORATION, chromosome-mediated gene transfer, TRANSFECTION, and GENETIC TRANSDUCTION. Gene transfer may result in genetically transformed cells and individual organisms.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions.
Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest.
DNA sequences that form the coding region for the protein responsible for trans-activation of transcription (tat) in human immunodeficiency virus (HIV).
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Established cell cultures that have the potential to propagate indefinitely.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Layers of protein which surround the capsid in animal viruses with tubular nucleocapsids. The envelope consists of an inner layer of lipids and virus specified proteins also called membrane or matrix proteins. The outer layer consists of one or more types of morphological subunits called peplomers which project from the viral envelope; this layer always consists of glycoproteins.
Retroviral proteins coded by the pol gene. They are usually synthesized as a protein precursor (POLYPROTEINS) and later cleaved into final products that include reverse transcriptase, endonuclease/integrase, and viral protease. Sometimes they are synthesized as a gag-pol fusion protein (FUSION PROTEINS, GAG-POL). pol is short for polymerase, the enzyme class of reverse transcriptase.
DNA sequences that form the coding region for retroviral enzymes including reverse transcriptase, protease, and endonuclease/integrase. "pol" is short for polymerase, the enzyme class of reverse transcriptase.
DNA sequences that form the coding region for a protein that regulates the expression of the viral structural and regulatory proteins in human immunodeficiency virus (HIV). rev is short for regulator of virion.
Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen.
Acquired defect of cellular immunity that occurs naturally in macaques infected with SRV serotypes, experimentally in monkeys inoculated with SRV or MASON-PFIZER MONKEY VIRUS; (MPMV), or in monkeys infected with SIMIAN IMMUNODEFICIENCY VIRUS.
Retroviral proteins, often glycosylated, coded by the envelope (env) gene. They are usually synthesized as protein precursors (POLYPROTEINS) and later cleaved into the final viral envelope glycoproteins by a viral protease.
DNA sequences that form the coding region for the viral envelope (env) proteins in retroviruses. The env genes contain a cis-acting RNA target sequence for the rev protein (= GENE PRODUCTS, REV), termed the rev-responsive element (RRE).
Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES).
Genes that are introduced into an organism using GENE TRANSFER TECHNIQUES.
Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS.
A genus of the family RETROVIRIDAE consisting of viruses with either type B or type D morphology. This includes a few exogenous, vertically transmitted and endogenous viruses of mice (type B) and some primate and sheep viruses (type D). MAMMARY TUMOR VIRUS, MOUSE is the type species.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology.
A synthetic polymer which agglutinates red blood cells. It is used as a heparin antagonist.
Immunoglobulins produced in response to VIRAL ANTIGENS.
Nucleotide sequences repeated on both the 5' and 3' ends of a sequence under consideration. For example, the hallmarks of a transposon are that it is flanked by inverted repeats on each end and the inverted repeats are flanked by direct repeats. The Delta element of Ty retrotransposons and LTRs (long terminal repeats) are examples of this concept.
An HIV species related to HIV-1 but carrying different antigenic components and with differing nucleic acid composition. It shares serologic reactivity and sequence homology with the simian Lentivirus SIMIAN IMMUNODEFICIENCY VIRUS and infects only T4-lymphocytes expressing the CD4 phenotypic marker.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Animals considered to be wild or feral or not adapted for domestic use. It does not include wild animals in zoos for which ANIMALS, ZOO is available.
Deoxyribonucleic acid that makes up the genetic material of viruses.
An order of small mammals comprising two families, Ochotonidae (pikas) and Leporidae (RABBITS and HARES). Head and body length ranges from about 125 mm to 750 mm. Hares and rabbits have a short tail, and the pikas lack a tail. Rabbits are born furless and with both eyes and ears closed. HARES are born fully haired with eyes and ears open. All are vegetarians. (From Nowak, Walker's Mammals of the World, 5th ed, p539-41)
A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans.
DNA sequences that form the coding region for the vif (virion infectivity factor) protein that is important for the generation of infectious virions in human immunodeficiency virus (HIV). The former name of this gene was sor (short open reading frame).
A polyester used for absorbable sutures & surgical mesh, especially in ophthalmic surgery. 2-Hydroxy-propanoic acid polymer with polymerized hydroxyacetic acid, which forms 3,6-dimethyl-1,4-dioxane-dione polymer with 1,4-dioxane-2,5-dione copolymer of molecular weight about 80,000 daltons.
Virus diseases caused by the RETROVIRIDAE.
The relationships of groups of organisms as reflected by their genetic makeup.
Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors.
DNA sequences that form the coding region for the HIV-1 regulatory protein vpu (viral protein U) that greatly increases the export of virus particles from infected cells. The vpu genes are not present in HIV-2 or SIMIAN IMMUNODEFICIENCY VIRUS.
A contagious, neoplastic, pulmonary disease of sheep characterized by hyperplasia and hypertrophy of pneumocytes and epithelial cells of the lung. It is caused by JAAGSIEKTE SHEEP RETROVIRUS.
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
The directional growth of an organism in response to an external stimulus such as light, touch, or gravity. Growth towards the stimulus is a positive tropism; growth away from the stimulus is a negative tropism. (From Concise Dictionary of Biology, 1990)
'Primates' is a taxonomic order comprising various species of mammals, including humans, apes, monkeys, and others, distinguished by distinct anatomical and behavioral characteristics such as forward-facing eyes, grasping hands, and complex social structures.
A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.
Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2.
A broad category of viral proteins that play indirect roles in the biological processes and activities of viruses. Included here are proteins that either regulate the expression of viral genes or are involved in modifying host cell functions. Many of the proteins in this category serve multiple functions.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
A species of sheep, Ovis aries, descended from Near Eastern wild forms, especially mouflon.
Retrovirally encoded accessary proteins that play an essential role VIRUS REPLICATION. They are found in the cytoplasm of host cells and associate with a variety of host cell proteins. Vif stands for "virion infectivity factor".
Diseases of Old World and New World monkeys. This term includes diseases of baboons but not of chimpanzees or gorillas (= APE DISEASES).
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Trans-acting nuclear proteins whose functional expression are required for retroviral replication. Specifically, the rev gene products are required for processing and translation of the gag and env mRNAs, and thus rev regulates the expression of the viral structural proteins. rev can also regulate viral regulatory proteins. A cis-acting antirepression sequence (CAR) in env, also known as the rev-responsive element (RRE), is responsive to the rev gene product. rev is short for regulator of virion.
The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos.
Trans-acting transcription factors produced by retroviruses such as HIV. They are nuclear proteins whose expression is required for viral replication. The tat protein stimulates LONG TERMINAL REPEAT-driven RNA synthesis for both viral regulatory and viral structural proteins. tat stands for trans-activation of transcription.
Ribonucleic acid that makes up the genetic material of viruses.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes.
Proteins from the family Retroviridae. The most frequently encountered member of this family is the Rous sarcoma virus protein.
A synthetic tetracycline derivative with similar antimicrobial activity.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Suspensions of attenuated or killed viruses administered for the prevention or treatment of infectious viral disease.
Retroviruses that have integrated into the germline (PROVIRUSES) that have lost infectious capability but retained the capability to transpose.
A species of the genus MACACA which inhabits Malaya, Sumatra, and Borneo. It is one of the most arboreal species of Macaca. The tail is short and untwisted.
The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50).
Trans-acting proteins which accelerate retroviral virus replication. The vpr proteins act in trans to increase the levels of specified proteins. vpr is short for viral protein R, where R is undefined.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
Regulatory sequences important for viral replication that are located on each end of the HIV genome. The LTR includes the HIV ENHANCER, promoter, and other sequences. Specific regions in the LTR include the negative regulatory element (NRE), NF-kappa B binding sites , Sp1 binding sites, TATA BOX, and trans-acting responsive element (TAR). The binding of both cellular and viral proteins to these regions regulates HIV transcription.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
The assembly of VIRAL STRUCTURAL PROTEINS and nucleic acid (VIRAL DNA or VIRAL RNA) to form a VIRUS PARTICLE.
A cell line derived from cultured tumor cells.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice.
DNA sequences that form the coding region for a trans-activator protein that specifies rapid growth in human immunodeficiency virus (HIV). vpr is short for viral protein R, where R is undefined.
A species of ALPHAVIRUS associated with epidemic EXANTHEMA and polyarthritis in Australia.
A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Glycoproteins found on the membrane or surface of cells.
Genus of non-oncogenic retroviruses which establish persistent infections in many animal species but are considered non-pathogenic. Its species have been isolated from primates (including humans), cattle, cats, hamsters, horses, and sea lions. Spumaviruses have a foamy or lace-like appearance and are often accompanied by syncytium formation. SIMIAN FOAMY VIRUS is the type species.
The entering of cells by viruses following VIRUS ATTACHMENT. This is achieved by ENDOCYTOSIS, by direct MEMBRANE FUSION of the viral membrane with the CELL MEMBRANE, or by translocation of the whole virus across the cell membrane.
The quantity of measurable virus in a body fluid. Change in viral load, measured in plasma, is sometimes used as a SURROGATE MARKER in disease progression.
Proteins encoded by the VPR GENES of the HUMAN IMMUNODEFICIENCY VIRUS.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.

Lentivirus vectors using human and simian immunodeficiency virus elements. (1/2174)

Lentivirus vectors based on human immunodeficiency virus (HIV) type 1 (HIV-1) constitute a recent development in the field of gene therapy. A key property of HIV-1-derived vectors is their ability to infect nondividing cells. Although high-titer HIV-1-derived vectors have been produced, concerns regarding safety still exist. Safety concerns arise mainly from the possibility of recombination between transfer and packaging vectors, which may give rise to replication-competent viruses with pathogenic potential. We describe a novel lentivirus vector which is based on HIV, simian immunodeficiency virus (SIV), and vesicular stomatitis virus (VSV) and which we refer to as HIV/SIVpack/G. In this system, an HIV-1-derived genome is encapsidated by SIVmac core particles. These core particles are pseudotyped with VSV glycoprotein G. Because the nucleotide homology between HIV-1 and SIVmac is low, the likelihood of recombination between vector elements should be reduced. In addition, the packaging construct (SIVpack) for this lentivirus system was derived from SIVmac1A11, a nonvirulent SIV strain. Thus, the potential for pathogenicity with this vector system is minimal. The transduction ability of HIV/SIVpack/G was demonstrated with immortalized human lymphocytes, human primary macrophages, human bone marrow-derived CD34(+) cells, and primary mouse neurons. To our knowledge, these experiments constitute the first demonstration that the HIV-1-derived genome can be packaged by an SIVmac capsid. We demonstrate that the lentivirus vector described here recapitulates the biological properties of HIV-1-derived vectors, although with increased potential for safety in humans.  (+info)

Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. (2/2174)

We compared the efficiency of transduction by an HIV-1-based lentiviral vector to that by a Moloney murine leukemia virus (MLV) retroviral vector, using stringent in vitro assays of primitive, quiescent human hematopoietic progenitor cells. Each construct contained the enhanced green fluorescent protein (GFP) as a reporter gene. The lentiviral vector, but not the MLV vector, expressed GFP in nondivided CD34(+) cells (45.5% GFP+) and in CD34(+)CD38(-) cells in G0 (12.4% GFP+), 48 hr after transduction. However, GFP could also be detected short-term in CD34(+) cells transduced with a lentiviral vector that contained a mutated integrase gene. The level of stable transduction from integrated vector was determined after extended long-term bone marrow culture. Both MLV vectors and lentiviral vectors efficiently transduced cytokine-stimulated CD34(+) cells. The MLV vector did not transduce more primitive, quiescent CD34(+)CD38(-) cells (n = 8). In contrast, stable transduction of CD34(+)CD38(-) cells by the lentiviral vector was seen for over 15 weeks of extended long-term culture (9.2 +/- 5.2%, n = 7). GFP expression in clones from single CD34(+)CD38(-) cells confirmed efficient, stable lentiviral transduction in 29% of early and late-proliferating cells. In the absence of growth factors during transduction, only the lentiviral vector was able to transduce CD34(+) and CD34(+)CD38(-) cells (13.5 +/- 2.5%, n = 11 and 12.2 +/- 9.7%, n = 4, respectively). The lentiviral vector is clearly superior to the MLV vector for transduction of quiescent, primitive human hematopoietic progenitor cells and may provide therapeutically useful levels of gene transfer into human hematopoietic stem cells.  (+info)

Gene transfer to human pancreatic endocrine cells using viral vectors. (3/2174)

We have studied the factors that influence the efficiency of infection of human fetal and adult pancreatic endocrine cells with adenovirus, murine retrovirus, and lentivirus vectors all expressing the green fluorescent protein (Ad-GFP, MLV-GFP, and Lenti-GFP, respectively). Adenoviral but not retroviral vectors efficiently infected intact pancreatic islets and fetal islet-like cell clusters (ICCs) in suspension. When islets and ICCs were plated in monolayer culture, infection efficiency with all three viral vectors increased. Ad-GFP infected 90-95% of the cells, whereas infection with MLV-GFP and Lenti-GFP increased only slightly. Both exposure to hepatocyte growth factor/scatter factor (HGF/SF) and dispersion of the cells by removal from the culture dish and replating had substantial positive effects on the efficiency of infection with retroviral vectors. Studies of virus entry and cell replication revealed that cell dispersion and stimulation by HGF/SF may be acting through both mechanisms to increase the efficiency of retrovirus-mediated gene transfer. Although HGF/SF and cell dispersion increased the efficiency of infection with MLV-GFP, only rare cells with weak staining for insulin were infected, whereas approximately 25% of beta-cells were infected with Lenti-GFP. We conclude that adenovirus is the most potent vector for ex vivo overexpression of foreign genes in adult endocrine pancreatic cells and is the best vector for applications where high-level but transient expression is desired. Under the optimal conditions of cell dispersion plus HGF/SF, infection with MLV and lentiviral vectors is reasonably efficient and stable, but only lentiviral vectors efficiently infect pancreatic beta-cells.  (+info)

Translation elongation factor 1-alpha interacts specifically with the human immunodeficiency virus type 1 Gag polyprotein. (4/2174)

Human immunodeficiency virus type 1 (HIV-1) gag-encoded proteins play key functions at almost all stages of the viral life cycle. Since these functions may require association with cellular factors, the HIV-1 matrix protein (MA) was used as bait in a yeast two-hybrid screen to identify MA-interacting proteins. MA was found to interact with elongation factor 1-alpha (EF1alpha), an essential component of the translation machinery that delivers aminoacyl-tRNA to ribosomes. EF1alpha was then shown to bind the entire HIV-1 Gag polyprotein. This interaction is mediated not only by MA, but also by the nucleocapsid domain, which provides a second, independent EF1alpha-binding site on the Gag polyprotein. EF1alpha is incorporated within HIV-1 virion membranes, where it is cleaved by the viral protease and protected from digestion by exogenously added subtilisin. The specificity of the interaction is demonstrated by the fact that EF1alpha does not bind to nonlentiviral MAs and does not associate with Moloney murine leukemia virus virions. The Gag-EF1alpha interaction appears to be mediated by RNA, in that basic residues in MA and NC are required for binding to EF1alpha, RNase disrupts the interaction, and a Gag mutant with undetectable EF1alpha-binding activity is impaired in its ability to associate with tRNA in cells. Finally, the interaction between MA and EF1alpha impairs translation in vitro, a result consistent with a previously proposed model in which inhibition of translation by the accumulation of Gag serves to release viral RNA from polysomes, permitting the RNA to be packaged into nascent virions.  (+info)

Simian immunodeficiency virus (SIV) from sun-tailed monkeys (Cercopithecus solatus): evidence for host-dependent evolution of SIV within the C. lhoesti superspecies. (5/2174)

Recently we reported the characterization of simian immunodeficiency virus (SIVlhoest) from a central African l'hoest monkey (Cercopithecus lhoesti lhoesti) that revealed a distant relationship to SIV isolated from a mandrill (SIVmnd). The present report describes a novel SIV (SIVsun) isolated from a healthy, wild-caught sun-tailed monkey (Cercopithecus lhoesti solatus), another member of the l'hoest superspecies. SIVsun replicated in a variety of human T-cell lines and in peripheral blood mononuclear cells of macaques (Macaca spp.) and patas monkeys (Erythrocebus patas). A full-length infectious clone of SIVsun was derived, and genetic analysis revealed that SIVsun was most closely related to SIVlhoest, with an amino acid identity of 71% in Gag, 73% in Pol, and 67% in Env. This degree of similarity is reminiscent of that observed between SIVagm isolates from vervet, grivet, and tantalus species of African green monkeys. The close relationship between SIVsun and SIVlhoest, despite their geographically distinct habitats, is consistent with evolution from a common ancestor, providing further evidence for the ancient nature of the primate lentivirus family. In addition, this observation leads us to suggest that the SIVmnd lineage should be designated the SIVlhoest lineage.  (+info)

Self-inactivating lentiviral vectors with U3 and U5 modifications. (6/2174)

Lentiviral vectors have gained much attention in recent years mainly because they integrate into nondividing host-cell genomes. For clinical applications, a safe and efficient lentiviral vector system is required. Previously, we have established a human immunodeficiency virus type 1 (HIV-1)-derived three-plasmid lentiviral vector system for viral vector production which includes a packaging vector pHP, a transducing vector pTV, and an envelope-encoding plasmid pHEF-VSVG. Cotransfection of these three plasmids into TE671 human rhabdomyosarcoma cells routinely yields 10(5)-10(6) infectious units per milliliter in 24 h. Here we have extensively modified long terminal repeats (LTRs) of pTV to generate a safer lentiviral vector system. The 5' U3 was replaced with a truncated cytomegalovirus (CMV) immediate early (IE) enhancer/TATA promoter and the 3' U3 (except for the integration attachment site) was also deleted. These modifications resulted in a vector with 80% wild-type vector efficiency. Further deletion of 3' U5 impaired vector function; however, this problem was solved by replacing the 3' U5 with bovine growth hormone polyadenylation (bGHpA) sequence. The pTV vector containing all these modifications including the 5' promoter substitution, the 3' U3 deletion, and the substitution of 3' U5 with bGHpA exhibited a self-inactivating (SIN) phenotype after transduction, transduced both dividing and nondividing cells at similar efficiencies, and produced vector titers twice as high as that of the wild-type construct. Thus, both safety and efficacy of the HP/TV vector have been improved by these LTR modifications. Further deletion of 5' U5 impaired vector efficiency, suggesting that the 5' U5 has critical roles in vector function.  (+info)

Lentivirus-mediated Bcl-2 expression in betaTC-tet cells improves resistance to hypoxia and cytokine-induced apoptosis while preserving in vitro and in vivo control of insulin secretion. (7/2174)

betaTC-tet cells are conditionally immortalized pancreatic beta cells which can confer long-term correction of hyperglycemia when transplanted in syngeneic streptozocin diabetic mice. The use of these cells for control of type I diabetes in humans will require their encapsulation and transplantation in non-native sites where relative hypoxia and cytokines may threaten their survival. In this study we genetically engineered betaTC-tet cells with the anti-apoptotic gene Bcl-2 using new lentiviral vectors and showed that it protected this cell line against apoptosis induced by hypoxia, staurosporine and a mixture of cytokines (IL-1beta, IFN-gamma and TNF-alpha). We further demonstrated that Bcl-2 expression permitted growth at higher cell density and with shorter doubling time. Expression of Bcl-2, however, did not inter- fere either with the intrinsic mechanism of growth arrest present in the betaTC-tet cells or with their normal glucose dose-dependent insulin secretory activity. Furthermore, Bcl-2 expressing betaTC-tet cells retained their capacity to secrete insulin under mild hypoxia. Finally, transplantation of these cells under the kidney capsule of streptozocin diabetic C3H mice corrected hyperglycemia for several months. These results demonstrate that the murine betaTC-tet cell line can be genetically modified to improve its resistance against different stress-induced apoptosis while preserving its normal physiological function. These modified cells represent an improved source for cell transplantation therapy of type I diabetes.  (+info)

Lack of evidence of conserved lentiviral sequences in pigs with post weaning multisystemic wasting syndrome. (8/2174)

In order to investigate the role of retroviruses in the recently described porcine postweaning multisystemic wasting syndrome (PMWS) serum and leukocytes were screened for reverse transcriptase (RT) activity, and tissues were examined for the presence of conserved lentiviral sequences using degenerate primers in a polymerase chain reaction (PCR). Serum and stimulated leukocytes from the blood and lymph nodes from pigs with PMWS, as well as from control pigs had RT activity that was detected by the sensitive Amp-RT assay. A 257-bp fragment was amplified from DNA from the blood and bone marrow of pigs with PMWS. This fragment was identical in size to conserved lentiviral sequences that were amplified from plasmids containing DNA from several lentiviruses. Cloning and sequencing of the fragment from affected pigs, however, did not reveal homology with the recognized lentiviruses. Together the results of these analyses suggest that the RT activity present in tissues from control and affected pigs is the result of endogenous retrovirus expression, and that a lentivirus is not a primary pathogen in PMWS.  (+info)

A lentivirus is a type of slow-acting retrovirus that can cause chronic diseases and cancers. The term "lentivirus" comes from the Latin word "lentus," which means slow. Lentiviruses are characterized by their ability to establish a persistent infection, during which they continuously produce new viral particles.

Lentiviruses have a complex genome that includes several accessory genes, in addition to the typical gag, pol, and env genes found in all retroviruses. These accessory genes play important roles in regulating the virus's replication cycle and evading the host's immune response.

One of the most well-known lentiviruses is the human immunodeficiency virus (HIV), which causes AIDS. Other examples include the feline immunodeficiency virus (FIV) and the simian immunodeficiency virus (SIV). Lentiviruses have also been used as vectors for gene therapy, as they can efficiently introduce new genes into both dividing and non-dividing cells.

Lentivirus infections refer to the infectious disease caused by lentiviruses, a genus of retroviruses. These viruses are characterized by their ability to cause persistent and long-term infections, often leading to chronic diseases. They primarily target cells of the immune system, such as T-cells and macrophages, and can cause significant immunosuppression.

Lentiviruses have a slow replication cycle and can remain dormant in the host for extended periods. This makes them particularly effective at evading the host's immune response and can result in progressive damage to infected tissues over time.

One of the most well-known lentiviruses is the human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS). HIV infects and destroys CD4+ T-cells, leading to a weakened immune system and increased susceptibility to opportunistic infections.

Other examples of lentiviruses include simian immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), and equine infectious anemia virus (EIAV). While these viruses primarily infect non-human animals, they are closely related to HIV and serve as important models for studying lentivirus infections and developing potential therapies.

Lentiviruses, ovine-caprine, refer to a subgroup of lentiviruses that primarily infect sheep and goats. These viruses are part of the Retroviridae family and cause slowly progressive diseases characterized by immunodeficiency and neurological disorders. The most well-known members of this group include:

1. Ovine progressive pneumonia virus (OPPV/Maedi Visna virus, MVV): This lentivirus primarily affects sheep, causing chronic interstitial pneumonia and progressive wasting. It can also lead to neurological symptoms such as tremors, ataxia, and paralysis in advanced stages.

2. Caprine arthritis-encephalitis virus (CAEV): This lentivirus primarily infects goats, causing chronic arthritis, pneumonia, and mastitis in adult animals. It can also lead to neurological symptoms such as encephalitis, particularly in young kids.

Both OPPV and CAEV are transmitted horizontally through close contact with infected animals, usually via the respiratory route, and vertically from infected ewes or does to their offspring in utero or through colostrum and milk consumption. These viruses have a worldwide distribution and can cause significant economic losses in sheep and goat farming industries due to decreased productivity, increased mortality, and restrictions on trade and movement of infected animals.

Visna-maedi virus (VMV) is an retrovirus that belongs to the genus Lentivirus, which is part of the family Retroviridae. This virus is the causative agent of a slowly progressive, fatal disease in sheep known as maedi-visna. The term "visna" refers to a inflammatory disease of the central nervous system (CNS) and "maedi" refers to a progressive interstitial pneumonia.

The Visna-Maedi virus is closely related to the human immunodeficiency virus (HIV), which causes AIDS, as well as to other lentiviruses that affect animals such as caprine arthritis encephalitis virus (CAEV) and equine infectious anemia virus (EIAV).

Visna-maedi virus primarily targets the immune system cells, specifically monocytes/macrophages, leading to a weakened immune response in infected animals. This makes them more susceptible to other infections and diseases. The virus is transmitted through the respiratory route and infection can occur through inhalation of infectious aerosols or by ingestion of contaminated milk or colostrum from infected ewes.

There is no effective treatment or vaccine available for Visna-maedi virus infection, and control measures are focused on identifying and isolating infected animals to prevent the spread of the disease within sheep flocks.

Equine Infectious Anemia (EIA) is a viral disease that affects horses and other equine animals. The causative agent of this disease is the Equine Infectious Anemia Virus (EIAV), which belongs to the family Retroviridae and genus Lentivirus. This virus is primarily transmitted through the transfer of infected blood, most commonly through biting insects such as horseflies and deerflies.

The EIAV attacks the immune system of the infected animal, causing a variety of symptoms including fever, weakness, weight loss, anemia, and edema. The virus has a unique ability to integrate its genetic material into the host's DNA, which can lead to a lifelong infection. Some animals may become chronic carriers of the virus, showing no signs of disease but remaining infectious to others.

There is currently no cure for EIA, and infected animals must be isolated to prevent the spread of the disease. Vaccines are available in some countries, but they do not provide complete protection against infection and may only help reduce the severity of the disease. Regular testing and monitoring of equine populations are essential to control the spread of this virus.

Visna is not a term that is commonly used in modern medical terminology. However, it is a disease that affects sheep and goats, caused by the Visna Maedi virus, which is a type of retrovirus. The name "Visna" means "wasting" in Icelandic, reflecting one of the symptoms of the disease.

In animals, Visna is a slowly progressive, degenerative disease that affects the central nervous system, leading to neurological symptoms such as weakness, tremors, and paralysis. It can also cause pneumonia and mastitis (inflammation of the mammary glands). The virus is transmitted through bodily fluids such as milk, saliva, and semen, and there is no cure for the disease once an animal becomes infected.

It's worth noting that Visna is not a human disease, although there are other retroviruses that can cause similar neurological symptoms in humans, such as HIV (Human Immunodeficiency Virus).

Feline Immunodeficiency Virus (FIV) is a lentivirus that primarily affects felines, including domestic cats and wild cats. It is the feline equivalent of Human Immunodeficiency Virus (HIV). The virus attacks the immune system, specifically the CD4+ T-cells, leading to a decline in the immune function over time.

This makes the infected cat more susceptible to various secondary infections and diseases. It is usually transmitted through bite wounds from infected cats during fighting or mating. Mother to offspring transmission can also occur, either in utero, during birth, or through nursing.

There is no cure for FIV, but antiretroviral therapy can help manage the disease and improve the quality of life for infected cats. It's important to note that while FIV-positive cats can live normal lives for many years, they should be kept indoors to prevent transmission to other cats and to protect them from opportunistic infections.

Progressive interstitial pneumonia of sheep, also known as ovine progressive pneumonic dyspnea (OPPD), is a contagious and fatal disease that affects the respiratory system of sheep. It is caused by the bacterium Mycoplasma ovipneumoniae.

The disease is characterized by inflammation and fibrosis of the interstitial tissue of the lungs, which leads to progressive difficulty in breathing, coughing, and weight loss. The infection can also spread to the air sacs (alveoli) of the lungs, causing pus-filled lesions and further compromising lung function.

OPPD is a chronic disease that can take several months to progress from initial infection to death. It is highly contagious and can be spread through direct contact with infected animals or contaminated equipment. The disease is most commonly seen in sheep that are under stress, such as those that have been transported or housed in close quarters.

Prevention and control measures for OPPD include good biosecurity practices, such as quarantine and testing of new animals before introducing them to a flock, as well as vaccination of susceptible animals. Treatment is generally not effective once clinical signs appear, and affected animals usually need to be euthanized to prevent further spread of the disease.

I apologize, but there is no medical definition for "Arthritis-Encephalitis Virus, Caprine." The term "Caprine" refers to something related to or derived from goats. Arthritis-Encephalitis Viruses (AEV) are a group of viruses that can affect various animal species and cause joint inflammation (arthritis) and brain inflammation (encephalitis). However, I couldn't find any specific virus named "Arthritis-Encephalitis Virus, Caprine" in the medical literature.

There are several viruses that can affect goats and cause arthritis and encephalitis, such as CAEV (Caprine Arthritis-Encephalitis Virus) or PPRV (Peste des Petits Ruminants Virus). If you have any specific concerns about a particular virus affecting goats, please provide more context so I can give you a more accurate and helpful response.

Lentiviruses are a genus of retroviruses that cause chronic diseases with long incubation periods. Primate lentiviruses specifically refer to those that primarily infect primates, including humans. There are four main types of primate lentiviruses: human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), simian immunodeficiency virus (SIV), and puma (or lion) lentivirus (PLV).

HIV-1 is the primary cause of acquired immunodeficiency syndrome (AIDS) in humans, while HIV-2 is less virulent and prevalent. SIV infects various species of non-human primates, causing an AIDS-like disease. PLV infects wild pumas and domestic cats, causing a slow, progressive immune deficiency.

Primate lentiviruses have complex life cycles involving both DNA and RNA stages. They can integrate their genetic material into the host cell's genome, leading to persistent infection and potential oncogenic effects. These viruses primarily target cells of the immune system, such as CD4+ T-cells and macrophages, ultimately leading to immunodeficiency and increased susceptibility to opportunistic infections.

Lentiviruses, Bovine, refer to a genus of retroviruses that cause a slow, chronic infection in cattle. These viruses are characterized by their ability to infect non-dividing cells and establish a persistent infection. The bovine lentiviruses include the Maedi-Visna virus (MVV) and the Bovine Immunodeficiency Virus (BIV).

MVV primarily affects the respiratory and central nervous systems of infected animals, causing progressive pneumonia and neurological symptoms. BIV, on the other hand, is more similar to Human Immunodeficiency Virus (HIV) and causes a bovine immunodeficiency syndrome, characterized by a decline in the immune function and increased susceptibility to other infections.

Both MVV and BIV are transmitted horizontally between animals through close contact with infected bodily fluids such as milk, colostrum, saliva, and semen, as well as vertically from infected cows to their offspring. Currently, there are no vaccines or specific treatments available for bovine lentivirus infections, and control measures focus on identifying and isolating infected animals to prevent the spread of the virus.

A genetic vector is a vehicle, often a plasmid or a virus, that is used to introduce foreign DNA into a host cell as part of genetic engineering or gene therapy techniques. The vector contains the desired gene or genes, along with regulatory elements such as promoters and enhancers, which are needed for the expression of the gene in the target cells.

The choice of vector depends on several factors, including the size of the DNA to be inserted, the type of cell to be targeted, and the efficiency of uptake and expression required. Commonly used vectors include plasmids, adenoviruses, retroviruses, and lentiviruses.

Plasmids are small circular DNA molecules that can replicate independently in bacteria. They are often used as cloning vectors to amplify and manipulate DNA fragments. Adenoviruses are double-stranded DNA viruses that infect a wide range of host cells, including human cells. They are commonly used as gene therapy vectors because they can efficiently transfer genes into both dividing and non-dividing cells.

Retroviruses and lentiviruses are RNA viruses that integrate their genetic material into the host cell's genome. This allows for stable expression of the transgene over time. Lentiviruses, a subclass of retroviruses, have the advantage of being able to infect non-dividing cells, making them useful for gene therapy applications in post-mitotic tissues such as neurons and muscle cells.

Overall, genetic vectors play a crucial role in modern molecular biology and medicine, enabling researchers to study gene function, develop new therapies, and modify organisms for various purposes.

Genetic transduction is a process in molecular biology that describes the transfer of genetic material from one bacterium to another by a viral vector called a bacteriophage (or phage). In this process, the phage infects one bacterium and incorporates a portion of the bacterial DNA into its own genetic material. When the phage then infects a second bacterium, it can transfer the incorporated bacterial DNA to the new host. This can result in the horizontal gene transfer (HGT) of traits such as antibiotic resistance or virulence factors between bacteria.

There are two main types of transduction: generalized and specialized. In generalized transduction, any portion of the bacterial genome can be packaged into the phage particle, leading to a random assortment of genetic material being transferred. In specialized transduction, only specific genes near the site where the phage integrates into the bacterial chromosome are consistently transferred.

It's important to note that genetic transduction is not to be confused with transformation or conjugation, which are other mechanisms of HGT in bacteria.

I'm sorry for any confusion, but "Puma" is not a term that has a medical definition. It is a common name for several species of large American cats, and it can also be a brand of sports apparel and footwear. If you have any other health or medical terms you would like me to define, please let me know!

Equine infectious anemia (EIA) is a viral disease that affects horses and other equine animals. It is caused by the Equine Infectious Anemia Virus (EIAV), which is transmitted through the bloodstream of infected animals, often through biting insects such as horseflies and deerflies.

The symptoms of EIA can vary widely, but often include fever, weakness, weight loss, anemia, and edema. In severe cases, the disease can cause death. There is no cure for EIA, and infected animals must be isolated to prevent the spread of the virus.

EIA is diagnosed through blood tests that detect the presence of antibodies to the virus. Horses that test positive for EIA are typically euthanized or permanently quarantined. Prevention measures include testing horses before they are bought, sold, or moved, as well as controlling insect populations and using insect repellents. Vaccines are not available for EIA in most countries.

Feline Acquired Immunodeficiency Syndrome (FAIDS) is a progressive immune disorder in cats caused by infection with the feline immunodeficiency virus (FIV). The virus attacks and weakens the cat's immune system, making it difficult for the animal to fight off other infections and diseases.

The initial infection with FIV may cause symptoms such as fever, swollen lymph nodes, and loss of appetite. However, many cats do not show any signs of illness for years after the initial infection. As the immune system becomes weaker over time, the cat becomes more susceptible to various secondary infections, cancers, and other diseases. Common symptoms in advanced stages of FAIDS include weight loss, chronic or recurring infections (such as respiratory, skin, or gastrointestinal infections), dental disease, anemia, and neurological disorders.

FAIDS is most commonly spread through bite wounds from infected cats, as the virus is present in their saliva. It can also be transmitted through sexual contact or from mother to kitten during pregnancy or nursing. There is no cure for FAIDS, but antiretroviral therapy (ART) can help manage the infection and slow down its progression. Supportive care, such as proper nutrition, regular veterinary check-ups, and monitoring for secondary infections, is essential for maintaining the cat's quality of life.

It is important to note that FIV is species-specific and cannot be transmitted from cats to humans or other animals, except non-human primates.

I'm sorry for any confusion, but "goats" is not a term commonly used in medical definitions. It is a common noun referring to the domesticated animal species Capra aegagrus hircus. If you have any questions about a specific medical condition or term, please provide that and I would be happy to help.

"Cercopithecus" is a genus of Old World monkeys that are commonly known as guenons. These monkeys are native to Africa and are characterized by their colorful fur, long tails, and distinctive facial features. They are agile animals that live in a variety of habitats, including forests, savannas, and mountains.

The term "Cercopithecus" is derived from the Greek words "kerkos," meaning tail, and "pithekos," meaning ape or monkey. This name reflects the long tails that are characteristic of these monkeys.

There are several species of guenons within the genus "Cercopithecus," including the vervet monkey, the grivet, the tantalus monkey, and the de Brazza's monkey, among others. These monkeys are important members of their ecosystems and play a key role in seed dispersal and forest regeneration. They are also popular subjects of research due to their complex social structures and behaviors.

I'm sorry for any confusion, but "Lions" is not a term typically used in medical definitions. Lions are large, carnivorous mammals that are part of the Felidae family, specifically Panthera leo. If you have any questions about lions or if there's another term you meant to ask about, please provide more context so I can give you a more accurate response.

Simian Immunodeficiency Virus (SIV) is a retrovirus that primarily infects African non-human primates and is the direct ancestor of Human Immunodeficiency Virus type 2 (HIV-2). It is similar to HIV in its structure, replication strategy, and ability to cause an immunodeficiency disease in its host. SIV infection in its natural hosts is typically asymptomatic and non-lethal, but it can cause AIDS-like symptoms in other primate species. Research on SIV in its natural hosts has provided valuable insights into the mechanisms of HIV pathogenesis and potential strategies for prevention and treatment of AIDS.

Feline lentiviruses are a group of retroviruses that cause long-standing, progressive diseases in cats. They are part of the larger family of lentiviruses, which also includes human immunodeficiency virus (HIV), the causative agent of AIDS in humans.

Feline lentiviruses are further classified into two types: feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV). Both viruses primarily affect the immune system, making infected cats more susceptible to other infections and diseases.

FIV is transmitted through bite wounds and sexual contact, while FeLV is spread mainly through close contact with infected cats, such as sharing food and water bowls or grooming each other. Kittens can also become infected with FeLV from their mothers during pregnancy or nursing.

Both FIV and FeLV infections can lead to a variety of clinical signs, including weight loss, fever, anemia, lymphadenopathy (swollen lymph nodes), and immune suppression. However, the progression and severity of the disease can vary widely between individual cats, with some animals showing few or no symptoms for many years.

There is no cure for feline lentivirus infections, but antiretroviral therapy (ART) can help manage the virus and improve the cat's quality of life. Supportive care, such as providing a nutritious diet, monitoring for secondary infections, and keeping the cat stress-free, is also important. Vaccines are available for FeLV but not for FIV, and regular veterinary check-ups are recommended to monitor the progression of the disease.

I'm happy to help, but I want to clarify that the term "sheep diseases" refers to a wide range of health issues that can affect sheep populations. It's not a single medical condition with a specific definition. Here are some examples of common diseases that can affect sheep:

1. Ovine Johne's Disease (OJD): A chronic, infectious disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis. It affects the intestines and can cause weight loss, diarrhea, and death.
2. Footrot: A highly contagious bacterial infection that affects the feet of sheep, causing lameness, swelling, and pain. It's caused by the bacteria Dichelobacter nodosus.
3. Caseous Lymphadenitis (CL): A chronic infectious disease caused by the bacterium Corynebacterium pseudotuberculosis. It affects the lymph nodes and can cause abscesses, weight loss, and death.
4. Contagious Ecthyma (Orf): A highly contagious viral infection that affects the skin and mucous membranes of sheep, causing sores and lesions.
5. Mastitis: An inflammation of the mammary gland in sheep, usually caused by a bacterial infection. It can cause decreased milk production, fever, and loss of appetite.
6. Pneumonia: A respiratory infection that can affect sheep, causing coughing, difficulty breathing, and fever. It can be caused by various bacteria or viruses.
7. Enterotoxemia: A potentially fatal disease caused by the overproduction of toxins in the intestines of sheep, usually due to a bacterial infection with Clostridium perfringens.
8. Polioencephalomalacia (PEM): A neurological disorder that affects the brain of sheep, causing symptoms such as blindness, circling, and seizures. It's often caused by a thiamine deficiency or excessive sulfur intake.
9. Toxoplasmosis: A parasitic infection that can affect sheep, causing abortion, stillbirth, and neurological symptoms.
10. Blue tongue: A viral disease that affects sheep, causing fever, respiratory distress, and mouth ulcers. It's transmitted by insect vectors and is often associated with climate change.

I believe there may be a misunderstanding in your question. "Goat diseases" refers to illnesses that affect goats specifically. It does not mean diseases that are caused by goats or related to them in some way. Here are some examples of goat diseases:

1. Caprine Arthritis Encephalitis (CAE): A viral disease that affects goats, causing arthritis, pneumonia, and sometimes encephalitis.
2. Caseous Lymphadenitis (CL): A bacterial disease that causes abscesses in the lymph nodes of goats.
3. Contagious Caprine Pleuropneumonia (CCPP): A contagious respiratory disease caused by mycoplasma bacteria.
4. Johne's Disease: A chronic wasting disease caused by a type of bacterium called Mycobacterium avium subspecies paratuberculosis.
5. Pasteurellosis: A bacterial disease that can cause pneumonia, septicemia, and other infections in goats.
6. Salmonellosis: A bacterial disease caused by Salmonella bacteria, which can cause diarrhea, fever, and septicemia in goats.
7. Soremouth (Orf): A viral disease that causes sores and scabs around the mouth and nose of goats.

These are just a few examples of diseases that can affect goats. If you have any specific questions about goat health or diseases, I would recommend consulting with a veterinarian who specializes in small ruminants.

I'm sorry for any confusion, but the term "Lemur" is not typically used in medical definitions. It is a common name that refers to primates belonging to the infraorder Lemuriformes. They are native to Madagascar and are divided into five families: Cheirogaleidae (dwarf lemurs), Daubentoniidae (aye-aye), Indriidae (indris, sifakas, and avahis), Lepilemuridae (sportive lemurs), and Lemuridae (true lemurs). If you have any questions related to medical terminology or health concerns, I would be happy to help!

Bovine Immunodeficiency Virus (BIV) is a retrovirus that primarily infects cattle. It is part of the lentivirus family, which also includes Human Immunodeficiency Virus (HIV).

Similar to HIV, BIV attacks the immune system by infecting and destroying CD4+ T cells, leading to a condition called immunodeficiency. However, it's important to note that BIV is not known to infect humans or other primates.

The virus is transmitted through bodily fluids, particularly blood and sexual contact. It can also be spread from mother to calf during pregnancy or birth.

While BIV can cause a disease similar to AIDS in cattle, it progresses much more slowly, often taking several years to manifest symptoms. These may include weight loss, diarrhea, respiratory infections, and other opportunistic infections due to the weakened immune system.

There is currently no vaccine or cure for BIV infection. Management typically involves supportive care and treatment of secondary infections.

HIV-1 (Human Immunodeficiency Virus type 1) is a species of the retrovirus genus that causes acquired immunodeficiency syndrome (AIDS). It is primarily transmitted through sexual contact, exposure to infected blood or blood products, and from mother to child during pregnancy, childbirth, or breastfeeding. HIV-1 infects vital cells in the human immune system, such as CD4+ T cells, macrophages, and dendritic cells, leading to a decline in their numbers and weakening of the immune response over time. This results in the individual becoming susceptible to various opportunistic infections and cancers that ultimately cause death if left untreated. HIV-1 is the most prevalent form of HIV worldwide and has been identified as the causative agent of the global AIDS pandemic.

Gene transfer techniques, also known as gene therapy, refer to medical procedures where genetic material is introduced into an individual's cells or tissues to treat or prevent diseases. This can be achieved through various methods:

1. **Viral Vectors**: The most common method uses modified viruses, such as adenoviruses, retroviruses, or lentiviruses, to carry the therapeutic gene into the target cells. The virus infects the cell and inserts the new gene into the cell's DNA.

2. **Non-Viral Vectors**: These include methods like electroporation (using electric fields to create pores in the cell membrane), gene guns (shooting gold particles coated with DNA into cells), or liposomes (tiny fatty bubbles that can enclose DNA).

3. **Direct Injection**: In some cases, the therapeutic gene can be directly injected into a specific tissue or organ.

The goal of gene transfer techniques is to supplement or replace a faulty gene with a healthy one, thereby correcting the genetic disorder. However, these techniques are still largely experimental and have their own set of challenges, including potential immune responses, issues with accurate targeting, and risks of mutations or cancer development.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Genetic therapy, also known as gene therapy, is a medical intervention that involves the use of genetic material, such as DNA or RNA, to treat or prevent diseases. It works by introducing functional genes into cells to replace missing or faulty ones caused by genetic disorders or mutations. The introduced gene is incorporated into the recipient's genome, allowing for the production of a therapeutic protein that can help manage the disease symptoms or even cure the condition.

There are several approaches to genetic therapy, including:

1. Replacing a faulty gene with a healthy one
2. Inactivating or "silencing" a dysfunctional gene causing a disease
3. Introducing a new gene into the body to help fight off a disease, such as cancer

Genetic therapy holds great promise for treating various genetic disorders, including cystic fibrosis, muscular dystrophy, hemophilia, and certain types of cancer. However, it is still an evolving field with many challenges, such as efficient gene delivery, potential immune responses, and ensuring the safety and long-term effectiveness of the therapy.

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

I'm happy to help! However, I believe there may be a slight misunderstanding in your question. "Tat" is not a term that is typically used in the context of genetics or genes. It is most commonly known as a protein called "Trans-activator of transcription" which is produced by the human immunodeficiency virus (HIV).

However, if you are referring to "genes," I can certainly provide a definition for that. Genes are segments of DNA that contain the instructions for the development and function of an organism. They are passed down from parents to offspring and encode the information necessary to build proteins, which carry out many of the functions necessary for the survival and reproduction of an organism.

If you meant something else by "tat" in the context of genetics, please provide more context or clarify your question, and I will do my best to help!

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

Virus replication is the process by which a virus produces copies or reproduces itself inside a host cell. This involves several steps:

1. Attachment: The virus attaches to a specific receptor on the surface of the host cell.
2. Penetration: The viral genetic material enters the host cell, either by invagination of the cell membrane or endocytosis.
3. Uncoating: The viral genetic material is released from its protective coat (capsid) inside the host cell.
4. Replication: The viral genetic material uses the host cell's machinery to produce new viral components, such as proteins and nucleic acids.
5. Assembly: The newly synthesized viral components are assembled into new virus particles.
6. Release: The newly formed viruses are released from the host cell, often through lysis (breaking) of the cell membrane or by budding off the cell membrane.

The specific mechanisms and details of virus replication can vary depending on the type of virus. Some viruses, such as DNA viruses, use the host cell's DNA polymerase to replicate their genetic material, while others, such as RNA viruses, use their own RNA-dependent RNA polymerase or reverse transcriptase enzymes. Understanding the process of virus replication is important for developing antiviral therapies and vaccines.

Viral envelope proteins are structural proteins found in the envelope that surrounds many types of viruses. These proteins play a crucial role in the virus's life cycle, including attachment to host cells, fusion with the cell membrane, and entry into the host cell. They are typically made up of glycoproteins and are often responsible for eliciting an immune response in the host organism. The exact structure and function of viral envelope proteins vary between different types of viruses.

A gene product is the biochemical material, such as a protein or RNA, that is produced by the expression of a gene. "pol" in gene products usually refers to "polymerase," which is an enzyme that synthesizes DNA or RNA molecules by adding nucleotides one by one to a growing chain. Therefore, "gene products, pol" typically refer to the proteins that make up various types of RNA and DNA polymerases, which are involved in the transcription and replication of genetic material. These enzymes play crucial roles in many cellular processes, including gene expression, DNA repair, and cell division.

A "gene" is a basic unit of heredity in living organisms. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes are responsible for inherited traits, such as eye color, hair color, and height, as well as susceptibility to certain diseases.

"Pol" is short for "polymerase," which is an enzyme that helps synthesize DNA or RNA (ribonucleic acid). In the context of genes, "pol" often refers to "DNA polymerase," an enzyme that plays a crucial role in DNA replication and repair.

Therefore, "genes, pol" may refer to the genes involved in the regulation or function of DNA polymerases. These genes are essential for maintaining the integrity and stability of an organism's genome. Mutations in these genes can lead to various genetic disorders and cancer.

A gene is a segment of DNA that contains the instructions for the development and function of an organism. Genes are the basic units of inheritance, and they determine many of an individual's characteristics, such as eye color, hair color, and height.

In revised terminology, "genes" can be defined more specifically as a DNA sequence that codes for a functional RNA molecule or a protein. This includes both coding sequences (exons) and non-coding sequences (introns). The revised definition also acknowledges the role of regulatory elements, such as promoters and enhancers, which are DNA sequences that control the expression of genes.

Additionally, it is important to note that genes can exist in different forms, known as alleles, which can result in variations in traits among individuals. Some genes may also have multiple functions or be involved in complex genetic interactions, contributing to the complexity of genetics and inheritance.

"Gene products, GAG" refer to the proteins that are produced by the GAG (Group-specific Antigen) gene found in retroviruses, such as HIV (Human Immunodeficiency Virus). These proteins play a crucial role in the structure and function of the viral particle or virion.

The GAG gene encodes for a polyprotein that is cleaved by a protease into several individual proteins, including matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. These proteins are involved in the formation of the viral core, which encloses the viral RNA genome and associated enzymes required for replication.

The MA protein is responsible for binding to the host cell membrane during viral entry, while the CA protein forms the capsid shell that surrounds the viral RNA and NC protein. The NC protein binds to the viral RNA and helps to package it into the virion during assembly. Overall, GAG gene products are essential for the life cycle of retroviruses and are important targets for antiretroviral therapy in HIV-infected individuals.

Simian Acquired Immunodeficiency Syndrome (SAIDS) is not recognized as a medical condition in humans. However, it is a disease that affects non-human primates like African green monkeys and sooty mangabeys. SAIDS is caused by the Simian Immunodeficiency Virus (SIV), which is similar to the Human Immunodeficiency Virus (HIV) that leads to Acquired Immunodeficiency Syndrome (AIDS) in humans.

In non-human primates, SIV infection can lead to a severe immunodeficiency state, characterized by the destruction of CD4+ T cells and impaired immune function, making the host susceptible to various opportunistic infections and cancers. However, it is important to note that most non-human primates infected with SIV do not develop SAIDS spontaneously, unlike humans who acquire HIV infection.

In summary, Simian Acquired Immunodeficiency Syndrome (SAIDS) is a disease affecting non-human primates due to Simian Immunodeficiency Virus (SIV) infection, characterized by immunodeficiency and susceptibility to opportunistic infections and cancers. It should not be confused with Human Immunodeficiency Virus Infection and Acquired Immunodeficiency Syndrome (HIV/AIDS) in humans.

A gene product is the biochemical material, such as a protein or RNA, that is produced by the expression of a gene. Env, short for "envelope," refers to a type of gene product that is commonly found in enveloped viruses. The env gene encodes the viral envelope proteins, which are crucial for the virus's ability to attach to and enter host cells during infection. These envelope proteins typically form a coat around the exterior of the virus and interact with receptors on the surface of the host cell, triggering the fusion or endocytosis processes that allow the viral genome to enter the host cell.

Therefore, in medical terms, 'Gene Products, env' specifically refers to the proteins or RNA produced by the env gene in enveloped viruses, which play a critical role in the virus's infectivity and pathogenesis.

"Genes x Environment" (GxE) is a term used in the field of genetics to describe the interaction between genetic factors and environmental influences on the development, expression, and phenotypic outcome of various traits, disorders, or diseases. This concept recognizes that both genes and environment play crucial roles in shaping an individual's health and characteristics, and that these factors do not act independently but rather interact with each other in complex ways.

GxE interactions can help explain why some individuals with a genetic predisposition for a particular disorder may never develop the condition, while others without such a predisposition might. The environmental factors involved in GxE interactions can include lifestyle choices (such as diet and exercise), exposure to toxins or pollutants, social experiences, and other external conditions that can influence gene expression and overall health outcomes.

Understanding GxE interactions is essential for developing personalized prevention and treatment strategies, as it allows healthcare providers to consider both genetic and environmental factors when assessing an individual's risk for various disorders or diseases.

Retroviridae is a family of viruses that includes human immunodeficiency virus (HIV) and other viruses that primarily use RNA as their genetic material. The name "retrovirus" comes from the fact that these viruses reverse transcribe their RNA genome into DNA, which then becomes integrated into the host cell's genome. This is a unique characteristic of retroviruses, as most other viruses use DNA as their genetic material.

Retroviruses can cause a variety of diseases in animals and humans, including cancer, neurological disorders, and immunodeficiency syndromes like AIDS. They have a lipid membrane envelope that contains glycoprotein spikes, which allow them to attach to and enter host cells. Once inside the host cell, the viral RNA is reverse transcribed into DNA by the enzyme reverse transcriptase, which is then integrated into the host genome by the enzyme integrase.

Retroviruses can remain dormant in the host genome for extended periods of time, and may be reactivated under certain conditions to produce new viral particles. This ability to integrate into the host genome has also made retroviruses useful tools in molecular biology, where they are used as vectors for gene therapy and other genetic manipulations.

A transgene is a segment of DNA that has been artificially transferred from one organism to another, typically between different species, to introduce a new trait or characteristic. The term "transgene" specifically refers to the genetic material that has been transferred and has become integrated into the host organism's genome. This technology is often used in genetic engineering and biomedical research, including the development of genetically modified organisms (GMOs) for agricultural purposes or the creation of animal models for studying human diseases.

Transgenes can be created using various techniques, such as molecular cloning, where a desired gene is isolated, manipulated, and then inserted into a vector (a small DNA molecule, such as a plasmid) that can efficiently enter the host organism's cells. Once inside the cell, the transgene can integrate into the host genome, allowing for the expression of the new trait in the resulting transgenic organism.

It is important to note that while transgenes can provide valuable insights and benefits in research and agriculture, their use and release into the environment are subjects of ongoing debate due to concerns about potential ecological impacts and human health risks.

Virus integration, in the context of molecular biology and virology, refers to the insertion of viral genetic material into the host cell's genome. This process is most commonly associated with retroviruses, such as HIV (Human Immunodeficiency Virus), which have an enzyme called reverse transcriptase that converts their RNA genome into DNA. This DNA can then integrate into the host's chromosomal DNA, becoming a permanent part of the host's genetic material.

This integration is a crucial step in the retroviral life cycle, allowing the virus to persist within the host cell and evade detection by the immune system. It also means that the viral genome can be passed on to daughter cells when the host cell divides.

However, it's important to note that not all viruses integrate their genetic material into the host's genome. Some viruses, like influenza, exist as separate entities within the host cell and do not become part of the host's DNA.

A betaretrovirus is a type of retrovirus, which is a group of viruses that are characterized by their ability to integrate their genetic material into the DNA of the host cell. Betaretroviruses are further classified based on their specific genetic and biological properties. They are enveloped viruses with a single-stranded, positive-sense RNA genome.

Betaretroviruses include several veterinary pathogens, such as mouse mammary tumor virus (MMTV) and jaagsiekte sheep retrovirus (JSRV). These viruses are associated with various types of cancer in their respective host species. For example, MMTV is associated with mammary tumors in mice, while JSRV is associated with a type of lung cancer in sheep.

It's important to note that betaretroviruses are not known to infect humans and there are no human diseases associated with this group of viruses.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

A provirus is a form of the genetic material of a retrovirus that is integrated into the DNA of the host cell it has infected. Once integrated, the provirus is replicated along with the host's own DNA every time the cell divides, and it becomes a permanent part of the host's genome.

The process of integration involves the reverse transcription of the retroviral RNA genome into DNA by the enzyme reverse transcriptase, followed by the integration of the resulting double-stranded proviral DNA into the host chromosome by the enzyme integrase.

Proviruses can remain dormant and inactive for long periods of time, or they can become active and produce new viral particles that can infect other cells. In some cases, proviruses can also disrupt the normal functioning of host genes, leading to various diseases such as cancer.

Hexadimethrine bromide is not typically considered a medical term, but it is a chemical compound that has been used in some medical contexts.

In chemistry, hexadimethrine bromide is a polycationic compound with the formula C6H17N3Br3. It is a white crystalline powder that is soluble in water and alcohol. In medicine, it has been used as an antiseptic and disinfectant, although its use in this context is not widespread or commonly encountered.

It is important to note that the use of hexadimethrine bromide in medical settings may be limited due to potential toxicity and other safety concerns. Therefore, it is typically used only under the supervision of a healthcare professional and in accordance with established medical guidelines.

Antibodies, viral are proteins produced by the immune system in response to an infection with a virus. These antibodies are capable of recognizing and binding to specific antigens on the surface of the virus, which helps to neutralize or destroy the virus and prevent its replication. Once produced, these antibodies can provide immunity against future infections with the same virus.

Viral antibodies are typically composed of four polypeptide chains - two heavy chains and two light chains - that are held together by disulfide bonds. The binding site for the antigen is located at the tip of the Y-shaped structure, formed by the variable regions of the heavy and light chains.

There are five classes of antibodies in humans: IgA, IgD, IgE, IgG, and IgM. Each class has a different function and is distributed differently throughout the body. For example, IgG is the most common type of antibody found in the bloodstream and provides long-term immunity against viruses, while IgA is found primarily in mucous membranes and helps to protect against respiratory and gastrointestinal infections.

In addition to their role in the immune response, viral antibodies can also be used as diagnostic tools to detect the presence of a specific virus in a patient's blood or other bodily fluids.

Terminal repeat sequences (TRS) are repetitive DNA sequences that are located at the termini or ends of chromosomes, plasmids, and viral genomes. They play a significant role in various biological processes such as genome replication, packaging, and integration. In eukaryotic cells, telomeres are the most well-known TRS, which protect the chromosome ends from degradation, fusion, and other forms of DNA damage.

Telomeres consist of repetitive DNA sequences (5'-TTAGGG-3' in vertebrates) that are several kilobases long, associated with a set of shelterin proteins that protect them from being recognized as double-strand breaks by the DNA repair machinery. With each cell division, telomeres progressively shorten due to the end replication problem, which can ultimately lead to cellular senescence or apoptosis.

In contrast, prokaryotic TRS are often found at the ends of plasmids and phages and are involved in DNA replication, packaging, and integration into host genomes. For example, the attP and attB sites in bacteriophage lambda are TRS that facilitate site-specific recombination during integration and excision from the host genome.

Overall, terminal repeat sequences are essential for maintaining genome stability and integrity in various organisms, and their dysfunction can lead to genomic instability, disease, and aging.

HIV-2 (Human Immunodeficiency Virus type 2) is a retrovirus that infects humans and can lead to the development of AIDS (Acquired Immunodeficiency Syndrome). It is closely related to HIV-1, which is the virus more commonly associated with AIDS worldwide. However, HIV-2 is primarily found in West Africa and is less efficiently transmitted than HIV-1, meaning it generally takes longer for the infection to progress to AIDS.

Like HIV-1, HIV-2 infects CD4+ T cells, a type of white blood cell that plays a central role in the immune response. Over time, the progressive loss of these cells weakens the immune system and leaves the individual susceptible to opportunistic infections and cancers.

While there are similarities between HIV-1 and HIV-2, there are also differences. For example, HIV-2 is less pathogenic than HIV-1, meaning it generally progresses more slowly and causes less severe disease. Additionally, HIV-2 is less responsive to some antiretroviral drugs used to treat HIV-1 infection.

It's important to note that both HIV-1 and HIV-2 can be transmitted through sexual contact, sharing of needles, and from mother to child during pregnancy, childbirth, or breastfeeding. Accurate diagnosis and appropriate medical care are crucial for managing either type of HIV infection and preventing its transmission to others.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Wild animals are those species of animals that are not domesticated or tamed by humans and live in their natural habitats without regular human intervention. They can include a wide variety of species, ranging from mammals, birds, reptiles, amphibians, fish, to insects and other invertebrates.

Wild animals are adapted to survive in specific environments and have behaviors, physical traits, and social structures that enable them to find food, shelter, and mates. They can be found in various habitats such as forests, grasslands, deserts, oceans, rivers, and mountains. Some wild animals may come into contact with human populations, particularly in urban areas where their natural habitats have been destroyed or fragmented.

It is important to note that the term "wild" does not necessarily mean that an animal is aggressive or dangerous. While some wild animals can be potentially harmful to humans if provoked or threatened, many are generally peaceful and prefer to avoid contact with people. However, it is essential to respect their natural behaviors and habitats and maintain a safe distance from them to prevent any potential conflicts or harm to either party.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

Lagomorpha is an order of mammals that includes rabbits, hares, and pikas. They are herbivores with large incisors in the front of their mouths and a second pair of smaller incisors behind them. Lagomorpha is distinguished from other orders by its unique dental characteristics and the presence of two pairs of upper incisors. These animals are known for their high reproductive rates and are found worldwide, except for Antarctica and some islands.

"Macaca mulatta" is the scientific name for the Rhesus macaque, a species of monkey that is native to South, Central, and Southeast Asia. They are often used in biomedical research due to their genetic similarity to humans.

"vif" is an abbreviation for "virion-infectivity factor," which is a protein produced by certain viruses, including HIV (human immunodeficiency virus). The vif protein plays a crucial role in the viral replication process by neutralizing the host cell's defense mechanisms. Specifically, it targets and degrades a cellular protein called APOBEC3G, which would otherwise be incorporated into the viral particles and cause mutations in the viral DNA during reverse transcription. By counteracting APOBEC3G, vif ensures that the virus can replicate efficiently and avoids the creation of defective virions.

In the context of genes, "vif" refers to the genetic region within the HIV genome that encodes for the vif protein. This gene is essential for the virus's ability to evade the host immune system and establish a successful infection.

Polyglactin 910 is a type of synthetic absorbable suture made from copolymers of lactide and glycolide. It is designed to gradually break down and be absorbed by the body over time, typically within 56 to 70 days after being used in surgical wounds. This property makes it an ideal choice for soft tissue approximation and laceration repairs.

Polyglactin 910 sutures are often used in various surgical procedures, including orthopedic, ophthalmic, cardiovascular, and general surgery. They come in different sizes and forms, such as plain, reverse cutting, and braided, to suit various surgical needs.

The gradual absorption of Polyglactin 910 sutures helps minimize scarring and reduces the need for suture removal procedures. However, it is essential to note that inflammation may occur during the degradation process, which could potentially lead to adverse reactions in some individuals. Proper wound care and follow-up with healthcare professionals are crucial to ensure optimal healing and manage any potential complications.

Retroviridae infections refer to diseases caused by retroviruses, which are a type of virus that integrates its genetic material into the DNA of the host cell. This allows the virus to co-opt the cell's own machinery to produce new viral particles and infect other cells.

Some well-known retroviruses include human immunodeficiency virus (HIV), which causes AIDS, and human T-lymphotropic virus (HTLV), which can cause certain types of cancer and neurological disorders.

Retroviral infections can have a range of clinical manifestations depending on the specific virus and the host's immune response. HIV infection, for example, is characterized by progressive immunodeficiency that makes the infected individual susceptible to a wide range of opportunistic infections and cancers. HTLV infection, on the other hand, can cause adult T-cell leukemia/lymphoma or tropical spastic paraparesis, a neurological disorder.

Prevention and treatment strategies for retroviral infections depend on the specific virus but may include antiretroviral therapy (ART), vaccination, and behavioral modifications to reduce transmission risk.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Luminescent proteins are a type of protein that emit light through a chemical reaction, rather than by absorbing and re-emitting light like fluorescent proteins. This process is called bioluminescence. The light emitted by luminescent proteins is often used in scientific research as a way to visualize and track biological processes within cells and organisms.

One of the most well-known luminescent proteins is Green Fluorescent Protein (GFP), which was originally isolated from jellyfish. However, GFP is actually a fluorescent protein, not a luminescent one. A true example of a luminescent protein is the enzyme luciferase, which is found in fireflies and other bioluminescent organisms. When luciferase reacts with its substrate, luciferin, it produces light through a process called oxidation.

Luminescent proteins have many applications in research, including as reporters for gene expression, as markers for protein-protein interactions, and as tools for studying the dynamics of cellular processes. They are also used in medical imaging and diagnostics, as well as in the development of new therapies.

I'm happy to help! However, I believe there may be a slight misunderstanding in your question. "VPU" is not a term that is typically associated with genes in the context of human or general molecular biology. It is possible that you are referring to the "vpu" gene found in certain viruses, such as HIV-1 (Human Immunodeficiency Virus type 1).

The "vpu" gene in HIV-1 encodes a viral accessory protein called Vpu, which plays a crucial role in the viral life cycle and pathogenesis. Among its functions, Vpu downregulates the restriction factor CD4 on the host cell surface, promotes virion release from infected cells, and induces degradation of the restrictive factor BST-2/Tetherin.

If you were indeed referring to the "vpu" gene or protein in HIV-1 or a related context, I apologize for any confusion, and I'm glad to provide further information or clarification if needed. If you meant something different by "Genes, vpu," could you please provide more context or details? I want to ensure that I offer the most accurate and helpful response possible.

Pulmonary Adenomatosis, Ovine, also known as Jaagsiekte or ovine pulmonary carcinoma, is a contagious and fatal disease that affects the lungs of sheep. It is caused by a retrovirus called jaagsiekte sheep retrovirus (JSRV). The virus infects the cells in the lung tissue leading to the formation of tumors known as adenomatosis.

The disease is characterized by progressive respiratory distress, weight loss, and eventual death. It is transmitted through the respiratory route, and infected animals can shed the virus in their saliva, nasal secretions, and feces. The disease has a long incubation period, which can range from several months to years, making it difficult to control.

There is no effective treatment for pulmonary adenomatosis, ovine, and infected animals are usually euthanized to prevent the spread of the virus. Prevention measures include quarantine and testing of new sheep before introducing them into a flock, as well as reducing stress and maintaining good nutrition and overall health in the flock.

Gene knockdown techniques are methods used to reduce the expression or function of specific genes in order to study their role in biological processes. These techniques typically involve the use of small RNA molecules, such as siRNAs (small interfering RNAs) or shRNAs (short hairpin RNAs), which bind to and promote the degradation of complementary mRNA transcripts. This results in a decrease in the production of the protein encoded by the targeted gene.

Gene knockdown techniques are often used as an alternative to traditional gene knockout methods, which involve completely removing or disrupting the function of a gene. Knockdown techniques allow for more subtle and reversible manipulation of gene expression, making them useful for studying genes that are essential for cell survival or have redundant functions.

These techniques are widely used in molecular biology research to investigate gene function, genetic interactions, and disease mechanisms. However, it is important to note that gene knockdown can have off-target effects and may not completely eliminate the expression of the targeted gene, so results should be interpreted with caution.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Tropism, in the context of medicine and biology, refers to the growth or turning movement of an organism or its parts (like cells, roots, etc.) in response to an external stimulus such as light, gravity, touch, or chemical substances. This phenomenon is most commonly observed in plants, but it can also occur in certain types of animal cells. In a medical context, the term "tropism" is sometimes used to describe the preference of a virus or other infectious agent to attach to and invade specific types of cells in the body.

In a medical or scientific context, "Primates" is a biological order that includes various species of mammals, such as humans, apes, monkeys, and prosimians (like lemurs and lorises). This group is characterized by several distinct features, including:

1. A forward-facing eye position, which provides stereoscopic vision and depth perception.
2. Nails instead of claws on most digits, except for the big toe in some species.
3. A rotating shoulder joint that allows for a wide range of motion in the arms.
4. A complex brain with a well-developed cortex, which is associated with higher cognitive functions like problem-solving and learning.
5. Social structures and behaviors, such as living in groups and exhibiting various forms of communication.

Understanding primates is essential for medical and biological research since many human traits, diseases, and behaviors have their origins within this group.

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

HIV (Human Immunodeficiency Virus) is a species of lentivirus (a subgroup of retrovirus) that causes HIV infection and over time, HIV infection can lead to AIDS (Acquired Immunodeficiency Syndrome). This virus attacks the immune system, specifically the CD4 cells, also known as T cells, which are a type of white blood cell that helps coordinate the body's immune response. As HIV destroys these cells, the body becomes more vulnerable to other infections and diseases. It is primarily spread through bodily fluids like blood, semen, vaginal fluids, and breast milk.

It's important to note that while there is no cure for HIV, with proper medical care, HIV can be controlled. Treatment for HIV is called antiretroviral therapy (ART). If taken as prescribed, this medicine reduces the amount of HIV in the body to a very low level, which keeps the immune system working and prevents illness. This treatment also greatly reduces the risk of transmission.

Viral regulatory and accessory proteins are a type of viral protein that play a role in the regulation of viral replication, gene expression, and host immune response. These proteins are not directly involved in the structural components of the virus but instead help to modulate the environment inside the host cell to facilitate viral replication and evade the host's immune system.

Regulatory proteins control various stages of the viral life cycle, such as transcription, translation, and genome replication. They may also interact with host cell regulatory proteins to alter their function and promote viral replication. Accessory proteins, on the other hand, are non-essential for viral replication but can enhance viral pathogenesis or modulate the host's immune response.

The specific functions of viral regulatory and accessory proteins vary widely among different viruses. For example, in human immunodeficiency virus (HIV), the Tat protein is a regulatory protein that activates transcription of the viral genome, while the Vpu protein is an accessory protein that downregulates the expression of CD4 receptors on host cells to prevent superinfection.

Understanding the functions of viral regulatory and accessory proteins is important for developing antiviral therapies and vaccines, as these proteins can be potential targets for inhibiting viral replication or modulating the host's immune response.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

A viral genome is the genetic material (DNA or RNA) that is present in a virus. It contains all the genetic information that a virus needs to replicate itself and infect its host. The size and complexity of viral genomes can vary greatly, ranging from a few thousand bases to hundreds of thousands of bases. Some viruses have linear genomes, while others have circular genomes. The genome of a virus also contains the information necessary for the virus to hijack the host cell's machinery and use it to produce new copies of the virus. Understanding the genetic makeup of viruses is important for developing vaccines and antiviral treatments.

A domestic sheep (Ovis aries) is not a medical term, but it is an animal species that humans keep and breed for a variety of purposes, including meat, wool, and milk production. While the term "sheep" may appear in medical contexts, such as in discussions of zoonotic diseases (diseases transmissible between animals and humans), the specific definition you are looking for is not medical in nature. Domestic sheep are social herbivores that prefer to eat short grasses and can be found in various parts of the world. They have been domesticated for thousands of years, making them one of the earliest animals to be domesticated by humans.

Vif ( Viral Infectivity Factor) is a gene product of certain retroviruses, including HIV-1 and HIV-2. It is an accessory protein that plays a crucial role in the viral replication cycle by counteracting the host cell's antiviral defense mechanisms.

The primary function of Vif is to neutralize the host restriction factor APOBEC3G (Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G), which would otherwise be incorporated into viral particles during budding and deaminate cytidine residues in the single-stranded DNA during reverse transcription. This results in hypermutation of the viral genome, leading to the production of nonfunctional viral proteins and ultimately inhibiting viral replication.

Vif binds to APOBEC3G and targets it for ubiquitination and subsequent degradation by the proteasome, thereby preventing its incorporation into virions and allowing efficient viral replication. Vif also interacts with other host factors involved in the ubiquitination pathway, such as CUL5 (Cullin 5) and ELOBC3 (Elongin B3), to form an E3 ubiquitin ligase complex that mediates APOBEC3G degradation.

In summary, Vif is a gene product of certain retroviruses that counteracts the host's antiviral defense mechanisms by neutralizing the restriction factor APOBEC3G and allowing efficient viral replication.

There is no single medical definition for "Monkey Diseases." However, monkeys can carry and be infected with various diseases that are zoonotic, meaning they can be transmitted from animals to humans. Some examples include:

1. Simian Immunodeficiency Virus (SIV): A virus similar to Human Immunodeficiency Virus (HIV) that causes AIDS in monkeys. It is not typically harmful to monkeys but can cause AIDS in humans if transmitted, which is rare.
2. Herpes B Virus: Also known as Macacine herpesvirus 1 or Cercopithecine herpesvirus 1, it is a virus that commonly infects macaque monkeys. It can be transmitted to humans through direct contact with an infected monkey's saliva, eye fluid, or cerebrospinal fluid, causing a severe and potentially fatal illness called B encephalitis.
3. Tuberculosis (TB): Monkeys can contract and transmit tuberculosis to humans, although it is not common.
4. Simian Retrovirus (SRV): A virus that can infect both monkeys and great apes, causing immunodeficiency similar to HIV/AIDS in humans. It is not known to infect or cause disease in humans.
5. Various parasitic diseases: Monkeys can carry and transmit several parasites, including malaria-causing Plasmodium species, intestinal worms, and other parasites that can affect human health.

It's important to note that while monkeys can carry and transmit these diseases, the risk of transmission is generally low, and most cases occur in individuals who have close contact with monkeys, such as primatologists, zookeepers, or laboratory workers. Always follow safety guidelines when interacting with animals, including monkeys, to minimize the risk of disease transmission.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

A gene product is the biochemical material, such as a protein or RNA, that is produced by the expression of a gene. The term "gene products, rev" is not a standard medical or scientific term, and its meaning is not immediately clear without additional context. However, "rev" is sometimes used in molecular biology to denote reverse orientation or transcription, so "gene products, rev" might refer to RNA molecules that are produced when a gene is transcribed in the opposite direction from what is typically observed.

It's important to note that not all genes produce protein products; some genes code for RNAs that have regulatory or structural functions, while others produce both proteins and RNA molecules. The study of gene products and their functions is an important area of research in molecular biology and genetics, as it can provide insights into the underlying mechanisms of genetic diseases and other biological processes.

A virion is the complete, infectious form of a virus outside its host cell. It consists of the viral genome (DNA or RNA) enclosed within a protein coat called the capsid, which is often surrounded by a lipid membrane called the envelope. The envelope may contain viral proteins and glycoproteins that aid in attachment to and entry into host cells during infection. The term "virion" emphasizes the infectious nature of the virus particle, as opposed to non-infectious components like individual capsid proteins or naked viral genome.

A "gene product" is the biochemical material that results from the expression of a gene. This can include both RNA and protein molecules. In the case of the tat (transactivator of transcription) gene in human immunodeficiency virus (HIV), the gene product is a regulatory protein that plays a crucial role in the viral replication cycle.

The tat protein is a viral transactivator, which means it increases the transcription of HIV genes by interacting with various components of the host cell's transcription machinery. Specifically, tat binds to a complex called TAR (transactivation response element), which is located in the 5' untranslated region of all nascent HIV mRNAs. By binding to TAR, tat recruits and activates positive transcription elongation factor b (P-TEFb), which then phosphorylates the carboxy-terminal domain of RNA polymerase II, leading to efficient elongation of HIV transcripts.

The tat protein is essential for HIV replication, as it enhances viral gene expression and promotes the production of new virus particles. Inhibiting tat function has been a target for developing antiretroviral therapies against HIV infection.

A viral RNA (ribonucleic acid) is the genetic material found in certain types of viruses, as opposed to viruses that contain DNA (deoxyribonucleic acid). These viruses are known as RNA viruses. The RNA can be single-stranded or double-stranded and can exist as several different forms, such as positive-sense, negative-sense, or ambisense RNA. Upon infecting a host cell, the viral RNA uses the host's cellular machinery to translate the genetic information into proteins, leading to the production of new virus particles and the continuation of the viral life cycle. Examples of human diseases caused by RNA viruses include influenza, COVID-19 (SARS-CoV-2), hepatitis C, and polio.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

I'm sorry for any confusion, but "Macaca" is not a medical term. It is the name of a genus that includes several species of monkeys, commonly known as macaques. These primates are often used in biomedical research due to their similarities with humans in terms of genetics and physiology. If you have any questions related to medicine or health, I would be happy to try to help answer them.

Retroviridae is a family of viruses that includes HIV (Human Immunodeficiency Virus). Retroviridae proteins refer to the various structural and functional proteins that are encoded by the retroviral genome. These proteins can be categorized into three main groups:

1. Group-specific antigen (Gag) proteins: These proteins make up the viral matrix, capsid, and nucleocapsid. They are involved in the assembly of new virus particles.

2. Polymerase (Pol) proteins: These proteins include the reverse transcriptase, integrase, and protease enzymes. Reverse transcriptase is responsible for converting the viral RNA genome into DNA, which can then be integrated into the host cell's genome by the integrase enzyme. The protease enzyme is involved in processing the polyprotein precursors of Gag and Pol into their mature forms.

3. Envelope (Env) proteins: These proteins are responsible for the attachment and fusion of the virus to the host cell membrane. They are synthesized as a precursor protein, which is then cleaved by a host cell protease to form two distinct proteins - the surface unit (SU) and the transmembrane unit (TM). The SU protein contains the receptor-binding domain, while the TM protein forms the transmembrane anchor.

Retroviral proteins play crucial roles in various stages of the viral life cycle, including entry, reverse transcription, integration, transcription, translation, assembly, and release. Understanding the functions of these proteins is essential for developing effective antiretroviral therapies and vaccines against retroviral infections.

Doxycycline is a broad-spectrum antibiotic, which is a type of medication used to treat infections caused by bacteria and other microorganisms. It belongs to the tetracycline class of antibiotics. Doxycycline works by inhibiting the production of proteins that bacteria need to survive and multiply.

Doxycycline is used to treat a wide range of bacterial infections, including respiratory infections, skin infections, urinary tract infections, sexually transmitted diseases, and severe acne. It is also used to prevent malaria in travelers who are visiting areas where malaria is common.

Like all antibiotics, doxycycline should be taken exactly as directed by a healthcare professional. Misuse of antibiotics can lead to the development of drug-resistant bacteria, which can make infections harder to treat in the future.

It's important to note that doxycycline can cause photosensitivity, so it is recommended to avoid prolonged sun exposure and use sun protection while taking this medication. Additionally, doxycycline should not be taken during pregnancy or by children under the age of 8 due to potential dental and bone development issues.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Mononuclear leukocytes are a type of white blood cells (leukocytes) that have a single, large nucleus. They include lymphocytes (B-cells, T-cells, and natural killer cells), monocytes, and dendritic cells. These cells play important roles in the body's immune system, including defending against infection and disease, and participating in immune responses and surveillance. Mononuclear leukocytes can be found in the bloodstream as well as in tissues throughout the body. They are involved in both innate and adaptive immunity, providing specific and nonspecific defense mechanisms to protect the body from harmful pathogens and other threats.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

A viral vaccine is a biological preparation that introduces your body to a specific virus in a way that helps your immune system build up protection against the virus without causing the illness. Viral vaccines can be made from weakened or inactivated forms of the virus, or parts of the virus such as proteins or sugars. Once introduced to the body, the immune system recognizes the virus as foreign and produces an immune response, including the production of antibodies. These antibodies remain in the body and provide immunity against future infection with that specific virus.

Viral vaccines are important tools for preventing infectious diseases caused by viruses, such as influenza, measles, mumps, rubella, polio, hepatitis A and B, rabies, rotavirus, chickenpox, shingles, and some types of cancer. Vaccination programs have led to the control or elimination of many infectious diseases that were once common.

It's important to note that viral vaccines are not effective against bacterial infections, and separate vaccines must be developed for each type of virus. Additionally, because viruses can mutate over time, it is necessary to update some viral vaccines periodically to ensure continued protection.

Endogenous retroviruses (ERVs) are DNA sequences that have integrated into the genome of germ cells and are therefore passed down from parent to offspring through generations. These sequences are the remnants of ancient retroviral infections, where the retrovirus has become a permanent part of the host's genetic material.

Retroviruses are RNA viruses that replicate by reverse transcribing their RNA genome into DNA and integrating it into the host cell's genome. When this integration occurs in the germ cells, the retroviral DNA becomes a permanent part of the host organism's genome and is passed down to future generations.

Over time, many ERVs have accumulated mutations that render them unable to produce infectious viral particles. However, some ERVs remain capable of producing functional viral proteins and RNA, and may even be able to produce infectious viral particles under certain conditions. These active ERVs can play a role in various biological processes, both beneficial and detrimental, such as regulating gene expression, contributing to genome instability, and potentially causing disease.

It is estimated that up to 8% of the human genome consists of endogenous retroviral sequences, making them an important component of our genetic makeup.

"Macaca nemestrina," also known as the pig-tailed macaque, is not a medical term but a species name in biology. It refers to a specific species of monkey that is native to Southeast Asia. The pig-tailed macaque is a medium-sized monkey with a reddish-brown fur and a distinctive tail that resembles a pig's tail. They are omnivorous and live in social groups that can range from a few individuals to several hundred.

While "Macaca nemestrina" may not have a direct medical definition, these monkeys have been used as models in biomedical research due to their close genetic relationship with humans. Some studies involving pig-tailed macaques have contributed to our understanding of various human diseases and conditions, such as infectious diseases, neurological disorders, and reproductive health. However, it is important to note that the use of animals in research remains a controversial topic, and ethical considerations must be taken into account when conducting such studies.

Vesicular stomatitis Indiana virus (VSIV) is a single-stranded, negative-sense RNA virus that belongs to the family Rhabdoviridae and genus Vesiculovirus. It is the causative agent of vesicular stomatitis (VS), a viral disease that primarily affects horses and cattle, but can also infect other species including swine, sheep, goats, and humans.

The virus is transmitted through direct contact with infected animals or their saliva, as well as through insect vectors such as black flies and sandflies. The incubation period for VS ranges from 2 to 8 days, after which infected animals develop fever, lethargy, and vesicular lesions in the mouth, nose, and feet. These lesions can be painful and may cause difficulty eating or walking.

In humans, VSIV infection is typically asymptomatic or causes mild flu-like symptoms such as fever, muscle aches, and headache. Occasionally, individuals may develop vesicular lesions on their skin or mucous membranes, particularly if they have had contact with infected animals.

Diagnosis of VSIV infection is typically made through virus isolation from lesion exudates or blood, as well as through serological testing. Treatment is generally supportive and aimed at relieving symptoms, as there are no specific antiviral therapies available for VS. Prevention measures include vaccination of susceptible animals, vector control, and biosecurity measures to prevent the spread of infection between animals.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Neutralization tests are a type of laboratory assay used in microbiology and immunology to measure the ability of a substance, such as an antibody or antitoxin, to neutralize the activity of a toxin or infectious agent. In these tests, the substance to be tested is mixed with a known quantity of the toxin or infectious agent, and the mixture is then incubated under controlled conditions. After incubation, the mixture is tested for residual toxicity or infectivity using a variety of methods, such as cell culture assays, animal models, or biochemical assays.

The neutralization titer is then calculated based on the highest dilution of the test substance that completely neutralizes the toxin or infectious agent. Neutralization tests are commonly used in the diagnosis and evaluation of immune responses to vaccines, as well as in the detection and quantification of toxins and other harmful substances.

Examples of neutralization tests include the serum neutralization test for measles antibodies, the plaque reduction neutralization test (PRNT) for dengue virus antibodies, and the cytotoxicity neutralization assay for botulinum neurotoxins.

Vpr is a protein that is encoded by the viral protein R (vpr) gene in the human immunodeficiency virus (HIV). The vpr gene is one of the accessory genes in HIV that are not essential for viral replication but contribute to the pathogenesis of the infection.

The Vpr protein plays a role in the regulation of the viral life cycle and the host cell response to infection. It can induce cell cycle arrest, promote nuclear import of the viral DNA, and enhance viral transcription. Additionally, Vpr has been shown to have pro-apoptotic activity, contributing to CD4+ T cell depletion and disease progression in HIV infection.

Vpr is also involved in the transport of the viral particle into the nucleus of non-dividing cells, such as macrophages, allowing for efficient replication in these cells. Overall, Vpr is an important virulence factor in HIV infection and has been a target for antiretroviral therapy development.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

The HIV Long Terminal Repeat (LTR) is a regulatory region of the human immunodeficiency virus (HIV) genome that contains important sequences necessary for the transcription and replication of the virus. The LTR is divided into several functional regions, including the U3, R, and U5 regions.

The U3 region contains various transcription factor binding sites that regulate the initiation of viral transcription. The R region contains a promoter element that helps to recruit the enzyme RNA polymerase II for the transcription process. The U5 region contains signals required for the proper processing and termination of viral RNA transcription.

The LTR plays a crucial role in the life cycle of HIV, as it is involved in the integration of the viral genome into the host cell's DNA, allowing the virus to persist and replicate within the infected cell. Understanding the function and regulation of the HIV LTR has been an important area of research in the development of HIV therapies and potential vaccines.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Virus assembly, also known as virion assembly, is the final stage in the virus life cycle where individual viral components come together to form a complete viral particle or virion. This process typically involves the self-assembly of viral capsid proteins around the viral genome (DNA or RNA) and, in enveloped viruses, the acquisition of a lipid bilayer membrane containing viral glycoproteins. The specific mechanisms and regulation of virus assembly vary among different viral families, but it is often directed by interactions between viral structural proteins and genomic nucleic acid.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Medical Definition:

Murine leukemia virus (MLV) is a type of retrovirus that primarily infects and causes various types of malignancies such as leukemias and lymphomas in mice. It is a complex genus of viruses, with many strains showing different pathogenic properties.

MLV contains two identical single-stranded RNA genomes and has the ability to reverse transcribe its RNA into DNA upon infection, integrating this proviral DNA into the host cell's genome. This is facilitated by an enzyme called reverse transcriptase, which MLV carries within its viral particle.

The virus can be horizontally transmitted between mice through close contact with infected saliva, urine, or milk. Vertical transmission from mother to offspring can also occur either in-utero or through the ingestion of infected breast milk.

MLV has been extensively studied as a model system for retroviral pathogenesis and tumorigenesis, contributing significantly to our understanding of oncogenes and their role in cancer development. It's important to note that Murine Leukemia Virus does not infect humans.

I'm happy to help! However, I believe there may be a slight misunderstanding in your question. "VPR" is not a term that is typically associated with genes in the context of medical or genetic definitions.

VPR can refer to the viral protein R of certain retroviruses, such as HIV-1. Vpr is a regulatory protein that plays a role in the replication and pathogenesis of the virus. It has been studied for its potential as a target for antiretroviral therapy.

If you meant to ask about a specific gene related to VPR or another medical topic, please provide more context or clarify your question, and I will do my best to help you find the information you are looking for!

Ross River virus (RRV) is an infectious disease caused by the Ross River virus, which is a type of alphavirus. It is transmitted to humans through the bite of infected mosquitoes, primarily Aedes vigilax, Culex annulirostris, and Culex australicus in Australia.

RRV is endemic to Australia, Papua New Guinea, and some islands in the Pacific Ocean. The symptoms of RRV include fever, rash, joint pain and swelling, muscle aches, fatigue, and headache, which can last for several weeks to months. In severe cases, it can lead to chronic arthritis and other long-term complications.

There is no specific treatment for RRV, and management typically involves relieving symptoms with rest, fluids, and pain relief medications. Preventive measures include avoiding mosquito bites by using insect repellent, wearing protective clothing, and staying indoors during peak mosquito activity hours.

The choroid plexus is a network of blood vessels and tissue located within each ventricle (fluid-filled space) of the brain. It plays a crucial role in the production of cerebrospinal fluid (CSF), which provides protection and nourishment to the brain and spinal cord.

The choroid plexus consists of modified ependymal cells, called plexus epithelial cells, that line the ventricular walls. These cells have finger-like projections called villi, which increase their surface area for efficient CSF production. The blood vessels within the choroid plexus transport nutrients, ions, and water to these epithelial cells, where they are actively secreted into the ventricles to form CSF.

In addition to its role in CSF production, the choroid plexus also acts as a barrier between the blood and the central nervous system (CNS), regulating the exchange of substances between them. This barrier function is primarily attributed to tight junctions present between the epithelial cells, which limit the paracellular movement of molecules.

Abnormalities in the choroid plexus can lead to various neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or certain types of brain tumors.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Spumavirus is actually referred to as " foamy virus" in medical terminology. It's a type of retrovirus, which means it uses RNA as its genetic material and has the ability to integrate its genetic material into the DNA of the host cell.

Spumaviruses are unique among retroviruses because they don't cause the same kind of diseases that other retroviruses do, like HIV. Instead, they're associated with a slow-growing, non-cancerous infection in various animal species, including cats and non-human primates. They're called "foamy viruses" because of the foamy or bubbly appearance of the infected cells when viewed under a microscope.

It's important to note that while spumaviruses can infect human cells in laboratory experiments, there's no evidence that they cause disease in humans.

Virus internalization, also known as viral entry, is the process by which a virus enters a host cell to infect it and replicate its genetic material. This process typically involves several steps:

1. Attachment: The viral envelope proteins bind to specific receptors on the surface of the host cell.
2. Entry: The virus then enters the host cell through endocytosis or membrane fusion, depending on the type of virus.
3. Uncoating: Once inside the host cell, the viral capsid is removed, releasing the viral genome into the cytoplasm.
4. Replication: The viral genome then uses the host cell's machinery to replicate itself and produce new viral particles.

It's important to note that the specific mechanisms of virus internalization can vary widely between different types of viruses, and are an active area of research in virology and infectious disease.

Viral load refers to the amount or quantity of virus (like HIV, Hepatitis C, SARS-CoV-2) present in an individual's blood or bodily fluids. It is often expressed as the number of virus copies per milliliter of blood or fluid. Monitoring viral load is important in managing and treating certain viral infections, as a higher viral load may indicate increased infectivity, disease progression, or response to treatment.

The "vpr gene products" refer to the proteins produced by the vpr gene in the human immunodeficiency virus (HIV). The vpr gene is one of the accessory genes found in the HIV genome. It encodes for a viral protein, Vpr, which plays several roles during the viral replication cycle and infection process.

Vpr is a small, 96-amino acid protein that has multiple functions:

1. Nuclear localization: Vpr helps in the transport of the viral DNA into the nucleus of the infected cell by interacting with importin-α, a cellular protein responsible for nuclear import.
2. Cell cycle arrest: Vpr can induce G2 phase cell cycle arrest in infected cells, which may promote efficient viral replication and assembly.
3. Apoptosis (programmed cell death): Vpr has been shown to induce apoptosis in certain cell types, contributing to the cytopathic effects of HIV infection.
4. Virion packaging: Vpr is incorporated into newly assembled virions during the budding process, allowing it to be transmitted to neighboring cells during subsequent rounds of infection.
5. Transcriptional regulation: Vpr can interact with cellular proteins involved in transcriptional regulation, potentially modulating host gene expression and contributing to HIV pathogenesis.

Overall, vpr gene products play a significant role in the HIV replication cycle and contribute to viral pathogenesis by inducing cell cycle arrest, apoptosis, and altering host cell gene expression.

A capsid is the protein shell that encloses and protects the genetic material of a virus. It is composed of multiple copies of one or more proteins that are arranged in a specific structure, which can vary in shape and symmetry depending on the type of virus. The capsid plays a crucial role in the viral life cycle, including protecting the viral genome from host cell defenses, mediating attachment to and entry into host cells, and assisting with the assembly of new virus particles during replication.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

ISBN 978-1-4511-0563-6. ICTV taxonomy of Lentivirus "Lentiviruses In Ungulates. I. General Features, History And Prevalence" ( ... Lentiviruses are distributed worldwide, and are known to be hosted in apes, cows, goats, horses, cats, and sheep as well as ... Lentivirus is primarily a research tool used to introduce a gene product into in vitro systems or animal models. Large-scale ... Lentiviruses can integrate a significant amount of viral complementary DNA into the DNA of the host cell and can efficiently ...
... (PLV) is a retrovirus. A study in 2003 indicated that domestic cats infected with Puma lentivirus or Lion ... VandeWoude S, Hageman CL, Hoover EA (September 2003). "Domestic cats infected with lion or puma lentivirus develop anti-feline ... lentivirus (LLV) began producing anti-FIV immune responses. ...
In gene therapy, adenoviruses differ from lentiviruses in many ways, some of which provide advantages over lentiviruses. ... The lentivirus is a retrovirus, meaning it has a single stranded RNA genome with a reverse transcriptase enzyme. Lentiviruses ... or deleted in organisms using lentiviruses. Lentiviruses are a family of viruses that are responsible for diseases like AIDS, ... More specifically, lentiviruses attach to the CD4 glycoproteins on the surface of a host's target cell. The viral material is ...
One of the identifying characteristics of lentiviruses is being able to infect non-dividing cells. BIV, being a lentivirus has ... Bovine immunodeficiency virus (BIV) is a retrovirus belonging to the genus Lentivirus. It is similar to the human ... In primate lentiviruses there is usually an ORF for nef (negative factor); this is not present in BIV. BIV has a structure like ... a comparison with other lentiviruses". Anim Health Res Rev. 5 (2): 125-43. doi:10.1079/ahr200496. PMID 15984320. Gonda MA (1992 ...
Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (November 1998). "A third-generation lentivirus vector ... producing sufficient amounts of high-quality lentivirus; (v) overcoming low transformation efficiency; (vi) proper scaling of ...
Katzourakis A, Tristem M, Pybus OG, Gifford RJ (April 2007). "Discovery and analysis of the first endogenous lentivirus". ... and 12 million years for the Lentivirus genus of the Retroviridae family. EVEs also facilitate the use of molecular clock-based ...
"Evolution of the primate lentiviruses: evidence from vpx and vpr." The EMBO journal 11, no. 9 (1992): 3405-3412. Marshall, ... "Origin of vpx in lentiviruses." Nature 347, no. 6291 (1990): 341-342. Denton, Michael, and Craig Marshall. "Laws of form ...
Poli, A.; Abramo, F.; Cavicchio, P.; Bandecchi, P.; Ghelardi, E.; Pistello, M. (1995). "Lentivirus infection in an African lion ... Feline immunodeficiency virus and lentivirus also affect captive lions. When resting, lion socialisation occurs through a ...
... (also known as Visna virus, Maedi-visna virus and Ovine lentivirus) from the genus Lentivirus and subfamily ... This causal lentivirus can be found in monocytes, lymphocytes and macrophages of infected sheep in the presence of humoral and ... The dUTPase enzyme is not present in all lentiviruses. The role of the dUTPase in the visna virus life cycle is unclear. ... The visna virus genome resembles that of other lentiviruses, in terms of the gene functions that are present. Visna virus is ...
Additionally, lentiviruses are also highly endemic in Africa infecting not only felids, but also primates, and ungulate species ... FIV and HIV are both lentiviruses. However, humans cannot be infected by FIV, nor can cats be infected by HIV. FIV is ... FIV displays a similar structure to the primate and ungulate lentiviruses. The virion has a diameter from 80 to 100 nanometers ... In common with other lentiviruses, the FIV genome encodes additional short open reading frames (ORFs) encoding the Vif and Rev ...
Lentiviruses such as HIV-1 have acquired proteins such as Nef which perform a wide array of functions including the ... Piguet V, Trono D (1999). "The Nef protein of primate lentiviruses". Rev. Med. Virol. 9 (2): 111-20. doi:10.1002/(SICI)1099- ... Nef (Negative Regulatory Factor) is a small 27-35 kDa myristoylated protein encoded by primate lentiviruses. These include ...
... which raises concerns for possible applications of lentiviruses in gene therapy. However, studies have shown that lentivirus ... To produce a lentivirus, several plasmids are transfected into a so-called packaging cell line, commonly HEK 293. One or more ... Lentiviruses are a subclass of retroviruses. They are sometimes used as vectors for gene therapy thanks to their ability to ... As opposed to lentiviruses, adenoviral DNA does not integrate into the genome and is not replicated during cell division.: 5 ...
Bulliard Y, Wiznerowicz M, Barde I, Trono D (Nov 2006). "KRAB can repress lentivirus proviral transcription independently of ...
"A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution". Proceedings ... The simian (monkey-hosted) immunodeficiency viruses are a species of retrovirus in the Primate group of genus Lentivirus along ... In 2008, discovery of an endogenous lentivirus in a prosimian (proto-monkey) primate, the gray mouse lemur native to Madagascar ... Peeters M, Courgnaud V, Abela B (2001). "Genetic Diversity of Lentiviruses in Non-Human Primates" (PDF). AIDS Reviews. 3: 3-10 ...
The virus is a lentivirus, like human immunodeficiency virus (HIV). Like HIV, EIA can be transmitted through blood, milk, and ...
Desport, Moira (2010). Lentiviruses and Macrophages: Molecular and Cellular Interactions. Horizon Scientific Press. ISBN ...
This is unlike Lentivirus, a genus of Retroviridae, which are able to integrate their RNA into the genome of non-dividing host ... The lentivirus genus, the spumavirus genus, the HTLV / bovine leukemia virus (BLV) genus, and a newly introduced fish virus ... Lentiviruses (slow viruses) include HIV-1 and HIV-2, the cause of acquired immune deficiency syndrome (AIDS) in humans. ... 2010). Lentiviruses and Macrophages: Molecular and Cellular Interactions. Caister Academic. ISBN 978-1-904455-60-8. Ross, S. R ...
The disease was later determined to be caused by a lentivirus. Domesticated banteng were first introduced to Australia in 1849 ...
Gifford, Robert J. (2012-02-01). "Viral evolution in deep time: lentiviruses and mammals". Trends in Genetics. 28 (2): 89-100. ...
Most commonly, this is done using a lentivirus that encodes the transgene. Pseudotyped, self-inactivating lentiviruses are an ... December 1998). "Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery". Journal of Virology. 72 (12 ...
Robertson JS, Cichutek K. Dev Biol (Basel). 2000; 104:53-6. PMID 11713824 A novel lentivirus vector derived from apathogenic ...
While lentivirus transduction generally causes lower genotoxicity but with lower transfection efficiency. Main article: see ...
Lentiviruses integrate into sections of transcriptionally active chromatin and are thus passed on to progeny cells. With this ... and lentiviruses. With adeno-associated viruses and adenoviruses, the genomes remain episomal. This is advantageous as ... the risk can be reduced by using an integrase-deficient lentivirus. Once the vector has integrated into the host genome, the ...
Additionally, these viruses have been identified in animals that most often carry lentiviruses. The name foamy virus can be ... While replication is similar to lentiviruses with regards to the aforementioned promoter regions, it is also similar to the ... Current research may suggest that equine foamy virus serves as a cofactor in the contraction of equine lentivirus infection. ... It shares similarities, with respect to replication, with lentiviruses. EFV, along with other FVs are from the family ...
Dunham SP (2006). "Lessons from the cat: development of vaccines against lentiviruses". Veterinary Immunology and ...
Lentiviruses have many morphologies and biological properties in common. Many species are infected by lentiviruses, which are ... Lentiviruses are transmitted as single-stranded, positive-sense, enveloped RNA viruses. Upon entry into the target cell, the ... Chen J, Powell D, Hu WS (2006). "High frequency of genetic recombination is a common feature of primate lentivirus replication ... The human immunodeficiency viruses (HIV) are two species of Lentivirus (a subgroup of retrovirus) that infect humans. Over time ...
... insights from animal lentiviruses". Journal of Virology. 74 (16): 7187-95. doi:10.1128/JVI.74.16.7187-7195.2000. PMC 112239. ...
... Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin, Nature ... "Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin". Nature. 406 (6791): 82- ...
Vectors like lentivirus and adeno-associated virus have been used in this method. This method allows for targeting of ...
Wang T, Hao L, Feng Y, Wang G, Qin D, Gu G (2011). "Knockdown of MED19 by lentivirus-mediated shRNA in human osteosarcoma cells ... Li LH, He J, Hua D, Guo ZJ, Gao Q (2011). "Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in ...

No FAQ available that match "lentivirus"

No images available that match "lentivirus"