Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
A normal intermediate in the fermentation (oxidation, metabolism) of sugar. The concentrated form is used internally to prevent gastrointestinal fermentation. (From Stedman, 26th ed)
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
A family of proteins involved in the transport of monocarboxylic acids such as LACTIC ACID and PYRUVIC ACID across cellular membranes.
Pyruvates, in the context of medical and biochemistry definitions, are molecules that result from the final step of glycolysis, containing a carboxylic acid group and an aldehyde group, playing a crucial role in cellular metabolism, including being converted into Acetyl-CoA to enter the Krebs cycle or lactate under anaerobic conditions.
An intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures. (From Stedman, 26th ed)
Alcohol oxidoreductases with substrate specificity for LACTIC ACID.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
A species ARTERIVIRUS, occurring in a number of transplantable mouse tumors. Infected mice have permanently elevated serum levels of lactate dehydrogenase.
Acidosis caused by accumulation of lactic acid more rapidly than it can be metabolized. It may occur spontaneously or in association with diseases such as DIABETES MELLITUS; LEUKEMIA; or LIVER FAILURE.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
Biosynthesis of GLUCOSE from nonhexose or non-carbohydrate precursors, such as LACTATE; PYRUVATE; ALANINE; and GLYCEROL.
Amino-substituted glyoxylic acid derivative.
The chemical reactions involved in the production and utilization of various forms of energy in cells.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Glycogen is a multibranched polysaccharide of glucose serving as the primary form of energy storage in animals, fungi, and bacteria, stored mainly in liver and muscle tissues. (Two sentences combined as per your request)
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
A derivative of ACETIC ACID that contains two CHLORINE atoms attached to its methyl group.
Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996)
Salts and esters of hydroxybutyric acid.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
The rate dynamics in chemical or physical systems.
Treatment process involving the injection of fluid into an organ or tissue.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
The oxygen consumption level above which aerobic energy production is supplemented by anaerobic mechanisms during exercise, resulting in a sustained increase in lactate concentration and metabolic acidosis. The anaerobic threshold is affected by factors that modify oxygen delivery to the tissues; it is low in patients with heart disease. Methods of measurement include direct measure of lactate concentration, direct measurement of bicarbonate concentration, and gas exchange measurements.
Salts and derivatives of acetoacetic acid.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Glucose in blood.
Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.
The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The metabolic substances ACETONE; 3-HYDROXYBUTYRIC ACID; and acetoacetic acid (ACETOACETATES). They are produced in the liver and kidney during FATTY ACIDS oxidation and used as a source of energy by the heart, muscle and brain.
Elements of limited time intervals, contributing to particular results or situations.
Life or metabolic reactions occurring in an environment containing oxygen.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure.
A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins.
A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.
A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.
Lengthy and continuous deprivation of food. (Stedman, 25th ed)
Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity.
Hydroxycinnamic acid and its derivatives. Act as activators of the indoleacetic acid oxidizing system, thereby producing a decrease in the endogenous level of bound indoleacetic acid in plants.
Disturbances in the ACID-BASE EQUILIBRIUM of the body.
A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.
ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40.
BUTYRIC ACID substituted in the beta or 3 position. It is one of the ketone bodies produced in the liver.
A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The first chemical element in the periodic table. It has the atomic symbol H, atomic number 1, and atomic weight [1.00784; 1.00811]. It exists, under normal conditions, as a colorless, odorless, tasteless, diatomic gas. Hydrogen ions are PROTONS. Besides the common H1 isotope, hydrogen exists as the stable isotope DEUTERIUM and the unstable, radioactive isotope TRITIUM.
Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.
Measurement of oxygen and carbon dioxide in the blood.
Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure.
The time span between the beginning of physical activity by an individual and the termination because of exhaustion.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Contractile tissue that produces movement in animals.
"Malate" is a term used in biochemistry to refer to a salt or ester of malic acid, a dicarboxylic acid found in many fruits and involved in the citric acid cycle, but it does not have a specific medical definition as such.
Relatively complete absence of oxygen in one or more tissues.
One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.
Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group.
Diphosphoric acid esters of fructose. The fructose-1,6- diphosphate isomer is most prevalent. It is an important intermediate in the glycolysis process.
Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
An examination of chemicals in the blood.
A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure.
Membrane transporters that co-transport two or more dissimilar molecules in the same direction across a membrane. Usually the transport of one ion or molecule is against its electrochemical gradient and is "powered" by the movement of another ion or molecule with its electrochemical gradient.
An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.
Infections caused by viruses of the genus ARTERIVIRUS.
A monosaccharide in sweet fruits and honey that is soluble in water, alcohol, or ether. It is used as a preservative and an intravenous infusion in parenteral feeding.
An amino acid that occurs in vertebrate tissues and in urine. In muscle tissue, creatine generally occurs as phosphocreatine. Creatine is excreted as CREATININE in the urine.
Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion.
The use of a bicycle for transportation or recreation. It does not include the use of a bicycle in studying the body's response to physical exertion (BICYCLE ERGOMETRY TEST see EXERCISE TEST).
Solutions prepared for exchange across a semipermeable membrane of solutes below a molecular size determined by the cutoff threshold of the membrane material.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Solutions having the same osmotic pressure as blood serum, or another solution with which they are compared. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed)
Allosteric enzymes that regulate glycolysis and gluconeogenesis. These enzymes catalyze phosphorylation of fructose-6-phosphate to either fructose-1,6-bisphosphate (PHOSPHOFRUCTOKINASE-1 reaction), or to fructose-2,6-bisphosphate (PHOSPHOFRUCTOKINASE-2 reaction).
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.
Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used.
A state due to excess loss of carbon dioxide from the body. (Dorland, 27th ed)
A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
Adenine nucleotides are molecules that consist of an adenine base attached to a ribose sugar and one, two, or three phosphate groups, including adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP), which play crucial roles in energy transfer and signaling processes within cells.
Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7.
A large group of anaerobic bacteria which show up as pink (negative) when treated by the Gram-staining method.
A genus of gram-negative, anaerobic, rod-shaped bacteria capable of reducing sulfur compounds to hydrogen sulfide. Organisms are isolated from anaerobic mud of fresh and salt water, animal intestines, manure, and feces.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
"Citrates, in a medical context, are compounds containing citric acid, often used in medical solutions for their chelating properties and as a part of certain types of nutritional support."
Glycogen stored in the liver. (Dorland, 28th ed)
The release of GLUCOSE from GLYCOGEN by GLYCOGEN PHOSPHORYLASE (phosphorolysis). The released glucose-1-phosphate is then converted to GLUCOSE-6-PHOSPHATE by PHOSPHOGLUCOMUTASE before entering GLYCOLYSIS. Glycogenolysis is stimulated by GLUCAGON or EPINEPHRINE via the activation of PHOSPHORYLASE KINASE.
Five-carbon furanose sugars in which the OXYGEN is replaced by a NITROGEN atom.
Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.
An activity in which the body is propelled by moving the legs rapidly. Running is performed at a moderate to rapid pace and should be differentiated from JOGGING, which is performed at a much slower pace.
Picolinic acid is an organic compound that belongs to the class of pyridine derivatives, acting as a chelating agent in mammals, primarily found in the liver and kidneys, and playing a significant role in the metabolism of proteins, vitamins, and minerals.
A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
The restoration to life or consciousness of one apparently dead. (Dorland, 27th ed)
Analyses for a specific enzyme activity, or of the level of a specific enzyme that is used to assess health and disease risk, for early detection of disease or disease prediction, diagnosis, and change in disease status.
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS.
Diet modification and physical exercise to improve the ability of animals to perform physical activities.
A compound that inhibits aminobutyrate aminotransferase activity in vivo, thereby raising the level of gamma-aminobutyric acid in tissues.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
A biotin-dependent enzyme belonging to the ligase family that catalyzes the addition of CARBON DIOXIDE to pyruvate. It is occurs in both plants and animals. Deficiency of this enzyme causes severe psychomotor retardation and ACIDOSIS, LACTIC in infants. EC 6.4.1.1.
Product of the oxidation of ethanol and of the destructive distillation of wood. It is used locally, occasionally internally, as a counterirritant and also as a reagent. (Stedman, 26th ed)
The flow of BLOOD through or around an organ or region of the body.
Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall.
Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans.
An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
A family of gram-negative bacteria, in the phylum FIRMICUTES.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Hexosephosphates are sugar phosphate molecules, specifically those derived from hexoses (six-carbon sugars), such as glucose-6-phosphate and fructose-6-phosphate, which play crucial roles in various metabolic pathways including glycolysis, gluconeogenesis, and the pentose phosphate pathway.
An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1.
Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.
Trioses are monosaccharides, specifically simple sugars, that contain three carbon atoms, and can be glyceraldehydes or dihydroxyacetones, which are important intermediates in metabolic pathways such as glycolysis.
The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value.
Any method of measuring the amount of work done by an organism, usually during PHYSICAL EXERTION. Ergometry also includes measures of power. Some instruments used in these determinations include the hand crank and the bicycle ergometer.
A ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones it acts as a sunscreening agent.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Any salt or ester of glycerophosphoric acid.

Induction of bovine polioencephalomalacia with a feeding system based on molasses and urea. (1/3648)

Polioencephalomalacia (PEM), a disease first described in the United States and related to intensive beef production, appeared in Cuba coincident with the use of a new, molasses-urea-based diet to fatten bulls. Because the only experimental means so far of reproducing PEM has been with amprolium, a structural analog of thiamin, the present study attempted to induce the disease using the molasses-urea-based diet. Six Holstein bulls (200-300 kg) were studied during consumption of three successive diets: 1) commercial molasses-urea-restricted forage diet of Cuban feedlots, 2) a period in which forage was gradually withdrawn and 3) a forage-free diet composed only of molasses, urea and fish meal. PEM was reproduced in this way. At ten-day intervals, blood concentrations of glucose, lactate, pyruvate and urea were measured, as well as when clinical signs of PEM appeared. The signs, clinical course and lesions of the experimentally induced disease were comparable to those of field cases. The biochemical results suggested a block in pyruvate oxidation as in PEM elsewhere in the world. No evidence existed of urea intoxication. In addition, brain and liver concentration of total thiamin from field cases and normal animals were found to be similar.  (+info)

Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. (2/3648)

Measurement of the flux through the citrate fermentation pathway in resting cells of Lactococcus lactis CRL264 grown in a pH-controlled fermentor at different pH values showed that the pathway was constitutively expressed, but its activity was significantly enhanced at low pH. The flux through the citrate-degrading pathway correlated with the magnitude of the membrane potential and pH gradient that were generated when citrate was added to the cells. The citrate degradation rate and proton motive force were significantly higher when glucose was metabolized at the same time, a phenomenon that could be mimicked by the addition of lactate, the end product of glucose metabolism. The results clearly demonstrate that citrate metabolism in L. lactis is a secondary proton motive force-generating pathway. Although the proton motive force generated by citrate in cells grown at low pH was of the same magnitude as that generated by glucose fermentation, citrate metabolism did not affect the growth rate of L. lactis in rich media. However, inhibition of growth by lactate was relieved when citrate also was present in the growth medium. Citrate did not relieve the inhibition by other weak acids, suggesting a specific role of the citrate transporter CitP in the relief of inhibition. The mechanism of citrate metabolism presented here provides an explanation for the resistance to lactate toxicity. It is suggested that the citrate metabolic pathway is induced under the acidic conditions of the late exponential growth phase to make the cells (more) resistant to the inhibitory effects of the fermentation product, lactate, that accumulates under these conditions.  (+info)

Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4, 6-tribromophenol. (3/3648)

Strain TBP-1, an anaerobic bacterium capable of reductively dehalogenating 2,4,6-tribromophenol to phenol, was isolated from estuarine sediments of the Arthur Kill in the New York/New Jersey harbor. It is a gram-negative, motile, vibrio-shaped, obligate anaerobe which grows on lactate, pyruvate, hydrogen, and fumarate when provided sulfate as an electron acceptor. The organism accumulates acetate when grown on lactate and sulfate, contains desulfoviridin, and will not grow in the absence of NaCl. It will not utilize acetate, succinate, propionate, or butyrate for growth via sulfate reduction. When supplied with lactate as an electron donor, strain TBP-1 will utilize sulfate, sulfite, sulfur, and thiosulfate for growth but not nitrate, fumarate, or acrylate. This organism debrominates 2-, 4-, 2,4-, 2,6-, and 2,4,6-bromophenol but not 3- or 2,3-bromophenol or monobrominated benzoates. It will not dehalogenate monochlorinated, fluorinated, or iodinated phenols or chlorinated benzoates. Together with its physiological characteristics, its 16S rRNA gene sequence places it in the genus Desulfovibrio. The average growth yield of strain TBP-1 grown on a defined medium supplemented with lactate and 2,4,6-bromophenol is 3.71 mg of protein/mmol of phenol produced, and the yield was 1.42 mg of protein/mmol of phenol produced when 4-bromophenol was the electron acceptor. Average growth yields (milligrams of protein per millimole of electrons utilized) for Desulfovibrio sp. strain TBP-1 grown with 2,4,6-bromophenol, 4-bromophenol, or sulfate are 0.62, 0.71, and 1.07, respectively. Growth did not occur when either lactate or 2,4,6-bromophenol was omitted from the growth medium. These results indicate that Desulfovibrio sp. strain TBP-1 is capable of growth via halorespiration.  (+info)

Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. (4/3648)

A thermophilic bacterium that can use O2, NO3-, Fe(III), and S0 as terminal electron acceptors for growth was isolated from groundwater sampled at a 3.2-km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rRNA gene (rDNA) sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors. Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus strain SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could reduce only relatively small quantities (0.5 mM) of hydrous ferric oxide except when the humic acid analog 2,6-anthraquinone disulfonate was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II); reduction of Fe(III)-NTA was coupled to the oxidation of lactate and supported growth through three consecutive transfers. Suspensions of Thermus strain SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and U(VI). Mn(IV)-oxide was reduced in the presence of either lactate or H2. Both strains were also able to mineralize NTA to CO2 and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus strains SA-01 and NMX2 A.1 is approximately 65 degrees C; their optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn, or S.  (+info)

Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. (5/3648)

The acid tolerance of Escherichia coli O157:H7 strains can be overcome by addition of lactate, ethanol, or a combination of the two agents. Killing can be increased by as much as 4 log units in the first 5 min of incubation at pH 3 even for the most acid-tolerant isolates. Exponential-phase, habituated, and stationary-phase cells are all sensitive to incubation with lactate and ethanol. Killing correlates with disruption of the capacity for pH homeostasis. Habituated and stationary-phase cells can partially offset the effects of the lowering of cytoplasmic pH.  (+info)

Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. (6/3648)

1. The metabolic processes that occur around the tendon during mechanical loading and exercise are undescribed in man. These processes are important for understanding the development of overuse inflammation and injury. 2. A microdialysis technique was used to determine interstitial concentrations of glycerol, glucose, lactate, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) as well as to calculate tissue substrate balance in the peritendinous region of the human Achilles tendon. Recovery of 48-62 % (range) at rest and 70-77 % during exercise were obtained for glycerol, glucose and PGE2. 3. Six young healthy humans were studied at rest, during 30 min of intermittent static plantar flexion of the ankle at a workload corresponding to individual body weight, and during 60 min of recovery. Microdialysis was performed in both legs with simultaneous determination of blood flow by 133Xe washout in the same area, and blood sampling from the radial artery. 4. With exercise, the net release of lactate as well as of glycerol from the peritendinous space of the Achilles tendon increased 2-fold (P < 0.05). Furthermore a 100 % increase in interstitial concentration of PGE2 and TXB2 was found, but it was only significant for TXB2(P < 0.05). As peritendinous blood flow increased 2- to 3-fold during intermittent static contractions, this indicates also that the output of these substances from the tissue increased during exercise. 5. This study indicates that both lipid and carbohydrate metabolism as well as inflammatory activity is accelerated in the peritendinous region of the human Achilles tendon with dynamic loading.  (+info)

Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. (7/3648)

1. Arteriovenous differences fro amino acids across kidneys of normal and chronically acidotic rats were measured. Glutamine was the only amino acid extracted in increased amounts in acidosis. There was a considerable production of serine by kidneys from both normal and acidotic rats. 2. The arterial blood concentration of glutamine was significantly decreased in acidotic animals. 3. The glutamine extracted by kidneys of acidotic rats was largely and probably exclusively derived from the plasma. 4. The blood lactate concentration was unchanged in acidosis, as was the uptake of lactate by the kidney.  (+info)

Effect of ornithine and lactate on urea synthesis in isolated hepatocytes. (8/3648)

1. In hepatocytes isolated from 24 h-starved rats, urea production from ammonia was stimulated by addition of lactate, in both the presence and the absence of ornithine. The relationship of lactate concentration to the rate of urea synthesis was hyperbolic. 2. Other glucose precursors also stimulated urea production to varying degrees, but none more than lactate. Added oleate and butyrate did not stimulate urea synthesis. 3. Citrulline accumulation was largely dependent on ornithine concentration. As ornithine was increased from 0 to 40 mM, the rate of citrulline accumulation increased hyperbolically, and was half-maximal when ornithine was 8-12 mM. 4. The rate of citrulline accumulation was independent of the presence of lactate, but with pyruvate the rate increased. 5. The rate of urea production continued to increase as ornithine was varied from 0 to 40 mM. 6. It was concluded that intermediates provided by both ornithine and lactate are limiting for urea production from ammonia in isolated liver cells. It was suggested that the stimulatory effect of lactate lies in increased availability of cytosolic aspartate for condensation with citrulline.  (+info)

Lactates, also known as lactic acid, are compounds that are produced by muscles during intense exercise or other conditions of low oxygen supply. They are formed from the breakdown of glucose in the absence of adequate oxygen to complete the full process of cellular respiration. This results in the production of lactate and a hydrogen ion, which can lead to a decrease in pH and muscle fatigue.

In a medical context, lactates may be measured in the blood as an indicator of tissue oxygenation and metabolic status. Elevated levels of lactate in the blood, known as lactic acidosis, can indicate poor tissue perfusion or hypoxia, and may be seen in conditions such as sepsis, cardiac arrest, and severe shock. It is important to note that lactates are not the primary cause of acidemia (low pH) in lactic acidosis, but rather a marker of the underlying process.

Lactic acid, also known as 2-hydroxypropanoic acid, is a chemical compound that plays a significant role in various biological processes. In the context of medicine and biochemistry, lactic acid is primarily discussed in relation to muscle metabolism and cellular energy production. Here's a medical definition for lactic acid:

Lactic acid (LA): A carboxylic acid with the molecular formula C3H6O3 that plays a crucial role in anaerobic respiration, particularly during strenuous exercise or conditions of reduced oxygen availability. It is formed through the conversion of pyruvate, catalyzed by the enzyme lactate dehydrogenase (LDH), when there is insufficient oxygen to complete the final step of cellular respiration in the Krebs cycle. The accumulation of lactic acid can lead to acidosis and muscle fatigue. Additionally, lactic acid serves as a vital intermediary in various metabolic pathways and is involved in the production of glucose through gluconeogenesis in the liver.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

Monocarboxylic acid transporters (MCTs) are a type of membrane transport protein responsible for the transportation of monocarboxylates, such as lactic acid, pyruvic acid, and ketone bodies, across biological membranes. These transporters play crucial roles in various physiological processes, including cellular energy metabolism, pH regulation, and detoxification. In humans, there are 14 different isoforms of MCTs (MCT1-MCT14) that exhibit distinct substrate specificities, tissue distributions, and transport mechanisms. Among them, MCT1, MCT2, MCT3, and MCT4 have been extensively studied in the context of their roles in lactate and pyruvate transport across cell membranes.

MCTs typically function as proton-coupled symporters, meaning they co-transport monocarboxylates and protons in the same direction. This proton coupling allows MCTs to facilitate the uphill transport of monocarboxylates against their concentration gradients, which is essential for maintaining cellular homeostasis and energy production. The activity of MCTs can be modulated by various factors, including pH, membrane potential, and pharmacological agents, making them important targets for therapeutic interventions in several diseases, such as cancer, neurological disorders, and metabolic syndromes.

Pyruvate is a negatively charged ion or group of atoms, called anion, with the chemical formula C3H3O3-. It is formed from the decomposition of glucose and other sugars in the process of cellular respiration. Pyruvate plays a crucial role in the metabolic pathways that generate energy for cells.

In the cytoplasm, pyruvate is produced through glycolysis, where one molecule of glucose is broken down into two molecules of pyruvate, releasing energy and producing ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

In the mitochondria, pyruvate can be further metabolized through the citric acid cycle (also known as the Krebs cycle) to produce more ATP. The process involves the conversion of pyruvate into acetyl-CoA, which then enters the citric acid cycle and undergoes a series of reactions that generate energy in the form of ATP, NADH, and FADH2 (reduced flavin adenine dinucleotide).

Overall, pyruvate is an important intermediate in cellular respiration and plays a central role in the production of energy for cells.

Pyruvic acid, also known as 2-oxopropanoic acid, is a key metabolic intermediate in both anaerobic and aerobic respiration. It is a carboxylic acid with a ketone functional group, making it a β-ketoacid. In the cytosol, pyruvate is produced from glucose during glycolysis, where it serves as a crucial link between the anaerobic breakdown of glucose and the aerobic process of cellular respiration in the mitochondria.

During low oxygen availability or high energy demands, pyruvate can be converted into lactate through anaerobic glycolysis, allowing for the continued production of ATP (adenosine triphosphate) without oxygen. In the presence of adequate oxygen and functional mitochondria, pyruvate is transported into the mitochondrial matrix where it undergoes oxidative decarboxylation to form acetyl-CoA by the enzyme pyruvate dehydrogenase complex (PDC). This reaction also involves the reduction of NAD+ to NADH and the release of CO2. Acetyl-CoA then enters the citric acid cycle, where it is further oxidized to produce energy in the form of ATP, NADH, FADH2, and GTP (guanosine triphosphate) through a series of enzymatic reactions.

In summary, pyruvic acid is a vital metabolic intermediate that plays a significant role in energy production pathways, connecting glycolysis to both anaerobic and aerobic respiration.

Lactate dehydrogenases (LDH) are a group of intracellular enzymes found in nearly all human cells, particularly in the heart, liver, kidneys, muscles, and brain. They play a crucial role in energy production during anaerobic metabolism, converting pyruvate to lactate while regenerating NAD+ from NADH. LDH exists as multiple isoenzymes (LDH-1 to LDH-5) in the body, each with distinct distributions and functions.

An elevated level of LDH in the blood may indicate tissue damage or injury, as these enzymes are released into the circulation following cellular destruction. Therefore, measuring LDH levels is a common diagnostic tool to assess various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and some types of cancer. However, an isolated increase in LDH may not be specific enough for a definitive diagnosis, and additional tests are usually required for confirmation.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Lactate dehydrogenase-elevating virus (LDV) is an RNA virus that primarily infects mice. It is a member of the family Arteriviridae and is unique to murine species. LDV infection results in a persistent, chronic viremia without causing any overt signs of disease in the host. However, it is associated with a significant increase in serum lactate dehydrogenase (LDH) activity due to virus-induced damage to infected cells.

The virus infects various tissues and cell types, including macrophages and hepatocytes, and establishes a persistent infection by evading the host's immune response. LDV has been widely used as a model system for studying viral pathogenesis, persistence, and immunosuppression in mice.

It is important to note that Lactate dehydrogenase-elevating virus is not known to infect humans or other primates, and it is primarily studied in the context of basic research on viral infections and the immune response.

Lactic acidosis is a medical condition characterized by an excess accumulation of lactic acid in the body. Lactic acid is a byproduct produced in the muscles and other tissues during periods of low oxygen supply or increased energy demand. Under normal circumstances, lactic acid is quickly metabolized and cleared from the body. However, when the production of lactic acid exceeds its clearance, it can lead to a state of acidosis, where the pH of the blood becomes too acidic.

Lactic acidosis can be caused by several factors, including:

* Prolonged exercise or strenuous physical activity
* Severe illness or infection
* Certain medications, such as metformin and isoniazid
* Alcoholism
* Hypoxia (low oxygen levels) due to lung disease, heart failure, or anemia
* Inherited metabolic disorders that affect the body's ability to metabolize lactic acid

Symptoms of lactic acidosis may include rapid breathing, fatigue, muscle weakness, nausea, vomiting, and abdominal pain. Severe cases can lead to coma, organ failure, and even death. Treatment typically involves addressing the underlying cause of the condition and providing supportive care, such as administering intravenous fluids and bicarbonate to help restore normal pH levels.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Gluconeogenesis is a metabolic pathway that occurs in the liver, kidneys, and to a lesser extent in the small intestine. It involves the synthesis of glucose from non-carbohydrate precursors such as lactate, pyruvate, glycerol, and certain amino acids. This process becomes particularly important during periods of fasting or starvation when glucose levels in the body begin to drop, and there is limited carbohydrate intake to replenish them.

Gluconeogenesis helps maintain blood glucose homeostasis by providing an alternative source of glucose for use by various tissues, especially the brain, which relies heavily on glucose as its primary energy source. It is a complex process that involves several enzymatic steps, many of which are regulated to ensure an adequate supply of glucose while preventing excessive production, which could lead to hyperglycemia.

I'm sorry for any confusion, but "Oxamic Acid" is not a recognized term in medical terminology or pharmacology. It might be a chemical compound that you're interested in, and its scientific definition is as follows:

Oxamic acid, systematically named as ethanedioloic acid or oxalic acid diethyl ester, is an organic compound with the formula (CH3CH2)2C(COOH)2. It is a colorless liquid that is used as a solvent and in the manufacture of other chemicals.

If you're looking for medical information or definitions related to a different term, please let me know and I would be happy to help!

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Glycogen is a complex carbohydrate that serves as the primary form of energy storage in animals, fungi, and bacteria. It is a polysaccharide consisting of long, branched chains of glucose molecules linked together by glycosidic bonds. Glycogen is stored primarily in the liver and muscles, where it can be quickly broken down to release glucose into the bloodstream during periods of fasting or increased metabolic demand.

In the liver, glycogen plays a crucial role in maintaining blood glucose levels by releasing glucose when needed, such as between meals or during exercise. In muscles, glycogen serves as an immediate energy source for muscle contractions during intense physical activity. The ability to store and mobilize glycogen is essential for the proper functioning of various physiological processes, including athletic performance, glucose homeostasis, and overall metabolic health.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Acid-base equilibrium refers to the balance between the concentration of acids and bases in a solution, which determines its pH level. In a healthy human body, maintaining acid-base equilibrium is crucial for proper cellular function and homeostasis.

The balance is maintained by several buffering systems in the body, including the bicarbonate buffer system, which helps to regulate the pH of blood. This system involves the reaction between carbonic acid (a weak acid) and bicarbonate ions (a base) to form water and carbon dioxide.

The balance between acids and bases is carefully regulated by the body's respiratory and renal systems. The lungs control the elimination of carbon dioxide, a weak acid, through exhalation, while the kidneys regulate the excretion of hydrogen ions and the reabsorption of bicarbonate ions.

When the balance between acids and bases is disrupted, it can lead to acid-base disorders such as acidosis (excessive acidity) or alkalosis (excessive basicity). These conditions can have serious consequences on various organ systems if left untreated.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Dichloroacetic acid (DCA) is a chemical compound with the formula CCl2CO2H. It is a colorless liquid that is used as a reagent in organic synthesis and as a laboratory research tool. DCA is also a byproduct of water chlorination and has been found to occur in low levels in some chlorinated drinking waters.

In the medical field, DCA has been studied for its potential anticancer effects. Preclinical studies have suggested that DCA may be able to selectively kill cancer cells by inhibiting the activity of certain enzymes involved in cell metabolism. However, more research is needed to determine whether DCA is safe and effective as a cancer treatment in humans.

It is important to note that DCA is not currently approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) for use as a cancer treatment. It should only be used in clinical trials or under the supervision of a qualified healthcare professional.

Acetates, in a medical context, most commonly refer to compounds that contain the acetate group, which is an functional group consisting of a carbon atom bonded to two hydrogen atoms and an oxygen atom (-COO-). An example of an acetate is sodium acetate (CH3COONa), which is a salt formed from acetic acid (CH3COOH) and is often used as a buffering agent in medical solutions.

Acetates can also refer to a group of medications that contain acetate as an active ingredient, such as magnesium acetate, which is used as a laxative, or calcium acetate, which is used to treat high levels of phosphate in the blood.

In addition, acetates can also refer to a process called acetylation, which is the addition of an acetyl group (-COCH3) to a molecule. This process can be important in the metabolism and regulation of various substances within the body.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Acidosis is a medical condition that occurs when there is an excess accumulation of acid in the body or when the body loses its ability to effectively regulate the pH level of the blood. The normal pH range of the blood is slightly alkaline, between 7.35 and 7.45. When the pH falls below 7.35, it is called acidosis.

Acidosis can be caused by various factors, including impaired kidney function, respiratory problems, diabetes, severe dehydration, alcoholism, and certain medications or toxins. There are two main types of acidosis: metabolic acidosis and respiratory acidosis.

Metabolic acidosis occurs when the body produces too much acid or is unable to eliminate it effectively. This can be caused by conditions such as diabetic ketoacidosis, lactic acidosis, kidney failure, and ingestion of certain toxins.

Respiratory acidosis, on the other hand, occurs when the lungs are unable to remove enough carbon dioxide from the body, leading to an accumulation of acid. This can be caused by conditions such as chronic obstructive pulmonary disease (COPD), asthma, and sedative overdose.

Symptoms of acidosis may include fatigue, shortness of breath, confusion, headache, rapid heartbeat, and in severe cases, coma or even death. Treatment for acidosis depends on the underlying cause and may include medications, oxygen therapy, fluid replacement, and dialysis.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Carbon dioxide (CO2) is a colorless, odorless gas that is naturally present in the Earth's atmosphere. It is a normal byproduct of cellular respiration in humans, animals, and plants, and is also produced through the combustion of fossil fuels such as coal, oil, and natural gas.

In medical terms, carbon dioxide is often used as a respiratory stimulant and to maintain the pH balance of blood. It is also used during certain medical procedures, such as laparoscopic surgery, to insufflate (inflate) the abdominal cavity and create a working space for the surgeon.

Elevated levels of carbon dioxide in the body can lead to respiratory acidosis, a condition characterized by an increased concentration of carbon dioxide in the blood and a decrease in pH. This can occur in conditions such as chronic obstructive pulmonary disease (COPD), asthma, or other lung diseases that impair breathing and gas exchange. Symptoms of respiratory acidosis may include shortness of breath, confusion, headache, and in severe cases, coma or death.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Phosphocreatine (PCr) is a high-energy phosphate compound found in the skeletal muscles, cardiac muscle, and brain. It plays a crucial role in energy metabolism and storage within cells. Phosphocreatine serves as an immediate energy reserve that helps regenerate ATP (adenosine triphosphate), the primary source of cellular energy, during short bursts of intense activity or stress. This process is facilitated by the enzyme creatine kinase, which catalyzes the transfer of a phosphate group from phosphocreatine to ADP (adenosine diphosphate) to form ATP.

In a medical context, phosphocreatine levels may be assessed in muscle biopsies or magnetic resonance spectroscopy (MRS) imaging to evaluate muscle energy metabolism and potential mitochondrial dysfunction in conditions such as muscular dystrophies, mitochondrial disorders, and neuromuscular diseases. Additionally, phosphocreatine depletion has been implicated in various pathological processes, including ischemia-reperfusion injury, neurodegenerative disorders, and heart failure.

Hydroxybutyrates are compounds that contain a hydroxyl group (-OH) and a butyric acid group. More specifically, in the context of clinical medicine and biochemistry, β-hydroxybutyrate (BHB) is often referred to as a "ketone body."

Ketone bodies are produced by the liver during periods of low carbohydrate availability, such as during fasting, starvation, or a high-fat, low-carbohydrate diet. BHB is one of three major ketone bodies, along with acetoacetate and acetone. These molecules serve as alternative energy sources for the brain and other tissues when glucose levels are low.

In some pathological states, such as diabetic ketoacidosis, the body produces excessive amounts of ketone bodies, leading to a life-threatening metabolic acidosis. Elevated levels of BHB can also be found in other conditions like alcoholism, severe illnesses, and high-fat diets.

It is important to note that while BHB is a hydroxybutyrate, not all hydroxybutyrates are ketone bodies. The term "hydroxybutyrates" can refer to any compound containing both a hydroxyl group (-OH) and a butyric acid group.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

The anaerobic threshold (also known as the lactate threshold or anaerobic threshold) is a medical and exercise term that refers to the maximum intensity of exercise that can be sustained without an excessive buildup of lactic acid in the blood. It is the point at which oxygen consumption reaches a steady state and cannot increase any further, despite an increase in exercise intensity. At this point, the body begins to rely more heavily on anaerobic metabolism, which produces energy quickly but also leads to the production of lactic acid. This threshold is often used as a measure of cardiovascular fitness and can be improved through training.

Acetoacetates are compounds that are produced in the liver as a part of fatty acid metabolism, specifically during the breakdown of fatty acids for energy. Acetoacetates are formed from the condensation of two acetyl-CoA molecules and are intermediate products in the synthesis of ketone bodies, which can be used as an alternative energy source by tissues such as the brain during periods of low carbohydrate availability or intense exercise.

In clinical settings, high levels of acetoacetates in the blood may indicate a condition called diabetic ketoacidosis (DKA), which is a complication of diabetes mellitus characterized by high levels of ketone bodies in the blood due to insulin deficiency or resistance. DKA can lead to serious complications such as cerebral edema, cardiac arrhythmias, and even death if left untreated.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Fermentation is a metabolic process in which an organism converts carbohydrates into alcohol or organic acids using enzymes. In the absence of oxygen, certain bacteria, yeasts, and fungi convert sugars into carbon dioxide, hydrogen, and various end products, such as alcohol, lactic acid, or acetic acid. This process is commonly used in food production, such as in making bread, wine, and beer, as well as in industrial applications for the production of biofuels and chemicals.

Anaerobiosis is a state in which an organism or a portion of an organism is able to live and grow in the absence of molecular oxygen (O2). In biological contexts, "anaerobe" refers to any organism that does not require oxygen for growth, and "aerobe" refers to an organism that does require oxygen for growth.

There are two types of anaerobes: obligate anaerobes, which cannot tolerate the presence of oxygen and will die if exposed to it; and facultative anaerobes, which can grow with or without oxygen but prefer to grow in its absence. Some organisms are able to switch between aerobic and anaerobic metabolism depending on the availability of oxygen, a process known as "facultative anaerobiosis."

Anaerobic respiration is a type of metabolic process that occurs in the absence of molecular oxygen. In this process, organisms use alternative electron acceptors other than oxygen to generate energy through the transfer of electrons during cellular respiration. Examples of alternative electron acceptors include nitrate, sulfate, and carbon dioxide.

Anaerobic metabolism is less efficient than aerobic metabolism in terms of energy production, but it allows organisms to survive in environments where oxygen is not available or is toxic. Anaerobic bacteria are important decomposers in many ecosystems, breaking down organic matter and releasing nutrients back into the environment. In the human body, anaerobic bacteria can cause infections and other health problems if they proliferate in areas with low oxygen levels, such as the mouth, intestines, or deep tissue wounds.

Ketone bodies, also known as ketones or ketoacids, are organic compounds that are produced by the liver during the metabolism of fats when carbohydrate intake is low. They include acetoacetate (AcAc), beta-hydroxybutyrate (BHB), and acetone. These molecules serve as an alternative energy source for the body, particularly for the brain and heart, when glucose levels are insufficient to meet energy demands.

In a healthy individual, ketone bodies are present in low concentrations; however, during periods of fasting, starvation, or intense physical exertion, ketone production increases significantly. In some pathological conditions like uncontrolled diabetes mellitus, the body may produce excessive amounts of ketones, leading to a dangerous metabolic state called diabetic ketoacidosis (DKA).

Elevated levels of ketone bodies can be detected in blood or urine and are often used as an indicator of metabolic status. Monitoring ketone levels is essential for managing certain medical conditions, such as diabetes, where maintaining optimal ketone concentrations is crucial to prevent complications.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Aerobiosis is the process of living, growing, and functioning in the presence of oxygen. It refers to the metabolic processes that require oxygen to break down nutrients and produce energy in cells. This is in contrast to anaerobiosis, which is the ability to live and grow in the absence of oxygen.

In medical terms, aerobiosis is often used to describe the growth of microorganisms, such as bacteria and fungi, that require oxygen to survive and multiply. These organisms are called aerobic organisms, and they play an important role in many biological processes, including decomposition and waste breakdown.

However, some microorganisms are unable to grow in the presence of oxygen and are instead restricted to environments where oxygen is absent or limited. These organisms are called anaerobic organisms, and their growth and metabolism are referred to as anaerobiosis.

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Propionates, in a medical context, most commonly refer to a group of medications that are used as topical creams or gels to treat fungal infections of the skin. Propionic acid and its salts, such as propionate, are the active ingredients in these medications. They work by inhibiting the growth of fungi, which causes the infection. Common examples of propionate-containing medications include creams used to treat athlete's foot, ringworm, and jock itch.

It is important to note that there are many different types of medications and compounds that contain the word "propionate" in their name, as it refers to a specific chemical structure. However, in a medical context, it most commonly refers to antifungal creams or gels.

Creatine kinase (CK) is a muscle enzyme that is normally present in small amounts in the blood. It is primarily found in tissues that require a lot of energy, such as the heart, brain, and skeletal muscles. When these tissues are damaged or injured, CK is released into the bloodstream, causing the levels to rise.

Creatine kinase exists in several forms, known as isoenzymes, which can be measured in the blood to help identify the location of tissue damage. The three main isoenzymes are:

1. CK-MM: Found primarily in skeletal muscle
2. CK-MB: Found primarily in heart muscle
3. CK-BB: Found primarily in the brain

Elevated levels of creatine kinase, particularly CK-MB, can indicate damage to the heart muscle, such as occurs with a heart attack. Similarly, elevated levels of CK-BB may suggest brain injury or disease. Overall, measuring creatine kinase levels is a useful diagnostic tool for assessing tissue damage and determining the severity of injuries or illnesses.

Glycerol, also known as glycerine or glycerin, is a simple polyol (a sugar alcohol) with a sweet taste and a thick, syrupy consistency. It is a colorless, odorless, viscous liquid that is slightly soluble in water and freely miscible with ethanol and ether.

In the medical field, glycerol is often used as a medication or supplement. It can be used as a laxative to treat constipation, as a source of calories and energy for people who cannot eat by mouth, and as a way to prevent dehydration in people with certain medical conditions.

Glycerol is also used in the production of various medical products, such as medications, skin care products, and vaccines. It acts as a humectant, which means it helps to keep things moist, and it can also be used as a solvent or preservative.

In addition to its medical uses, glycerol is also widely used in the food industry as a sweetener, thickening agent, and moisture-retaining agent. It is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).

The Citric Acid Cycle, also known as the Krebs cycle or tricarboxylic acid (TCA) cycle, is a crucial metabolic pathway in the cell's powerhouse, the mitochondria. It plays a central role in the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins, into carbon dioxide and high-energy electrons. This process generates energy in the form of ATP (adenosine triphosphate), reducing equivalents (NADH and FADH2), and water.

The cycle begins with the condensation of acetyl-CoA with oxaloacetate, forming citrate. Through a series of enzyme-catalyzed reactions, citrate is converted back to oxaloacetate, releasing two molecules of carbon dioxide, one GTP (guanosine triphosphate), three NADH, one FADH2, and regenerating oxaloacetate to continue the cycle. The reduced coenzymes (NADH and FADH2) then donate their electrons to the electron transport chain, driving ATP synthesis through chemiosmosis. Overall, the Citric Acid Cycle is a vital part of cellular respiration, connecting various catabolic pathways and generating energy for the cell's metabolic needs.

Starvation is a severe form of malnutrition, characterized by insufficient intake of calories and nutrients to meet the body's energy requirements. This leads to a catabolic state where the body begins to break down its own tissues for energy, resulting in significant weight loss, muscle wasting, and weakness. Prolonged starvation can also lead to serious medical complications such as organ failure, electrolyte imbalances, and even death. It is typically caused by a lack of access to food due to poverty, famine, or other social or economic factors, but can also be a result of severe eating disorders such as anorexia nervosa.

Bicarbonates, also known as sodium bicarbonate or baking soda, is a chemical compound with the formula NaHCO3. In the context of medical definitions, bicarbonates refer to the bicarbonate ion (HCO3-), which is an important buffer in the body that helps maintain normal pH levels in blood and other bodily fluids.

The balance of bicarbonate and carbonic acid in the body helps regulate the acidity or alkalinity of the blood, a condition known as pH balance. Bicarbonates are produced by the body and are also found in some foods and drinking water. They work to neutralize excess acid in the body and help maintain the normal pH range of 7.35 to 7.45.

In medical testing, bicarbonate levels may be measured as part of an electrolyte panel or as a component of arterial blood gas (ABG) analysis. Low bicarbonate levels can indicate metabolic acidosis, while high levels can indicate metabolic alkalosis. Both conditions can have serious consequences if not treated promptly and appropriately.

Coumaric acids are a type of phenolic acid that are widely distributed in plants. They are found in various foods such as fruits, vegetables, and grains. The most common forms of coumaric acids are p-coumaric acid, o-coumaric acid, and m-coumaric acid.

Coumaric acids have been studied for their potential health benefits, including their antioxidant, anti-inflammatory, and antimicrobial properties. They may also play a role in preventing chronic diseases such as cancer and cardiovascular disease. However, more research is needed to fully understand the potential health benefits of coumaric acids.

It's worth noting that coumaric acids are not to be confused with warfarin (also known as Coumadin), a medication used as an anticoagulant. While both coumaric acids and warfarin contain a similar chemical structure, they have different effects on the body.

An acid-base imbalance refers to a disturbance in the normal balance of acids and bases in the body, which can lead to serious health consequences. The body maintains a delicate balance between acids and bases, which is measured by the pH level of the blood. The normal range for blood pH is between 7.35 and 7.45, with a pH below 7.35 considered acidic and a pH above 7.45 considered basic or alkaline.

Acid-base imbalances can occur due to various factors such as lung or kidney disease, diabetes, severe infections, certain medications, and exposure to toxins. The two main types of acid-base imbalances are acidosis (excess acid in the body) and alkalosis (excess base in the body).

Acidosis can be further classified into respiratory acidosis (caused by impaired lung function or breathing difficulties) and metabolic acidosis (caused by an accumulation of acid in the body due to impaired kidney function, diabetes, or other conditions).

Alkalosis can also be classified into respiratory alkalosis (caused by hyperventilation or excessive breathing) and metabolic alkalosis (caused by excessive loss of stomach acid or an excess intake of base-forming substances).

Symptoms of acid-base imbalances may include confusion, lethargy, shortness of breath, rapid heartbeat, nausea, vomiting, and muscle weakness. If left untreated, these conditions can lead to serious complications such as coma, seizures, or even death. Treatment typically involves addressing the underlying cause of the imbalance and may include medications, oxygen therapy, or fluid and electrolyte replacement.

Alanine is an alpha-amino acid that is used in the biosynthesis of proteins. The molecular formula for alanine is C3H7NO2. It is a non-essential amino acid, which means that it can be produced by the human body through the conversion of other nutrients, such as pyruvate, and does not need to be obtained directly from the diet.

Alanine is classified as an aliphatic amino acid because it contains a simple carbon side chain. It is also a non-polar amino acid, which means that it is hydrophobic and tends to repel water. Alanine plays a role in the metabolism of glucose and helps to regulate blood sugar levels. It is also involved in the transfer of nitrogen between tissues and helps to maintain the balance of nitrogen in the body.

In addition to its role as a building block of proteins, alanine is also used as a neurotransmitter in the brain and has been shown to have a calming effect on the nervous system. It is found in many foods, including meats, poultry, fish, eggs, dairy products, and legumes.

Pyruvate kinase is an enzyme that plays a crucial role in the final step of glycolysis, a process by which glucose is broken down to produce energy in the form of ATP (adenosine triphosphate). Specifically, pyruvate kinase catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), resulting in the formation of pyruvate and ATP.

There are several isoforms of pyruvate kinase found in different tissues, including the liver, muscle, and brain. The type found in red blood cells is known as PK-RBC or PK-M2. Deficiencies in pyruvate kinase can lead to a genetic disorder called pyruvate kinase deficiency, which can result in hemolytic anemia due to the premature destruction of red blood cells.

3-Hydroxybutyric acid, also known as β-hydroxybutyric acid, is a type of ketone body that is produced in the liver during the metabolism of fatty acids. It is a colorless, slightly water-soluble compound with a bitter taste and an unpleasant odor.

In the body, 3-hydroxybutyric acid is produced when there is not enough glucose available to meet the body's energy needs, such as during fasting, starvation, or prolonged intense exercise. It can also be produced in large amounts in people with uncontrolled diabetes, particularly during a condition called diabetic ketoacidosis.

3-Hydroxybutyric acid is an important source of energy for the brain and other organs during periods of low glucose availability. However, high levels of 3-hydroxybutyric acid in the blood can lead to a condition called ketosis, which can cause symptoms such as nausea, vomiting, abdominal pain, and confusion. If left untreated, ketosis can progress to diabetic ketoacidosis, a potentially life-threatening complication of diabetes.

Microdialysis is a minimally invasive technique used in clinical and research settings to continuously monitor the concentration of various chemicals, such as neurotransmitters, drugs, or metabolites, in biological fluids (e.g., extracellular fluid of tissues, blood, or cerebrospinal fluid). This method involves inserting a small, flexible catheter with a semipermeable membrane into the region of interest. A physiological solution is continuously perfused through the catheter, allowing molecules to diffuse across the membrane based on their concentration gradient. The dialysate that exits the catheter is then collected and analyzed for target compounds using various analytical techniques (e.g., high-performance liquid chromatography, mass spectrometry).

In summary, microdialysis is a valuable tool for monitoring real-time changes in chemical concentrations within biological systems, enabling better understanding of physiological processes or pharmacokinetic properties of drugs.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

I'm sorry for any confusion, but "Hydrogen" is not a medical term. It is a chemical element with the symbol H and atomic number 1. It is the lightest and most abundant chemical element in the universe, making up about 75% of its elemental mass.

In a medical context, hydrogen can be discussed in terms of molecular hydrogen (H2) which has been studied for potential therapeutic benefits. Some research explores its use as an antioxidant and anti-inflammatory agent, but more studies are needed to confirm these effects and understand the mechanisms behind them.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

Blood gas analysis is a medical test that measures the levels of oxygen and carbon dioxide in the blood, as well as the pH level, which indicates the acidity or alkalinity of the blood. This test is often used to evaluate lung function, respiratory disorders, and acid-base balance in the body. It can also be used to monitor the effectiveness of treatments for conditions such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory illnesses. The analysis is typically performed on a sample of arterial blood, although venous blood may also be used in some cases.

Exercise is defined in the medical context as a physical activity that is planned, structured, and repetitive, with the primary aim of improving or maintaining one or more components of physical fitness. Components of physical fitness include cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, and body composition. Exercise can be classified based on its intensity (light, moderate, or vigorous), duration (length of time), and frequency (number of times per week). Common types of exercise include aerobic exercises, such as walking, jogging, cycling, and swimming; resistance exercises, such as weightlifting; flexibility exercises, such as stretching; and balance exercises. Exercise has numerous health benefits, including reducing the risk of chronic diseases, improving mental health, and enhancing overall quality of life.

Physical endurance is the ability of an individual to withstand and resist physical fatigue over prolonged periods of strenuous activity, exercise, or exertion. It involves the efficient functioning of various body systems, including the cardiovascular system (heart, blood vessels, and blood), respiratory system (lungs and airways), and musculoskeletal system (muscles, bones, tendons, ligaments, and cartilage).

Physical endurance is often measured in terms of aerobic capacity or stamina, which refers to the body's ability to supply oxygen to muscles during sustained physical activity. It can be improved through regular exercise, such as running, swimming, cycling, or weightlifting, that challenges the body's major muscle groups and raises the heart rate for extended periods.

Factors that influence physical endurance include genetics, age, sex, fitness level, nutrition, hydration, sleep quality, stress management, and overall health status. It is essential to maintain good physical endurance to perform daily activities efficiently, reduce the risk of chronic diseases, and enhance overall well-being.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

I'm sorry for any confusion, but "Malates" is not a recognized term in medical terminology. It's possible there may be a spelling mistake or it could be a slang term or an abbreviation that is not widely recognized. If you have more context or information, I'd be happy to try and help further.

Anoxia is a medical condition that refers to the absence or complete lack of oxygen supply in the body or a specific organ, tissue, or cell. This can lead to serious health consequences, including damage or death of cells and tissues, due to the vital role that oxygen plays in supporting cellular metabolism and energy production.

Anoxia can occur due to various reasons, such as respiratory failure, cardiac arrest, severe blood loss, carbon monoxide poisoning, or high altitude exposure. Prolonged anoxia can result in hypoxic-ischemic encephalopathy, a serious condition that can cause brain damage and long-term neurological impairments.

Medical professionals use various diagnostic tests, such as blood gas analysis, pulse oximetry, and electroencephalography (EEG), to assess oxygen levels in the body and diagnose anoxia. Treatment for anoxia typically involves addressing the underlying cause, providing supplemental oxygen, and supporting vital functions, such as breathing and circulation, to prevent further damage.

Aspartic acid is an α-amino acid with the chemical formula HO2CCH(NH2)CO2H. It is one of the twenty standard amino acids, and it is a polar, negatively charged, and hydrophilic amino acid. In proteins, aspartic acid usually occurs in its ionized form, aspartate, which has a single negative charge.

Aspartic acid plays important roles in various biological processes, including metabolism, neurotransmitter synthesis, and energy production. It is also a key component of many enzymes and proteins, where it often contributes to the formation of ionic bonds and helps stabilize protein structure.

In addition to its role as a building block of proteins, aspartic acid is also used in the synthesis of other important biological molecules, such as nucleotides, which are the building blocks of DNA and RNA. It is also a component of the dipeptide aspartame, an artificial sweetener that is widely used in food and beverages.

Like other amino acids, aspartic acid is essential for human health, but it cannot be synthesized by the body and must be obtained through the diet. Foods that are rich in aspartic acid include meat, poultry, fish, dairy products, eggs, legumes, and some fruits and vegetables.

I'm sorry for any confusion, but "Formates" is not a recognized term in medical terminology. It is possible that you may be referring to "formic acid" or "formate," which are terms used in chemistry and biochemistry. Formic acid is a colorless, pungent, and corrosive liquid with the chemical formula HCOOH. Its salts are called formates.

Formate is the anion (negatively charged ion) of formic acid, with the chemical formula HCOO-. Formate can be found in various biological systems and is involved in several metabolic processes. If you could provide more context or clarify your question, I would be happy to help further.

I'm sorry for any confusion, but "Fructosediphosphates" is not a recognized term in medicine or biochemistry. It's possible there may be a spelling mistake or misunderstanding in the term you're looking for.

If you meant "Fructose 1,6-bisphosphate," that is a key intermediate in carbohydrate metabolism. It's formed from fructose 6-phosphate in the process of glucose breakdown (glycolysis) and is then used in the generation of energy through the citric acid cycle.

If these terms are not what you were looking for, could you please provide more context or check the spelling? I'm here to help!

Carboxylic acids are organic compounds that contain a carboxyl group, which is a functional group made up of a carbon atom doubly bonded to an oxygen atom and single bonded to a hydroxyl group. The general formula for a carboxylic acid is R-COOH, where R represents the rest of the molecule.

Carboxylic acids can be found in various natural sources such as in fruits, vegetables, and animal products. Some common examples of carboxylic acids include formic acid (HCOOH), acetic acid (CH3COOH), propionic acid (C2H5COOH), and butyric acid (C3H7COOH).

Carboxylic acids have a variety of uses in industry, including as food additives, pharmaceuticals, and industrial chemicals. They are also important intermediates in the synthesis of other organic compounds. In the body, carboxylic acids play important roles in metabolism and energy production.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Blood chemical analysis, also known as clinical chemistry or chemistry panel, is a series of tests that measure the levels of various chemicals in the blood. These tests can help evaluate the function of organs such as the kidneys and liver, and can also detect conditions such as diabetes and heart disease.

The tests typically include:

* Glucose: to check for diabetes
* Electrolytes (such as sodium, potassium, chloride, and bicarbonate): to check the body's fluid and electrolyte balance
* Calcium: to check for problems with bones, nerves, or kidneys
* Creatinine: to check for kidney function
* Urea Nitrogen (BUN): to check for kidney function
* Albumin: to check for liver function and nutrition status
* ALT (Alanine Transaminase) and AST (Aspartate Transaminase): to check for liver function
* Alkaline Phosphatase: to check for liver or bone disease
* Total Bilirubin: to check for liver function and gallbladder function
* Cholesterol: to check for heart disease risk
* Triglycerides: to check for heart disease risk

These tests are usually ordered by a doctor as part of a routine check-up, or to help diagnose and monitor specific medical conditions. The results of the blood chemical analysis are compared to reference ranges provided by the laboratory performing the test, which take into account factors such as age, sex, and race.

A buffer in the context of physiology and medicine refers to a substance or system that helps to maintain stable or neutral conditions, particularly in relation to pH levels, within the body or biological fluids.

Buffers are weak acids or bases that can react with strong acids or bases to minimize changes in the pH level. They do this by taking up excess hydrogen ions (H+) when acidity increases or releasing hydrogen ions when alkalinity increases, thereby maintaining a relatively constant pH.

In the human body, some of the key buffer systems include:

1. Bicarbonate buffer system: This is the major buffer in blood and extracellular fluids. It consists of bicarbonate ions (HCO3-) and carbonic acid (H2CO3). When there is an increase in acidity, the bicarbonate ion accepts a hydrogen ion to form carbonic acid, which then dissociates into water and carbon dioxide. The carbon dioxide can be exhaled, helping to remove excess acid from the body.
2. Phosphate buffer system: This is primarily found within cells. It consists of dihydrogen phosphate (H2PO4-) and monohydrogen phosphate (HPO42-) ions. When there is an increase in alkalinity, the dihydrogen phosphate ion donates a hydrogen ion to form monohydrogen phosphate, helping to neutralize the excess base.
3. Protein buffer system: Proteins, particularly histidine-rich proteins, can also act as buffers due to the presence of ionizable groups on their surfaces. These groups can bind or release hydrogen ions in response to changes in pH, thus maintaining a stable environment within cells and organelles.

Maintaining appropriate pH levels is crucial for various biological processes, including enzyme function, cell membrane stability, and overall homeostasis. Buffers play a vital role in preserving these balanced conditions despite internal or external challenges that might disrupt them.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

Oxaloacetates are organic compounds that are integral to the Krebs cycle, also known as the citric acid cycle, in biological energy production. Specifically, oxaloacetate is an important intermediate compound within this metabolic pathway, found in the mitochondria of cells.

In the context of a medical definition, oxaloacetates are not typically referred to directly. Instead, the term "oxaloacetic acid" might be used, which is the conjugate acid of the oxaloacetate ion. Oxaloacetic acid has the chemical formula C4H4O5 and appears in various biochemical reactions as a crucial component of cellular respiration.

The Krebs cycle involves several stages where oxaloacetic acid plays a significant role:

1. In the first step, oxaloacetic acid combines with an acetyl group (derived from acetyl-CoA) to form citric acid, releasing coenzyme A in the process. This reaction is catalyzed by citrate synthase.
2. Throughout subsequent steps of the cycle, citric acid undergoes a series of reactions that generate energy in the form of NADH and FADH2 (reduced forms of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, respectively), as well as GTP (guanosine triphosphate).
3. At the end of the cycle, oxaloacetic acid is regenerated to continue the process anew. This allows for continuous energy production within cells.

In summary, while "oxaloacetates" isn't a standard term in medical definitions, it does refer to an essential component (oxaloacetic acid) of the Krebs cycle that plays a critical role in cellular respiration and energy production.

A symporter is a type of transmembrane protein that functions to transport two or more molecules or ions across a biological membrane in the same direction, simultaneously. This process is called co-transport and it is driven by the concentration gradient of one of the substrates, which is usually an ion such as sodium (Na+) or proton (H+).

Symporters are classified based on the type of energy that drives the transport process. Primary active transporters, such as symporters, use the energy from ATP hydrolysis or from the electrochemical gradient of ions to move substrates against their concentration gradient. In contrast, secondary active transporters use the energy stored in an existing electrochemical gradient of one substrate to drive the transport of another substrate against its own concentration gradient.

Symporters play important roles in various physiological processes, including nutrient uptake, neurotransmitter reuptake, and ion homeostasis. For example, the sodium-glucose transporter (SGLT) is a symporter that co-transports glucose and sodium ions across the intestinal epithelium and the renal proximal tubule, contributing to glucose absorption and regulation of blood glucose levels. Similarly, the dopamine transporter (DAT) is a symporter that co-transports dopamine and sodium ions back into presynaptic neurons, terminating the action of dopamine in the synapse.

Malate Dehydrogenase (MDH) is an enzyme that plays a crucial role in the Krebs cycle, also known as the citric acid cycle or tricarboxylic acid (TCA) cycle. It catalyzes the reversible oxidation of malate to oxaloacetate, while simultaneously reducing NAD+ to NADH. This reaction is essential for energy production in the form of ATP and NADH within the cell.

There are two main types of Malate Dehydrogenase:

1. NAD-dependent Malate Dehydrogenase (MDH1): Found primarily in the cytoplasm, this isoform plays a role in the malate-aspartate shuttle, which helps transfer reducing equivalents between the cytoplasm and mitochondria.
2. FAD-dependent Malate Dehydrogenase (MDH2): Located within the mitochondrial matrix, this isoform is involved in the Krebs cycle for energy production.

Abnormal levels of Malate Dehydrogenase enzyme can be indicative of certain medical conditions or diseases, such as myocardial infarction (heart attack), muscle damage, or various types of cancer. Therefore, MDH enzyme activity is often assessed in diagnostic tests to help identify and monitor these health issues.

Arterivirus infections are viral diseases caused by members of the Arteriviridae family, which includes several species that can infect a variety of animals. The most well-known arterivirus is the equine arteritis virus (EAV), which causes equine arteritis in horses. Other examples include the porcine reproductive and respiratory syndrome virus (PRRSV) in pigs, and simian hemorrhagic fever virus (SHFV) in non-human primates.

Arterivirus infections typically cause respiratory or reproductive symptoms, depending on the specific virus and host species. For example, EAV can cause respiratory disease, abortion, and infertility in horses, while PRRSV primarily affects the reproductive system of pigs, causing abortions, stillbirths, and weak piglets.

Transmission of arteriviruses typically occurs through direct contact with infected animals or their bodily fluids, such as respiratory droplets or semen. Some arteriviruses can also be transmitted vertically, from mother to offspring, during pregnancy or birth.

There are currently no specific treatments for arterivirus infections, and prevention efforts focus on biosecurity measures, such as quarantine and vaccination of susceptible animals.

Fructose is a simple monosaccharide, also known as "fruit sugar." It is a naturally occurring carbohydrate that is found in fruits, vegetables, and honey. Fructose has the chemical formula C6H12O6 and is a hexose, or six-carbon sugar.

Fructose is absorbed directly into the bloodstream during digestion and is metabolized primarily in the liver. It is sweeter than other sugars such as glucose and sucrose (table sugar), which makes it a popular sweetener in many processed foods and beverages. However, consuming large amounts of fructose can have negative health effects, including increasing the risk of obesity, diabetes, and heart disease.

Creatine is a organic acid that is produced naturally in the liver, kidneys and pancreas. It is also found in small amounts in certain foods such as meat and fish. The chemical formula for creatine is C4H9N3O2. In the body, creatine is converted into creatine phosphate, which is used to help produce energy during high-intensity exercise, such as weightlifting or sprinting.

Creatine can also be taken as a dietary supplement, in the form of creatine monohydrate, with the goal of increasing muscle creatine and phosphocreatine levels, which may improve athletic performance and help with muscle growth. However, it is important to note that while some studies have found that creatine supplementation can improve exercise performance and muscle mass in certain populations, others have not found significant benefits.

Creatine supplements are generally considered safe when used as directed, but they can cause side effects such as weight gain, stomach discomfort, and muscle cramps in some people. It is always recommended to consult a healthcare professional before starting any new supplement regimen.

In the context of medicine, particularly in relation to cancer treatment, protons refer to positively charged subatomic particles found in the nucleus of an atom. Proton therapy, a type of radiation therapy, uses a beam of protons to target and destroy cancer cells with high precision, minimizing damage to surrounding healthy tissue. The concentrated dose of radiation is delivered directly to the tumor site, reducing side effects and improving quality of life during treatment.

Bicycling is defined in medical terms as the act of riding a bicycle. It involves the use of a two-wheeled vehicle that is propelled by pedaling, with the power being transferred to the rear wheel through a chain and sprocket system. Bicycling can be done for various purposes such as transportation, recreation, exercise, or sport.

Regular bicycling has been shown to have numerous health benefits, including improving cardiovascular fitness, increasing muscle strength and flexibility, reducing stress and anxiety, and helping with weight management. However, it is important to wear a helmet while bicycling to reduce the risk of head injury in case of an accident. Additionally, cyclists should follow traffic rules and be aware of their surroundings to ensure their safety and the safety of others on the road.

Dialysis solutions are fluids that are used during the process of dialysis, which is a treatment for patients with kidney failure. The main function of these solutions is to help remove waste products and excess fluid from the bloodstream, as the kidneys are no longer able to do so effectively.

The dialysis solution typically contains a mixture of water, electrolytes (such as sodium, potassium, chloride, and bicarbonate), and a small amount of glucose. The composition of the solution may vary depending on the individual patient's needs, but it is carefully controlled to match the patient's blood as closely as possible.

During dialysis, the patient's blood is circulated through a special filter called a dialyzer, which separates waste products and excess fluids from the blood. The used dialysis solution, which contains these waste products and excess fluids, is then discarded. Fresh dialysis solution is continuously introduced into the dialyzer to replace the used solution, creating a continuous flow of fluid that helps remove waste products and maintain the proper balance of electrolytes in the patient's blood.

Overall, dialysis solutions play a critical role in helping patients with kidney failure maintain their health and quality of life.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Isotonic solutions are defined in the context of medical and physiological sciences as solutions that contain the same concentration of solutes (dissolved particles) as another solution, usually the bodily fluids like blood. This means that if you compare the concentration of solute particles in two isotonic solutions, they will be equal.

A common example is a 0.9% sodium chloride (NaCl) solution, also known as normal saline. The concentration of NaCl in this solution is approximately equal to the concentration found in the fluid portion of human blood, making it isotonic with blood.

Isotonic solutions are crucial in medical settings for various purposes, such as intravenous (IV) fluids replacement, wound care, and irrigation solutions. They help maintain fluid balance, prevent excessive water movement across cell membranes, and reduce the risk of damaging cells due to osmotic pressure differences between the solution and bodily fluids.

Phosphofructokinase (PFK) is an enzyme that plays a crucial role in regulating glycolysis, which is the metabolic pathway responsible for the conversion of glucose into energy. PFK catalyzes the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using a molecule of adenosine triphosphate (ATP) as a source of energy. This reaction is a key regulatory step in glycolysis and is subject to allosteric regulation by various metabolites, such as ATP, ADP, and citrate, that signal the cell's energy status.

There are several isoforms of PFK found in different tissues, including PFK-1 (or muscle PFK) and PFK-2 (or liver PFK), which exhibit tissue-specific patterns of expression and regulation. Mutations in the genes encoding PFK can result in various inherited metabolic disorders, such as Tarui's disease, characterized by exercise intolerance, muscle cramps, and myoglobinuria.

Aspartate aminotransferases (ASTs) are a group of enzymes found in various tissues throughout the body, including the heart, liver, and muscles. They play a crucial role in the metabolic process of transferring amino groups between different molecules.

In medical terms, AST is often used as a blood test to measure the level of this enzyme in the serum. Elevated levels of AST can indicate damage or injury to tissues that contain this enzyme, such as the liver or heart. For example, liver disease, including hepatitis and cirrhosis, can cause elevated AST levels due to damage to liver cells. Similarly, heart attacks can also result in increased AST levels due to damage to heart muscle tissue.

It is important to note that an AST test alone cannot diagnose a specific medical condition, but it can provide valuable information when used in conjunction with other diagnostic tests and clinical evaluation.

An exercise test, also known as a stress test or an exercise stress test, is a medical procedure used to evaluate the heart's function and response to physical exertion. It typically involves walking on a treadmill or pedaling a stationary bike while being monitored for changes in heart rate, blood pressure, electrocardiogram (ECG), and sometimes other variables such as oxygen consumption or gas exchange.

During the test, the patient's symptoms, such as chest pain or shortness of breath, are also closely monitored. The exercise test can help diagnose coronary artery disease, assess the severity of heart-related symptoms, and evaluate the effectiveness of treatments for heart conditions. It may also be used to determine a person's safe level of physical activity and fitness.

There are different types of exercise tests, including treadmill stress testing, stationary bike stress testing, nuclear stress testing, and stress echocardiography. The specific type of test used depends on the patient's medical history, symptoms, and overall health status.

Respiratory alkalosis is a medical condition that occurs when there is an excess base (bicarbonate) and/or a decrease in carbon dioxide in the body. This leads to an increase in pH level of the blood, making it more alkaline than normal. Respiratory alkalosis is usually caused by conditions that result in hyperventilation, such as anxiety, lung disease, or high altitude. It can also be caused by certain medications and medical procedures. Symptoms of respiratory alkalosis may include lightheadedness, confusion, and tingling in the fingers and toes. Treatment typically involves addressing the underlying cause of the condition.

The Pyruvate Dehydrogenase Complex (PDC) is a multi-enzyme complex that plays a crucial role in cellular energy metabolism. It is located in the mitochondrial matrix and catalyzes the oxidative decarboxylation of pyruvate, the end product of glycolysis, into acetyl-CoA. This reaction links the carbohydrate metabolism (glycolysis) to the citric acid cycle (Krebs cycle), enabling the continuation of energy production in the form of ATP through oxidative phosphorylation.

The Pyruvate Dehydrogenase Complex consists of three main enzymes: pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). Additionally, two regulatory enzymes are associated with the complex: pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP). These regulatory enzymes control the activity of the PDC through reversible phosphorylation and dephosphorylation, allowing the cell to adapt to varying energy demands and substrate availability.

Deficiencies or dysfunctions in the Pyruvate Dehydrogenase Complex can lead to various metabolic disorders, such as pyruvate dehydrogenase deficiency, which may result in neurological impairments and lactic acidosis due to disrupted energy metabolism.

Adenine nucleotides are molecules that consist of a nitrogenous base called adenine, which is linked to a sugar molecule (ribose in the case of adenosine monophosphate or AMP, and deoxyribose in the case of adenosine diphosphate or ADP and adenosine triphosphate or ATP) and one, two, or three phosphate groups. These molecules play a crucial role in energy transfer and metabolism within cells.

AMP contains one phosphate group, while ADP contains two phosphate groups, and ATP contains three phosphate groups. When a phosphate group is removed from ATP, energy is released, which can be used to power various cellular processes such as muscle contraction, nerve impulse transmission, and protein synthesis. The reverse reaction, in which a phosphate group is added back to ADP or AMP to form ATP, requires energy input and often involves the breakdown of nutrients such as glucose or fatty acids.

In addition to their role in energy metabolism, adenine nucleotides also serve as precursors for other important molecules, including DNA and RNA, coenzymes, and signaling molecules.

Gram-negative anaerobic bacteria are a type of bacteria that do not require oxygen to grow and are characterized by their cell wall structure, which does not retain crystal violet dye in the Gram staining procedure. This is because they lack a thick peptidoglycan layer in their cell walls, which is typically stained dark purple in Gram-positive bacteria. Instead, gram-negative bacteria have an outer membrane that contains lipopolysaccharides (LPS), which can be toxic to human cells and contribute to the pathogenicity of these organisms.

Examples of gram-negative anaerobic bacteria include Bacteroides fragilis, Prevotella species, and Porphyromonas species. These bacteria are commonly found in the human mouth, gastrointestinal tract, and genitourinary tract, and can cause a variety of infections, including abscesses, wound infections, and bacteremia.

It's important to note that while gram-negative anaerobic bacteria do not require oxygen to grow, some may still tolerate or even prefer oxygen-rich environments. Therefore, the term "anaerobe" can be somewhat misleading when used to describe these organisms.

'Desulfovibrio' is a genus of bacteria that are commonly found in various environments such as soil, water, and the gastrointestinal tracts of animals. These bacteria are gram-negative, curved or spiral-shaped, and can reduce sulfate to produce hydrogen sulfide, which gives them their name ('desulfuricate' means 'to remove sulfur'). Some species of Desulfovibrio have been associated with various human diseases, including inflammatory bowel disease and dental caries. However, more research is needed to fully understand the role that these bacteria play in human health and disease.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Citrates are the salts or esters of citric acid, a weak organic acid that is naturally found in many fruits and vegetables. In a medical context, citrates are often used as a buffering agent in intravenous fluids to help maintain the pH balance of blood and other bodily fluids. They are also used in various medical tests and treatments, such as in urine alkalinization and as an anticoagulant in kidney dialysis solutions. Additionally, citrate is a component of some dietary supplements and medications.

Liver glycogen is the reserve form of glucose stored in hepatocytes (liver cells) for the maintenance of normal blood sugar levels. It is a polysaccharide, a complex carbohydrate, that is broken down into glucose molecules when blood glucose levels are low. This process helps to maintain the body's energy needs between meals and during periods of fasting or exercise. The amount of glycogen stored in the liver can vary depending on factors such as meal consumption, activity level, and insulin regulation.

Glycogenolysis is the biochemical process by which glycogen, a polymer of glucose, is broken down into its constituent glucose molecules. This process occurs primarily in the liver and muscles and is critical for maintaining normal blood glucose levels between meals and during periods of increased physical activity.

Glycogenolysis is initiated by the enzyme glycogen phosphorylase, which cleaves off individual glucose molecules from the end of a glycogen branch, resulting in the formation of glucose-1-phosphate. This compound is then converted to glucose-6-phosphate by the enzyme phosphoglucomutase.

Glucose-6-phosphate can be further metabolized through several pathways, including glycolysis or the pentose phosphate pathway, depending on the energy needs of the cell. In the liver, glucose-6-phosphatase can remove the phosphate group from glucose-6-phosphate to produce free glucose, which is released into the bloodstream and transported to other tissues for use as an energy source.

Overall, glycogenolysis plays a crucial role in maintaining normal blood glucose levels and providing energy to cells during periods of increased demand.

Imino furanoses are not a recognized medical term, but they may be referred to in the field of biochemistry and carbohydrate research. In this context, imino furanoses are a type of sugar ring structure that contains an imine group (-C=N-) instead of the usual oxygen atom in the furanose form of sugars. Imino furanoses can be formed under certain conditions during chemical reactions involving carbohydrates, but they are not typically found in biological systems.

Carbon radioisotopes are radioactive isotopes of carbon, which is an naturally occurring chemical element with the atomic number 6. The most common and stable isotope of carbon is carbon-12 (^12C), but there are also several radioactive isotopes, including carbon-11 (^11C), carbon-14 (^14C), and carbon-13 (^13C). These radioisotopes have different numbers of neutrons in their nuclei, which makes them unstable and causes them to emit radiation.

Carbon-11 has a half-life of about 20 minutes and is used in medical imaging techniques such as positron emission tomography (PET) scans. It is produced by bombarding nitrogen-14 with protons in a cyclotron.

Carbon-14, also known as radiocarbon, has a half-life of about 5730 years and is used in archaeology and geology to date organic materials. It is produced naturally in the atmosphere by cosmic rays.

Carbon-13 is stable and has a natural abundance of about 1.1% in carbon. It is not radioactive, but it can be used as a tracer in medical research and in the study of metabolic processes.

I couldn't find a specific medical definition for "running" as an exercise or physical activity. However, in a medical or clinical context, running usually refers to the act of moving at a steady speed by lifting and setting down each foot in turn, allowing for a faster motion than walking. It is often used as a form of exercise, recreation, or transportation.

Running can be described medically in terms of its biomechanics, physiological effects, and potential health benefits or risks. For instance, running involves the repetitive movement of the lower extremities, which can lead to increased heart rate, respiratory rate, and metabolic demand, ultimately improving cardiovascular fitness and burning calories. However, it is also associated with potential injuries such as runner's knee, shin splints, or plantar fasciitis, especially if proper precautions are not taken.

It is important to note that before starting any new exercise regimen, including running, individuals should consult their healthcare provider, particularly those with pre-existing medical conditions or concerns about their ability to engage in physical activity safely.

Picolinic acid is not specifically classified as a medical term, but it is a type of organic compound that belongs to the class of molecules known as pyridinecarboxylic acids. These are carboxylic acids derived from pyridine by the substitution of a hydrogen atom with a carboxyl group.

Picolinic acid, specifically, is a pyridine derivative with a carboxyl group at the 2-position of the ring. It is naturally produced in the body and can be found in various tissues and fluids, including the brain, where it plays a role in the metabolism of amino acids, particularly tryptophan.

In addition to its physiological functions, picolinic acid has been studied for its potential therapeutic applications. For example, it has been shown to have antibacterial and antifungal properties, and may also play a role in heavy metal chelation and neuroprotection. However, more research is needed to fully understand the medical significance of this compound.

Ammonia is a colorless, pungent-smelling gas with the chemical formula NH3. It is a compound of nitrogen and hydrogen and is a basic compound, meaning it has a pH greater than 7. Ammonia is naturally found in the environment and is produced by the breakdown of organic matter, such as animal waste and decomposing plants. In the medical field, ammonia is most commonly discussed in relation to its role in human metabolism and its potential toxicity.

In the body, ammonia is produced as a byproduct of protein metabolism and is typically converted to urea in the liver and excreted in the urine. However, if the liver is not functioning properly or if there is an excess of protein in the diet, ammonia can accumulate in the blood and cause a condition called hyperammonemia. Hyperammonemia can lead to serious neurological symptoms, such as confusion, seizures, and coma, and is treated by lowering the level of ammonia in the blood through medications, dietary changes, and dialysis.

Resuscitation is a medical term that refers to the process of reversing cardiopulmonary arrest or preventing further deterioration of someone in cardiac or respiratory arrest. It involves a series of interventions aimed at restoring spontaneous blood circulation and breathing, thereby preventing or minimizing tissue damage due to lack of oxygen.

The most common form of resuscitation is cardiopulmonary resuscitation (CPR), which combines chest compressions to manually pump blood through the body with rescue breaths to provide oxygen to the lungs. In a hospital setting, more advanced techniques such as defibrillation, medication administration, and intubation may also be used as part of the resuscitation process.

The goal of resuscitation is to stabilize the patient's condition and prevent further harm while treating the underlying cause of the arrest. Successful resuscitation can lead to a full recovery or, in some cases, result in varying degrees of neurological impairment depending on the severity and duration of the cardiac or respiratory arrest.

Clinical enzyme tests are laboratory tests that measure the amount or activity of certain enzymes in biological samples, such as blood or bodily fluids. These tests are used to help diagnose and monitor various medical conditions, including organ damage, infection, inflammation, and genetic disorders.

Enzymes are proteins that catalyze chemical reactions in the body. Some enzymes are found primarily within specific organs or tissues, so elevated levels of these enzymes in the blood can indicate damage to those organs or tissues. For example, high levels of creatine kinase (CK) may suggest muscle damage, while increased levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) can indicate liver damage.

There are several types of clinical enzyme tests, including:

1. Serum enzyme tests: These measure the level of enzymes in the blood serum, which is the liquid portion of the blood after clotting. Examples include CK, AST, ALT, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH).
2. Urine enzyme tests: These measure the level of enzymes in the urine. An example is N-acetyl-β-D-glucosaminidase (NAG), which can indicate kidney damage.
3. Enzyme immunoassays (EIAs): These use antibodies to detect and quantify specific enzymes or proteins in a sample. They are often used for the diagnosis of infectious diseases, such as HIV or hepatitis.
4. Genetic enzyme tests: These can identify genetic mutations that cause deficiencies in specific enzymes, leading to inherited metabolic disorders like phenylketonuria (PKU) or Gaucher's disease.

It is important to note that the interpretation of clinical enzyme test results should be done by a healthcare professional, taking into account the patient's medical history, symptoms, and other diagnostic tests.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Epinephrine, also known as adrenaline, is a hormone and a neurotransmitter that is produced in the body. It is released by the adrenal glands in response to stress or excitement, and it prepares the body for the "fight or flight" response. Epinephrine works by binding to specific receptors in the body, which causes a variety of physiological effects, including increased heart rate and blood pressure, improved muscle strength and alertness, and narrowing of the blood vessels in the skin and intestines. It is also used as a medication to treat various medical conditions, such as anaphylaxis (a severe allergic reaction), cardiac arrest, and low blood pressure.

I apologize for the confusion, but "physical conditioning" is not a term that is typically used in the context of animals in veterinary medicine or animal sciences. The term "physical conditioning" is more commonly used to describe the process of improving an individual's physical fitness through exercise and training.

However, in animal science, the concept of "training" or "exercising" animals may refer to the process of teaching them specific behaviors or skills, improving their physical abilities, or promoting their overall health and well-being. This might involve activities such as providing opportunities for regular exercise, engaging in play, or using positive reinforcement techniques to teach animals new skills or modify their behavior.

If you have any further questions about animal care or training, I would be happy to try to help!

Aminooxyacetic acid (AOAA) is a chemical compound that is an irreversible inhibitor of pyridoxal phosphate-dependent enzymes. Pyridoxal phosphate is a cofactor involved in several important biochemical reactions, including the transamination of amino acids. By inhibiting these enzymes, AOAA can alter the normal metabolism of amino acids and other related compounds in the body.

AOAA has been studied for its potential therapeutic uses, such as in the treatment of neurodegenerative disorders like Huntington's disease and epilepsy. However, more research is needed to fully understand its mechanisms of action and potential side effects before it can be used as a routine therapy.

It is important to note that AOAA is not a naturally occurring substance in the human body and should only be used under medical supervision.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Glutamic acid is an alpha-amino acid, which is one of the 20 standard amino acids in the genetic code. The systematic name for this amino acid is (2S)-2-Aminopentanedioic acid. Its chemical formula is HO2CCH(NH2)CH2CH2CO2H.

Glutamic acid is a crucial excitatory neurotransmitter in the human brain, and it plays an essential role in learning and memory. It's also involved in the metabolism of sugars and amino acids, the synthesis of proteins, and the removal of waste nitrogen from the body.

Glutamic acid can be found in various foods such as meat, fish, beans, eggs, dairy products, and vegetables. In the human body, glutamic acid can be converted into gamma-aminobutyric acid (GABA), another important neurotransmitter that has a calming effect on the nervous system.

Pyruvate carboxylase is a biotin-containing enzyme that plays a crucial role in gluconeogenesis, the process of generating new glucose molecules from non-carbohydrate sources. The enzyme catalyzes the conversion of pyruvate to oxaloacetate, an important intermediate in several metabolic pathways, particularly in the liver, kidneys, and brain.

The reaction catalyzed by pyruvate carboxylase is as follows:

Pyruvate + CO2 + ATP + H2O → Oxaloacetate + ADP + Pi + 2H+

In this reaction, pyruvate reacts with bicarbonate (HCO3-) to form oxaloacetate, consuming one molecule of ATP in the process. The generation of oxaloacetate provides a key entry point for non-carbohydrate precursors, such as lactate and certain amino acids, to enter the gluconeogenic pathway.

Pyruvate carboxylase deficiency is a rare but severe genetic disorder that can lead to neurological impairment and developmental delays due to the disruption of energy metabolism in the brain.

Acetic acid is an organic compound with the chemical formula CH3COOH. It is a colorless liquid with a pungent, vinegar-like smell and is the main component of vinegar. In medical terms, acetic acid is used as a topical antiseptic and antibacterial agent, particularly for the treatment of ear infections, external genital warts, and nail fungus. It can also be used as a preservative and solvent in some pharmaceutical preparations.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

The extracellular space is the region outside of cells within a tissue or organ, where various biological molecules and ions exist in a fluid medium. This space is filled with extracellular matrix (ECM), which includes proteins like collagen and elastin, glycoproteins, and proteoglycans that provide structural support and biochemical cues to surrounding cells. The ECM also contains various ions, nutrients, waste products, signaling molecules, and growth factors that play crucial roles in cell-cell communication, tissue homeostasis, and regulation of cell behavior. Additionally, the extracellular space includes the interstitial fluid, which is the fluid component of the ECM, and the lymphatic and vascular systems, through which cells exchange nutrients, waste products, and signaling molecules with the rest of the body. Overall, the extracellular space is a complex and dynamic microenvironment that plays essential roles in maintaining tissue structure, function, and homeostasis.

Acetyl Coenzyme A, often abbreviated as Acetyl-CoA, is a key molecule in metabolism, particularly in the breakdown and oxidation of carbohydrates, fats, and proteins to produce energy. It is a coenzyme that plays a central role in the cellular process of transforming the energy stored in the chemical bonds of nutrients into a form that the cell can use.

Acetyl-CoA consists of an acetyl group (two carbon atoms) linked to coenzyme A, a complex organic molecule. This linkage is facilitated by an enzyme called acetyltransferase. Once formed, Acetyl-CoA can enter various metabolic pathways. In the citric acid cycle (also known as the Krebs cycle), Acetyl-CoA is further oxidized to release energy in the form of ATP, NADH, and FADH2, which are used in other cellular processes. Additionally, Acetyl-CoA is involved in the biosynthesis of fatty acids, cholesterol, and certain amino acids.

In summary, Acetyl Coenzyme A is a vital molecule in metabolism that connects various biochemical pathways for energy production and biosynthesis.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

Volatile fatty acids (VFA) are a type of fatty acid that have a low molecular weight and are known for their ability to evaporate at room temperature. They are produced in the body during the breakdown of carbohydrates and proteins in the absence of oxygen, such as in the digestive tract by certain bacteria.

The most common volatile fatty acids include acetic acid, propionic acid, and butyric acid. These compounds have various roles in the body, including providing energy to cells in the intestines, modulating immune function, and regulating the growth of certain bacteria. They are also used as precursors for the synthesis of other molecules, such as cholesterol and bile acids.

In addition to their role in the body, volatile fatty acids are also important in the food industry, where they are used as flavorings and preservatives. They are produced naturally during fermentation and aging processes, and are responsible for the distinctive flavors of foods such as yogurt, cheese, and wine.

Phosphofructokinase-1 (PFK-1) is a rate-limiting enzyme in the glycolytic pathway, which is the metabolic pathway that converts glucose into pyruvate, producing ATP and NADH as energy currency for the cell. PFK-1 plays a crucial role in regulating the rate of glycolysis by catalyzing the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using ATP as the phosphate donor.

PFK-1 is allosterically regulated by various metabolites, such as AMP, ADP, and ATP, which act as positive or negative effectors of the enzyme's activity. For example, an increase in the intracellular concentration of AMP or ADP can activate PFK-1, promoting glycolysis and energy production, while an increase in ATP levels can inhibit the enzyme's activity, conserving glucose for use under conditions of low energy demand.

Deficiencies in PFK-1 can lead to a rare genetic disorder called Tarui's disease or glycogen storage disease type VII, which is characterized by exercise intolerance, muscle cramps, and myoglobinuria (the presence of myoglobin in the urine due to muscle damage).

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

Veillonellaceae is a family of Gram-negative, anaerobic bacteria found in various environments, including the human mouth and gut. The bacteria are known for their ability to produce acetic and lactic acid as end products of their metabolism. They are often part of the normal microbiota of the body, but they can also be associated with certain infections, particularly in individuals with weakened immune systems.

It's important to note that while Veillonellaceae bacteria are generally considered to be commensal organisms, meaning they exist harmoniously with their human hosts, they have been implicated in some disease states, such as periodontitis (gum disease) and bacterial pneumonia. However, more research is needed to fully understand the role of these bacteria in health and disease.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Hexose phosphates are organic compounds that consist of a hexose sugar molecule (a monosaccharide containing six carbon atoms, such as glucose or fructose) that has been phosphorylated, meaning that a phosphate group has been added to it. This process is typically facilitated by enzymes called kinases, which transfer a phosphate group from a donor molecule (usually ATP) to the sugar molecule.

Hexose phosphates play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the pentose phosphate pathway. For example, glucose-6-phosphate is a key intermediate in both glycolysis and gluconeogenesis, while fructose-6-phosphate and fructose-1,6-bisphosphate are important intermediates in glycolysis. The pentose phosphate pathway, which is involved in the production of NADPH and ribose-5-phosphate, begins with the conversion of glucose-6-phosphate to 6-phosphogluconolactone by the enzyme glucose-6-phosphate dehydrogenase.

Overall, hexose phosphates are important metabolic intermediates that help regulate energy production and utilization in cells.

Hexokinase is an enzyme that plays a crucial role in the initial step of glucose metabolism, which is the phosphorylation of glucose to form glucose-6-phosphate. This reaction is the first step in most glucose catabolic pathways, including glycolysis, pentose phosphate pathway, and glycogen synthesis.

Hexokinase has a high affinity for glucose, meaning it can bind and phosphorylate glucose even at low concentrations. This property makes hexokinase an important regulator of glucose metabolism in cells. There are four isoforms of hexokinase (I-IV) found in different tissues, with hexokinase IV (also known as glucokinase) being primarily expressed in the liver and pancreas.

In summary, hexokinase is a vital enzyme involved in glucose metabolism, catalyzing the conversion of glucose to glucose-6-phosphate, and playing a crucial role in regulating cellular energy homeostasis.

Oxidative phosphorylation is the metabolic process by which cells use enzymes to generate energy in the form of adenosine triphosphate (ATP) from the oxidation of nutrients, such as glucose or fatty acids. This process occurs in the inner mitochondrial membrane of eukaryotic cells and is facilitated by the electron transport chain, which consists of a series of protein complexes that transfer electrons from donor molecules to acceptor molecules. As the electrons are passed along the chain, they release energy that is used to pump protons across the membrane, creating a gradient. The ATP synthase enzyme then uses the flow of protons back across the membrane to generate ATP, which serves as the main energy currency for cellular processes.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Septic shock is a serious condition that occurs as a complication of an infection that has spread throughout the body. It's characterized by a severe drop in blood pressure and abnormalities in cellular metabolism, which can lead to organ failure and death if not promptly treated.

In septic shock, the immune system overreacts to an infection, releasing an overwhelming amount of inflammatory chemicals into the bloodstream. This leads to widespread inflammation, blood vessel dilation, and leaky blood vessels, which can cause fluid to leak out of the blood vessels and into surrounding tissues. As a result, the heart may not be able to pump enough blood to vital organs, leading to organ failure.

Septic shock is often caused by bacterial infections, but it can also be caused by fungal or viral infections. It's most commonly seen in people with weakened immune systems, such as those who have recently undergone surgery, have chronic medical conditions, or are taking medications that suppress the immune system.

Prompt diagnosis and treatment of septic shock is critical to prevent long-term complications and improve outcomes. Treatment typically involves aggressive antibiotic therapy, intravenous fluids, vasopressors to maintain blood pressure, and supportive care in an intensive care unit (ICU).

Trioses are simple sugars that contain three carbon atoms and a functional group called a ketone or aldehyde. They are the simplest type of sugar molecule, after monosaccharides such as glyceraldehyde and dihydroxyacetone.

Triose sugars can exist in two structural forms:

* Dihydroxyacetone (DHA), which is a ketotriose with the formula CH2OH-CO-CH2OH, and
* Glyceraldehyde (GA), which is an aldotriose with the formula HO-CHOH-CHO.

Trioses play important roles in various metabolic pathways, including glycolysis, gluconeogenesis, and the Calvin cycle of photosynthesis. In particular, DHA and GA are intermediates in the conversion of glucose to pyruvate during glycolysis, and they are also produced from pyruvate during gluconeogenesis.

Trioses can be synthesized chemically or biochemically through various methods, such as enzymatic reactions or microbial fermentation. They have potential applications in the food, pharmaceutical, and chemical industries, as they can serve as building blocks for more complex carbohydrates or as precursors for other organic compounds.

Hematocrit is a medical term that refers to the percentage of total blood volume that is made up of red blood cells. It is typically measured as part of a complete blood count (CBC) test. A high hematocrit may indicate conditions such as dehydration, polycythemia, or living at high altitudes, while a low hematocrit may be a sign of anemia, bleeding, or overhydration. It is important to note that hematocrit values can vary depending on factors such as age, gender, and pregnancy status.

Ergometry is a medical term that refers to the process of measuring the amount of work or energy expended by an individual during physical exercise. It is often used in clinical settings to assess cardiopulmonary function, functional capacity, and exercise tolerance in patients with various medical conditions such as heart disease, lung disease, and metabolic disorders.

Ergometry typically involves the use of specialized equipment, such as a treadmill or stationary bike, which is connected to a computer that measures and records various physiological parameters such as heart rate, blood pressure, oxygen consumption, and carbon dioxide production during exercise. The data collected during an ergometry test can help healthcare providers diagnose medical conditions, develop treatment plans, and monitor the effectiveness of interventions over time.

There are several types of ergometry tests, including:

1. Cardiopulmonary Exercise Testing (CPET): This is a comprehensive assessment that measures an individual's cardiovascular, respiratory, and metabolic responses to exercise. It typically involves the use of a treadmill or stationary bike and provides detailed information about an individual's functional capacity, exercise tolerance, and overall health status.
2. Stress Echocardiography: This is a type of ergometry test that uses ultrasound imaging to assess heart function during exercise. It involves the use of a treadmill or stationary bike and provides information about blood flow to the heart, wall motion abnormalities, and valve function.
3. Nuclear Stress Test: This is a type of ergometry test that uses radioactive tracers to assess heart function during exercise. It involves the use of a treadmill or stationary bike and provides information about blood flow to the heart, myocardial perfusion, and viability.
4. Six-Minute Walk Test: This is a simple ergometry test that measures an individual's distance walked in six minutes. It is often used to assess functional capacity and exercise tolerance in patients with chronic lung disease or heart failure.

Overall, ergometry is an important tool in the diagnosis and management of various medical conditions and can provide valuable information about an individual's health status and response to treatment.

Dihydroxyacetone (DHA) is a simple sugar that is used as an ingredient in many self-tanning products. When applied to the skin, DHA reacts with amino acids in the dead layer of the skin to temporarily darken the skin color. This process is known as the Maillard reaction, which is a chemical reaction between an amino acid and a sugar. The effect of DHA is limited to the uppermost layer of the skin and it does not provide any protection against sunburn or UV radiation. The tanning effect produced by DHA usually lasts for about 5-7 days.

It's important to note that while DHA is considered safe for external use, it should not be inhaled or ingested, as it can cause irritation and other adverse effects. Additionally, some people may experience skin irritation or allergic reactions to products containing DHA, so it's always a good idea to do a patch test before using a new self-tanning product.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Glycerophosphates are esters of glycerol and phosphoric acid. In the context of biochemistry and medicine, glycerophosphates often refer to glycerol 3-phosphate (also known as glyceraldehyde 3-phosphate or glycerone phosphate) and its derivatives.

Glycerol 3-phosphate plays a crucial role in cellular metabolism, particularly in the process of energy production and storage. It is an important intermediate in both glycolysis (the breakdown of glucose to produce energy) and gluconeogenesis (the synthesis of glucose from non-carbohydrate precursors).

In addition, glycerophosphates are also involved in the formation of phospholipids, a major component of cell membranes. The esterification of glycerol 3-phosphate with fatty acids leads to the synthesis of phosphatidic acid, which is a key intermediate in the biosynthesis of other phospholipids.

Abnormalities in glycerophosphate metabolism have been implicated in various diseases, including metabolic disorders and neurological conditions.

Look up lactate or Lactate in Wiktionary, the free dictionary. Lactate may refer to: Lactation, the secretion of milk from the ... the conjugate base of lactic acid This disambiguation page lists articles associated with the title Lactate. If an internal ...
... is a white crystalline salt with formula C 6H 10CaO 6, consisting of two lactate anions H 3C(CHOH)CO− 2 for ... Calcium lactate has several uses in human and veterinary medicine. Calcium lactate is used in medicine as an antacid. It is ... Calcium lactate is also known as cheese lactate because it coagulates milk, making the chhena used in the production of paneer ... Some cheese crystals consist of calcium lactate. The lactate ion is chiral, with two enantiomers, D (−,R) and L (+,S). The L ...
... at Discogs (list of releases) v t e (Articles with short description, Short description is different from ... Lactating Purple is an album by Helios Creed, released in 1991 through Amphetamine Reptile Records. Spin called the album " ... "Lactating Purple". AllMusic. Retrieved May 27, 2013. Frampton, Scott (2007). "Helios Creed". Trouser Press. Retrieved May 27, ...
... , in the form of Ringer's lactate solution, is used as a medication, and is included on the World Health ... Sodium lactate may therefore also be used to confirm a diagnosis of panic disorder.: 19 Sodium lactate is not chemically ... Sodium lactate Archived 2017-12-01 at the Wayback Machine, chemblink.com "Safety data for sodium lactate syrup". Archived from ... November 2004). "Sodium Lactate (sodium lactate) Injection, Solution, Concentrate". DailyMed. U.S. National Library of Medicine ...
Other LDHs act on D-lactate and/or are dependent on cytochrome c: D-lactate dehydrogenase (cytochrome) and L-lactate ... Within the heart, lactate dehydrogenase plays the role of converting lactate back into pyruvate so that the pyruvate can be ... Lactate dehydrogenase-A deficiency is caused by a mutation to the LDHA gene, while lactate dehydrogenase-B deficiency is caused ... A complete lactate dehydrogenase enzyme consists of four protein subunits. Since the two most common subunits found in lactate ...
... makes skin more sensitive to sunlight, and skin is more likely to sunburn.[1] Ammonium lactate is sold as an ... Ammonium lactate is a compound with formula NH4(C2H4(OH)COO). It is the ammonium salt of lactic acid. It has mild anti- ... Ammonium lactate is the chemical combination of lactic acid and ammonium hydroxide. It is used as a skin moisturizer lotion to ... "DailyMed: View Drug Label: Lac-Hydrin (ammonium lactate) Lotion". Lac-Hydrin specially formulates 12% lactic acid, neutralized ...
... is a compound with formula KC3H5O3, or H3C-CHOH-COOK. It is the potassium salt of lactic acid. It is produced ... Potassium lactate is commonly used in meat and poultry products to extend shelf life and increase food safety as it has a broad ... It has E number "E326". Potassium lactate is a liquid product that is usually 60% solids but is available at up to 78% solids. ... Lactates, Food additives, Potassium compounds, E-number additives, All stub articles, Organic compound stubs, Firefighting ...
It can also be obtained by mixing boiling solutions of lactate of lime and cadmium sulfate. Cadmium lactate forms colorless ( ... Cadmium lactate is an organic chemical compound, a salt of cadmium and lactic acid with the formula Cd(C3H5O3)2. Cadmium ... Cadmium lactate (Articles without InChI source, Articles without EBI source, Articles without KEGG source, Articles without ... lactate can be obtained by dissolving cadmium carbonate in lactic acid. ...
... is a chemical compound, a salt of cobalt and lactic acid with the formula Co(C3H5O3)2. Cobalt lactate can be ... Cobalt lactate is used as a ruminal source of cobalt in a high-forage total mixed ration fed to late-lactation dairy cows. "CAS ... Cobalt lactate forms a peach-blossom red salt. It is soluble in water. When heated, the compound becomes black, takes fire, and ... Casper, David P.; Pretz, Jon P.; Purvis, Heb T. (October 2021). "Supplementing additional cobalt as cobalt lactate in a high- ...
Muscles are producing lactate even at rest, with resting blood lactate levels in the 1-2 mM/L range. Although the lactate ... Lactate inflection point (LIP) is the exercise intensity at which the blood concentration of lactate and/or lactic acid begins ... The blood lactate concentration at the anaerobic threshold is called the "maximum steady-state lactate concentration" (MLSS). ... When exercising at or below the lactate threshold, any lactate produced by the muscles is removed by the body without it ...
... appears as a white powder which is soluble in water. Aluminium lactate is used as a mordant. It is suitable ... Aluminium lactate is a chemical compound, a salt of aluminium and lactic acid with the formula Al(C3H5O3)3. Aluminium lactate ... Aluminium lactate is also used as a precursor for sol-gel synthesis of alumina-based glasses. Vargel, Christian (12 May 2020). ... "Aluminium Lactate - mordant for natural dyeing plant (cellulose) fibres". DT Craft and Design. Retrieved 24 January 2022. Hunt ...
The enzyme lactate aldolase (EC 4.1.2.36) catalyzes the chemical reaction (S)-lactate ⇌ {\displaystyle \rightleftharpoons } ... Other names in common use include lactate synthase, and (S)-lactate acetaldehyde-lyase. This enzyme participates in pyruvate ... The systematic name of this enzyme class is (S)-lactate acetaldehyde-lyase (formate-forming). ...
Most biologically sourced ethyl lactate is ethyl (−)-L-lactate (ethyl (S)-lactate). Ethyl lactate is also produced industrially ... The odor of ethyl lactate when dilute is mild, buttery, creamy, with hints of fruit and coconut. Ethyl lactate is produced from ... "Ethyl lactate". "ETHYL LACTATE , CAMEO Chemicals , NOAA". Stoye, Dieter (2000). "Solvents". Ullmann's Encyclopedia of ... Ethyl lactate, also known as lactic acid ethyl ester, is the organic compound with the formula CH3CH(OH)CO2CH2CH3. It is the ...
... forms crystalline hydrates of composition Mn(C3H5O3)2•n H2O, where n = 2 and 3. Each lactate is a bidentate ... "Manganese(II) Lactate Trihydrate". American Elements. Retrieved 17 January 2022. "Jost Chemical - Manganese Lactate, CAS Number ... Manganese lactate is an organic chemical compound, a salt of manganese and lactic acid with the formula Mn(C3H5O3)2. The ... "Manganese(II) lactate trihydrate". Sigma Aldrich. Retrieved 17 January 2022. Ke, Zeng-Bo; Fan, Xin-Hui; Di, You-Ying; Chen, ...
"Magnesium Lactate Tablet, Extended Release - Uses, Side Effects, and More". WebMD. "E329 - Magnesium lactate". openfoodfacts. ... Magnesium lactate, the magnesium salt of lactic acid, is a mineral supplement to prevent and treat low amounts of magnesium in ... Lactates, All stub articles, Gastrointestinal system drug stubs). ...
... forms light gray crystals. Silver lactate is soluble in water, slightly soluble in ethanol. Silver lactate forms ... "Silver Lactate". American Elements. Retrieved 18 January 2022. "Silver lactate". Sigma Aldrich. Retrieved 18 January 2022. ... Silver lactate is an organic chemical compound, a salt of silver and lactic acid with the formula CH3CH(OH)COOAg. Silver ... Silver lactate is a reagent for the precipitation of uric acid. The compound reacts with triphenylphosphine gold chloride in a ...
... is the zirconium salt of lactic acid. It is used in some deodorants. Zirconium carboxylates adopt highly ... "Zirconium lactate and barium zirconate. Acute toxicity and inhalation effects in experimental animals", Am. Ind. Hyg. Assoc. J ...
L. plantarum initially produces L-lactate, which induces the activity of lactate racemase. By contrast, D-lactate represses ... Therefore, Lar activity appears to be regulated by the ratio of L-lactate/D-lactate. L. plantarum LarA represents a new type of ... 2005). "Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in ... In other species, such as L. plantarum, the cellular role is to transform L-lactate into D-lactate for incorporation into the ...
... emits acrid smoke when heated to decomposition. Lithium lactate reacts with triphosgene to obtain lactic acid-O ... "Lithium lactate". pubchem.ncbi.nlm.nih.gov. Retrieved 22 January 2022. "Lithium Lactate". American Elements. Retrieved 17 ... Lithium lactate is part of drugs that promote the excretion of uric acid from the body. It is also used as an Antipsychotic. " ... Lithium lactate is a chemical compound, a salt of lithium and lactic acid with the formula CH3CH(OH)COOLi, an amorphous solid, ...
... is nearly odourless, highly soluble in water, and insoluble in ethanol. Zinc lactate forms dihydrates with the ... Zinc lactate is a chemical compound, a salt of zinc and lactic acid with the formula Zn(C3H5O3)2. Reaction of lactic acid with ... "Jost Chemical - Zinc Lactate Dihydrate Powder, CAS Number 63179-81-7". Jost Chemical Co. Retrieved 23 January 2022. Tang, ... "Zinc Lactate - Jungbunzlauer". Jungbunzlauer. Retrieved 23 January 2022. "Clinical Effect of Toothpaste and Mouth Rinse ...
Ethyl lactate, a more commonly used ester of lactic acid GHS: Record of Methyl lactate in the GESTIS Substance Database of the ... Methyl lactate, also known as lactic acid methyl ester, is the organic compound with the formula CH3CH(OH)CO2CH3. It is the ... The synthesis of 1,2-propanediol from methyl lactate has been commercialized using a MACHO catalyst. ...
... is used as a dietary supplement for treating osteoporosis and supporting bones and teeth. "Strontium lactate ... Strontium lactate is a chemical compound, a salt of strontium and lactic acid with the formula C 6H 10O 6Sr. This salt is ... Strontium lactate can be obtained by neutralizing moderately dilute lactic acid with strontium carbonate or hydroxide and ... "Strontium Lactate - 29870-99-3". Discovery Fine Chemicals. Retrieved 6 February 2023. "Safety and Pharmacokinetics of Orally ...
... (ethacridine monolactate monohydrate, acrinol, trade name Rivanol) is an aromatic organic compound based on ... Lactates, Acridines, Phenol ethers, Aromatic amines, Ethoxy compounds). ...
... (EC 4.2.1.130, glyoxylase III) is an enzyme with systematic name (R)-lactate hydro-lyase. This enzyme ... D-lactate+dehydratase at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology v t e (EC 4.2.1 ... lactate. Misra K, Banerjee AB, Ray S, Ray M (February 1995). "Glyoxalase III from Escherichia coli: a single novel enzyme for ... the conversion of methylglyoxal into D-lactate without reduced glutathione". The Biochemical Journal. 305 (3): 999-1003. doi: ...
... is a protein that in humans is encoded by the LDHB gene. This gene encodes the B subunit of lactate ... "Differences and similarities in binding of pyruvate and L-lactate in the active site of M4 and H4 isoforms of human lactate ... Zha X, Wang F, Wang Y, He S, Jing Y, Wu X, Zhang H (2011). "Lactate dehydrogenase B is critical for hyperactive mTOR-mediated ... "Entrez Gene: Lactate dehydrogenase B". Retrieved 2017-10-01. Philibert RA, Nelson JJ, Sandhu HK, Crowe RR, Coryell WH (2003). " ...
Local lactate use depends on exercise exertion. During rest, approximately 50% of lactate disposal take place through lactate ... Brooks, G.A. (1999). "Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle". ... that acts as a lactate sensor, inhibiting lipolysis in response to lactate . As found by Brooks, et al., while lactate is ... pertaining to the role of lactate as a signalling hormone. Prior to the formation of the lactate shuttle hypothesis, lactate ...
In enzymology, a lactate-malate transhydrogenase (EC 1.1.99.7) is an enzyme that catalyzes the chemical reaction (S)-lactate + ... The systematic name of this enzyme class is (S)-lactate:oxaloacetate oxidoreductase. This enzyme is also called malate-lactate ... Allen SH, Patil JR (1972). "Studies on the structure and mechanism of action of the malate-lactate transhydrogenase". J. Biol. ... Allen SH (1966). "The isolation and characterization of malate-lactate transhydrogenase from Micrococcus lactilyticus". J. Biol ...
... lactate oxygenase, lactic oxidase, L-lactate monooxygenase, lactate monooxygenase, and L-lactate-2-monooxygenase. This enzyme ... lactate:oxygen 2-oxidoreductase (decarboxylating). Other names in common use include lactate oxidative decarboxylase, lactate ... In enzymology, a lactate 2-monooxygenase (EC 1.13.12.4) is an enzyme that catalyzes the chemical reaction (S)-lactate + O2 ⇌ {\ ... displaystyle \rightleftharpoons } acetate + CO2 + H2O Thus, the two substrates of this enzyme are (S)-lactate and O2, whereas ...
Núñez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L, Lin EC (January 2002). "Transport of L-Lactate, D-Lactate, and glycolate by ... The lactate permease (LctP) family (TC# 2.A.14) is a family of transport proteins belonging to the ion transporter (IT) ... The original text was at "2.A.14 The Lactate Permease (LctP) Family" (Protein pages needing a picture, Articles with imported ... Transport reactions catalyzed by functionally characterized members of the LctP family include: D- or L-lactate or glycolate ( ...
... is an industrial chemical and food additive. In an industrial context, n-butyl lactate is used as a solvent and ... n-Butyl lactate reacts with strong acids, strong bases, and oxidizers. It is also flammable. Exposure to dangerous amounts can ... "n-Butyl lactate". OSHA. (PubChem ID (CID) same as Wikidata, Articles without KEGG source, ECHA InfoCard ID from Wikidata, ... 0082". National Institute for Occupational Safety and Health (NIOSH). CID 8738 from PubChem "N-butyl lactate". CDC/NIOSH. 28 ...
Look up lactate or Lactate in Wiktionary, the free dictionary. Lactate may refer to: Lactation, the secretion of milk from the ... the conjugate base of lactic acid This disambiguation page lists articles associated with the title Lactate. If an internal ...
This test measures lactate (also called lactic acids) in your blood. Too much lactic acid can cause a life-threatening ... Why do I need a lactate test?. You may need a lactate test:. *If you have symptoms of lactic acidosis, such as: *Shortness of ... What is a lactate test?. This test measures the level of lactate, also called lactic acid, in a sample of your blood. In ... If lactate continues to build up, hyperlactatemia can become lactic acidosis.. *Lactic acidosis means that your lactate level ...
The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database ...
... Katy Perry Lactates Beer at Vegas Concert ... My Corona Not ... So, the 37-year-old mother of 1 was super resourceful, using the can attached to her dress to lactate a glass of Corona, and ...
Lactate dehydrogenase is an enzyme that helps turn sugar into energy for your cells. High LDH levels could indicate cell damage ... Lactate dehydrogenase (LDH) is an enzyme required during the process of turning sugar into energy for your cells. LDH is ... http://ghr.nlm.nih.gov/condition/lactate-dehydrogenase-deficiency. *. Lactatedehydrogenase isoenzymes. (n.d.).. https://www. ... urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=167&ContentID=lactate_dehydrogenase_isoenzymes. ...
Sodium lactate is hygroscopic salt commonly used as a humectant, moisturizer, acidity regulator, electrolyte, bulking agent, ...
Read the most popular lactating stories on Wattpad, the worlds largest social storytelling platform. ...
With the lactate wearable, Abbotts goal is to continuously measure lactate build up while working out. It says that can ... Abbott is working on biowearables to measure glucose, lactate and ketones. The devices will be able to continuously monitor ... The Lingo devices will measure glucose, ketones and lactate, and eventually they may be able to monitor alcohol levels. ...
Lactated Ringer 5% Dextrose. Lactated Ringers Injection 5% Dextrose, USP Rx is a sterile, nonpyrogenic solutions each ... Lactated Ringers Injection, USP or Lactated Ringers and Dextrose Injection, USP. It is also not known whether these ... The administration of lactate ions should be done with great care in those conditions in which there is an increased level or ... Lactated Ringers and 5% Dextrose Injection USP should be used with great care if at all in patients with congestive heart ...
Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) ... show that hair follicle stem cells rely on the production of lactate via the LDHA enzyme to become activated. Inducing Ldha ... Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion ... Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier ...
Find patient medical information for halobetasol-ammonium lactate topical on WebMD including its uses, side effects and safety ... Halobetasol-Ammonium Lactate Combination Package, Ointment And Lotion (Comb. & Lotion) - Uses, Side Effects, and More Generic ... Does Halobetasol-Ammonium Lactate Combination Package, Ointment And Lotion (Comb. & Lotion) interact with other drugs you are ... How to use Halobetasol-Ammonium Lactate Combination Package, Ointment And Lotion (Comb. & Lotion). ...
... lactate dehydrogenase) test measures the level of LDH in your blood or body fluid to check for tissue damage. Doctors use it to ... What is lactate dehydrogenase (LDH)?. Lactate dehydrogenase (LDH) is an important enzyme that helps with cellular respiration, ... What is an LDH (lactate dehydrogenase) test?. An LDH (lactate dehydrogenase) test measures the amount of LDH in your blood or ... An LDH (lactate dehydrogenase) test measures the level of LDH in your blood or other body fluid to check for tissue damage. ...
While we are ranked among the best childrens hospitals in the country, its our compassionate approach to treatment that makes us truly exceptional. Through a combination of revolutionary treatments and extraordinary patient experiences, our care does more than heal. It brings the entire family together for emotional support and understanding across multiple locations to reach you in the community where you live. Learn more... ...
Lactate tolerance training will help you to recover more quickly from successive bursts of speed and power. It will increase ... Lactate Tolerance Training. by Jacky Anderson Lactate tolerance training will help you to recover more quickly from successive ... While lactate tolerance training is very demanding it can also have the greatest impact on your performance. It is a great ... Note: Lactate tolerance training is less effective when a ball for example, is involved because it hinders maximal effort. ...
Lactated Ringers Injection USP is sterile, nonpyrogenic and contains no bacteriostatic or antimicrobial agents. This product ...
Molecular Formula Mg(C3H5O3)2,2H2O Formula Weight 238.50 CAS No. 18917-93-6 Characteristics A White or almost white, crystal... Ships from India.
Higher lactate levels correlate with increased risk of mortality, particularly with lactate levels greater than 4.0 mmol per L ... Lactate clearance, defined as the reduction of lactate over time, may also be useful to predict mortality. A meta-analysis of a ... Serum lactate testing is increasingly being used to predict mortality in patients with sepsis.1 Elevated serum lactate levels ... Although a lactate level greater than 4.0 mmol per L clearly correlates with higher mortality in patients with sepsis, lactate ...
... as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate ... Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative ... Note the plasma membrane expression of the lactate transporter in WiDr, FaDu, SiHa, and PC-3 cancer cells. (. C. ) MCT1 (red) ... A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung ...
Lactate Threshold. Lactate Threshold. Lactate threshold is the exercise intensity at which lactate (lactic acid) starts to ... Lactate Threshold. Lactate threshold is the exercise intensity at which lactate (lactic acid) starts to accumulate in the ... For average runners, the lactate threshold often occurs well below 90% of maximum heart rate. Knowing your lactate threshold ... For average runners, the lactate threshold often occurs well below 90% of maximum heart rate. Knowing your lactate threshold ...
Increased lactate-r was related with less strength limitations in the calf (R = 0.283, P = 0.011), while the elevated lactate- ... The ratios of the concentration in the injured versus uninjured limb of pyruvate (pyruvate-r) and lactate (lactate-r) were ... Keywords: achilles tendon; biomarker; healing; lactate; lactate-pyruvate ratio; patient-reported outcome measures; pyruvate; ... Pyruvate and lactate as local prognostic biomarkers of patient outcome after achilles tendon rupture Scand J Med Sci Sports. ...
Lactate dehydrogenase A (LDHA) is an important enzyme in fermentative glycolysis, generating most energy for cancer cells that ...
Unless theyre lactating, does dont need grain in early pregnancy. Do not overfeed. Overfeeding can lead to complications such ... Unless theyre lactating, does dont need grain in early pregnancy. Do not overfeed. Overfeeding can lead to complications such ... Unless theyre lactating, does dont need grain in early pregnancy. Do not overfeed. Overfeeding can lead to complications such ... How Much to Feed Pregnant and Lactating Goats. By: Cheryl K. Smith and ...
Semi-autobiographical comic strip about the daily joys, struggles, laughs, and WTFs of life. Updates every day!
... on gonadotropin secretion in lactating cattle. The lactating cattle, at approximately 7 days postpartum, were intravenously ... Ultrasonography of the ovaries was performed to identify the first postpartum ovulation in senktide-administered lactating ... A neurokinin 3 receptor-selective agonist accelerates pulsatile luteinizing hormone secretion in lactating cattle. ... is suppressed in lactating dairy and beef cattle. Neurokinin B (NKB) neurons in the arcuate nucleus of the hypothalamus are ...
Magnesium lactate dihydrate is the magnesium salt of lactic acid. Taken as a supplement, it is used to supply the essential ... Potential Benefits of Magnesium Lactate. Magnesium Lactate and Heartburn. Magnesium lactate may help alleviate several ... What is Magnesium Lactate Dihydrate?. Magnesium lactate dihydrate is a salt form of the essential mineral magnesium bonded with ... Potential Side Effects of Magnesium Lactate. Most individuals tolerate magnesium lactate supplements well, as its gentler on ...
One of the best measures of running fitness is lactate threshold. ... Do-It-Yourself Lactate Threshold Testing Lactate threshold is ... Whats Your Lactate Threshold?. Do you know your lactate threshold pace, heart rate, and/or power? You should. Fortunately, ... Lactate threshold is pinpointed where the blood lactate concentration begins to increase rapidly. In a typical trained athlete ... and/or power that corresponds to your lactate threshold. Exercise scientists determine lactate threshold in a laboratory ...
... and Older Men and Women ... Lactate accumulation from a submaximal test can be used to predict the maximal lactate steady state (MLSS). ... The PO of the following trials was modified based on the stability/instability of the blood lactate concentration (i.e. lactate ... The physiological rationale behind such a testing approach is that delta lactate over a given time reflects the early lactate ...
1. Response of lactating dairy cows to different dietary nitrogen and energy combinations East African Agricultural and ... 3. Effect on performance and metabolism of lactating dairy cows Quart. Bull. Michigan Agric. Exp. Stat 41: 326-331. Motyl, T.; ... 5. 15N-fractions in the blood of lactating cows given 15N-urea intraruminantly Archiv für Tierernahrung 34(7): 489-495. Clark, ... Wetzel, K.; Gebhardt, O.; Hubner, G. 1966: Studies on N metabolism in lactating cattle with urea-15N given by mouth. 12. Use of ...
... serum lactate (SLA), and lactate dehydrogenase (LDH) in patients with metastatic CRC. We then followed up the 57 patients with ... the patients with mCRC had an elevated level of blood lactate (,i,P=0.01,/i,) and LDH (,i,P<0.01,/i,) and a reduced level ... Low serum lactate level was defined as less than 4.0mmol/L, and elevated serum lactate level was defined as ≥4.0mmol/L. Normal ... serum lactate (SLA), and lactate dehydrogenase (LDH) in patients with metastatic CRC. We then followed up the 57 patients with ...
  • What is lactate dehydrogenase? (healthline.com)
  • Lactate dehydrogenase (LDH) is an enzyme required during the process of turning sugar into energy for your cells. (healthline.com)
  • Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. (nature.com)
  • Figure 1: Lactate dehydrogenase activity is enriched in HFSCs. (nature.com)
  • An LDH (lactate dehydrogenase) test measures the level of LDH in your blood or other body fluid to check for tissue damage. (clevelandclinic.org)
  • Lactate dehydrogenase (LDH) is an important enzyme that helps with cellular respiration, the process through which your body transforms glucose (sugar) from the food you eat into energy for your cells. (clevelandclinic.org)
  • Synthetic peptide within Human Lactate Dehydrogenase B/LDH-B aa 1-100 (N terminal). (abcam.com)
  • 69 patients with nonmetastatic colorectal cancer (non-mCRC) and 57 with metastatic CRC (mCRC) were enrolled to evaluate the prognostic value of serum albumin (ALB), serum lactate (SLA), and lactate dehydrogenase (LDH) in patients with metastatic CRC. (hindawi.com)
  • Lactate dehydrogenase (LDH) is key to this shift by catalyzing the formation of lactate by reducing pyruvate with NADH, which also generates NAD(+) that is essential for the continuity of glycolysis (1). (rndsystems.com)
  • Lactate dehydrogenase (LDH) activity, inflammatory cells, and. (lu.se)
  • Lactate dehydrogenase (LDH) activity, inflammatory cells, and total protein concentration were analyzed in bronchoalveolar lavage fluid (BALF). (lu.se)
  • Your liver and kidneys turn the lactate into glucose (sugar) that your cells use for energy. (medlineplus.gov)
  • The Lingo devices will measure glucose, ketones and lactate, and eventually they may be able to monitor alcohol levels. (engadget.com)
  • Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. (jci.org)
  • The YSI 2500 Glucose/Lactate Analyzer is a cost effective biochemistry analyzer, supporting identical analytical methodologies for glucose and lactate assays. (ysi.com)
  • The YSI 2500 Glucose/Lactate Analyzer is the cost effective alternative to the 2900D Analyzer , supporting identical analytical methodologies for glucose and lactate assays only. (ysi.com)
  • A hallmark of most cancer cells is an altered metabolism involving a shift to aerobic glycolysis with lactate production coupled with a higher uptake of glucose as the main source of energy. (rndsystems.com)
  • Thus, lactate is the normal endpoint of the anaerobic breakdown of glucose in the tissues. (medscape.com)
  • The lactate exits the cells and is transported to the liver, where it is oxidized back to pyruvate and ultimately converted to glucose via the Cori cycle. (medscape.com)
  • It takes high-intensity exercise to provoke this 'cerebral substrate switch' from glucose to lactate. (medscape.com)
  • Based on low-quality evidence, an international guideline suggests "resuscitation to normalize lactate in patients with elevated lactate levels as a marker of tissue hypoperfusion. (aafp.org)
  • Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. (nature.com)
  • The aim of this study was to assess essential metabolites pyruvate and its product lactate, as early biomarkers in relation to long-term functional- and patient-reported outcome after ATR. (nih.gov)
  • At two weeks post-injury pyruvate and lactate concentrations were assessed in both the injured and uninjured limbs using microdialysis followed by enzymatic quantification. (nih.gov)
  • The ratios of the concentration in the injured versus uninjured limb of pyruvate (pyruvate-r) and lactate (lactate-r) were calculated as well as the lactate/pyruvate ratios (L/P-r). (nih.gov)
  • Increased lactate-r was related with less strength limitations in the calf (R = 0.283, P = 0.011), while the elevated lactate-pyruvate ratio, notably, was related to more limitations in walking on uneven surface (R = -0,243, P = 0.027). (nih.gov)
  • Measured by its ability to reduce pyruvate to lactate. (rndsystems.com)
  • Pyruvate is in equilibrium with lactate with a ratio of about 25 lactate to 1 pyruvate molecules. (medscape.com)
  • However, all tissues can use lactate as an energy source, as it can be converted quickly back to pyruvate and enter into the Krebs cycle. (medscape.com)
  • In the setting of decreased tissue oxygenation, pyruvate is not readily metabolized and its intracellular levels rise, causing lactate levels to rise proportionally. (medscape.com)
  • Magnesium Lactate Dihydrate is insoluble in water. (purebulk.com)
  • Magnesium lactate dihydrate is a salt form of the essential mineral magnesium bonded with lactic acid. (purebulk.com)
  • The body absorbs magnesium lactate readily, and this form is gentler on the digestive system than others. (purebulk.com)
  • Magnesium lactate may help alleviate several gastrointestinal issues caused by an excess of stomach acid. (purebulk.com)
  • One study had individuals affected by migraines perform a magnesium load test by taking magnesium lactate supplements. (purebulk.com)
  • Most individuals tolerate magnesium lactate supplements well, as it's gentler on the stomach than other types of magnesium. (purebulk.com)
  • Sodium Lactate - 8 fl oz is backordered and will ship as soon as it is back in stock. (thesage.com)
  • Sodium lactate is a natural humectant, moisturizer, and pH regulator. (thesage.com)
  • For lotions, replace the liquid glycerin with sodium lactate. (thesage.com)
  • Produced from renewable resources and completely biodegradable makes sodium lactate a better choice when moisturization is desired. (thesage.com)
  • Studies have shown sodium lactate to be a better short term and long term moisturizer than glycerin, our long-loved friend. (thesage.com)
  • Make your favorite lotion twice, once with glycerin and once with sodium lactate. (thesage.com)
  • Sodium lactate is less sticky when compared to liquid glycerin, so if you are trying to formulate to make a less sticky lotion, use sodium lactate instead of glycerin. (thesage.com)
  • Sodium lactate 60% USP. (thesage.com)
  • Lactated Ringer's Injection, USP should be used with great care, if at all, in patients with congestive heart failure, severe renal insufficiency, and in clinical states in which there exists edema with sodium retention. (petrx.com)
  • In patients with diminished renal function, administration of Lactated Ringer's Injection, USP may result in sodium or potassium retention. (petrx.com)
  • Contains 600 mg sodium chloride, 310 mg sodium lactate, 30 mg potassium chloride and 20 mg calcium chloride dehydrate per 100 ml. (pbsanimalhealth.com)
  • however, pregnant and lactating people deserve better than plausibility to guide medical decisions," Alison Stuebe, M.D., president of the Academy of Breastfeeding Medicine, said in a statement. (healthday.com)
  • Henceforward, phase 3 clinical trials should routinely include pregnant and lactating participants. (healthday.com)
  • Can I take Ammonium Lactate And Urea (Carb-O-Lac5) if I'm pregnant or breastfeeding? (everydayhealth.com)
  • Novel approaches should be applied in pharmacology studies in pregnant and lactating women. (springer.com)
  • Fetal and infant safety concerns have led to the exclusion of pregnant and lactating women from clinical trials during drug development programs for licensure, unless the drug is intended for a pregnancy-specific condition [ 4 , 5 ]. (springer.com)
  • [ 3 , 4 ] In daily clinical practice, inorganic iodine may be administered to pregnant and lactating women with Graves disease for whom adverse reactions preclude the use of antithyroid drugs. (medscape.com)
  • Therefore, the proposal of this paper was to conduct a literature review aiming to inform dentists about drug prescription in the dentistry treatment of pregnant and lactating patients. (bvsalud.org)
  • 1. Describe the importance of lead testing among children and pregnant or lactating women. (cdc.gov)
  • 1 Elevated serum lactate levels are associated with increased mortality, and guidelines recommend using lactate measurement to guide management in these patients. (aafp.org)
  • Mortality in patients presenting with sepsis rises linearly with increasing serum lactate levels. (aafp.org)
  • Prospective data from nearly 20,000 patients in the Surviving Sepsis Campaign demonstrated that a single serum lactate level greater than 4.0 mmol per L in the presence of hypotension is associated with higher in-hospital mortality (odds ratio = 1.64) compared with either a serum lactate level of 4.0 mmol per L or less or the absence of hypotension. (aafp.org)
  • Use of serum lactate could help clinicians make more appropriate decisions in sepsis management. (aafp.org)
  • The intravenous administration of Lactated Ringer's Injection, USP can cause fluid and/or solute overloading resulting in dilution of serum electrolyte concentrations, overhydration, congested states, or pulmonary edema. (petrx.com)
  • Intended for use on COBAS INTEGRA 800 and 400 plus systems, cobas c111, Roche/Hitachi MODULAR systems, and cobas c systems for the quantitative determination of lactate concentration in plasm and cerebrospinal fluid. (fda.gov)
  • Lactate clearance is often delayed in patients with hepatic failure and may not be a reliable prognostic marker in these patients. (aafp.org)
  • LDHA is a key enzyme that controls the production of lactate in the glycolysis pathway. (rndsystems.com)
  • The other is that your heart rate at this threshold will increase (i.e., your lactate threshold heart rate will move closer to your maximum heart rate). (outsideonline.com)
  • Ammonium lactate and urea topical (for the skin) is a combination medicine that is used to treat rough or scaly skin and soften cracked skin or calluses. (everydayhealth.com)
  • Ammonium lactate and urea may also be used for purposes not listed in this medication guide. (everydayhealth.com)
  • You should not use this medicine if you have ever had an allergic reaction to ammonium lactate or urea. (everydayhealth.com)
  • Avoid using other medications on the areas you treat with ammonium lactate and urea, unless your doctor tells you to. (everydayhealth.com)
  • Use Ammonium Lactate And Urea (Carb-O-Lac5) exactly as directed on the label, or as prescribed by your doctor. (everydayhealth.com)
  • If you have symptoms of meningitis, you may need to have your lactate levels measured in your blood and your cerebrospinal fluid. (medlineplus.gov)
  • Inhibiting MCT1 with α-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. (jci.org)
  • A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. (jci.org)
  • Hypoxia inducible factor 1 α (HIF-1 α ) can transcriptionally upregulate LDH-A in tumor cells to ensure anaerobic glycolysis and produce enough lactate. (hindawi.com)
  • 2 In a single-center cohort study of 830 adults with sepsis who were admitted to the hospital from the emergency department, 28-day mortality was independently associated with increased lactate levels. (aafp.org)
  • In this study, a single lactate level of 4.0 mmol per L or greater at the time of sepsis diagnosis had a sensitivity of 0.51, a specificity of 0.75, a positive likelihood ratio of 2.0, and a negative likelihood ratio of 0.65 for predicting 28-day mortality. (aafp.org)
  • A retrospective cohort study of 1,865 adults with sepsis found that average lactate scores within the first 24 hours of hospital admission had a higher sensitivity, similar specificity, and greater area under the receiver operating characteristic curve (AUROC) than qSOFA for predicting 30-day mortality. (aafp.org)
  • A meta-analysis of a single randomized controlled trial and five prospective observational studies including a total of 927 adults with sepsis found that the relative risk of mortality associated with lactate clearance was 0.41 (95% CI, 0.28 to 0.60). (aafp.org)
  • When lactate clearance is incorporated into clinical decision-making, it may improve sepsis mortality compared with early goal-directed therapy. (aafp.org)
  • An initial lactate level of greater than 4.0 mmol per L can be used to identify patients with sepsis who are at higher risk of mortality. (aafp.org)
  • Although a lactate level greater than 4.0 mmol per L clearly correlates with higher mortality in patients with sepsis, lactate levels between 2.0 and 4.0 mmol per L are often incorrectly used to identify septic shock, which could lead to overdiagnosis and the unnecessary initiation of aggressive treatment. (aafp.org)
  • Lactated Ringer's Injection 5% Dextrose, USP Rx is a sterile, nonpyrogenic solutions each containing isotonic concentrations of electrolytes (with or without dextrose) in water for injection. (dog.com)
  • We therefore prospectively investigated thyroid function in infants of lactating mothers with Graves disease who were treated with inorganic iodine for thyrotoxicosis and simultaneously measured iodine concentrations in breast milk and infant urine. (medscape.com)
  • Participants Subjects were 26 infants of lactating mothers with Graves disease treated with potassium iodide (KI) for postpartum thyrotoxicosis. (medscape.com)
  • We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. (jci.org)
  • Lactate may refer to: Lactation, the secretion of milk from the mammary glands Lactate, the conjugate base of lactic acid This disambiguation page lists articles associated with the title Lactate. (wikipedia.org)
  • Pulsatile gonadotropin-releasing hormone (GnRH) secretion, which is indispensable for follicular development, is suppressed in lactating dairy and beef cattle. (bioone.org)
  • The present study aimed to clarify the role of NKB-neurokinin 3 receptor (NK3R) signaling in the pulsatile pattern of GnRH/gonadotropin secretion in postpartum lactating cattle.We examined the effects of the administration of an NK3R-selective agonist, senktide, on gonadotropin secretion in lactating cattle. (bioone.org)
  • Each 100 mL of Lactated Ringer's and 5% Dextrose Injection, USP contains dextrose, hydrous 5 g plus the same ingredients and mEq values as Lactated Ringer's Injection, USP (contains only hydrochloric acid for pH adjustment). (dog.com)
  • Lactated Ringer's Injection USP is sterile, nonpyrogenic and contains no bacteriostatic or antimicrobial agents. (bbraunusa.com)
  • Lactated Ringer's are used to help maintain hydration or to rehydrate animals. (petmd.com)
  • Lactated Ringer's should be given according to your veterinarian's instructions. (petmd.com)
  • If issues arise in the administration of the Lactated Ringer's Injection please consult your veterinarian for advice. (petmd.com)
  • Lactated Ringer's Injection can be administered in two different ways, Intravenously (IV) or subcutaneously (SQ under the skin). (petmd.com)
  • If you think your pet develops any reactions to the Lactated Ringer's Injection, please contact your veterinarian immediately. (petmd.com)
  • Lactated Ringer's Injection should not be administered to any animals that are allergic to any of the ingredients in the LRS. (petmd.com)
  • Store Lactated Ringer's Injection between 68° and 77°F in manufacturers packaging. (petmd.com)
  • After an overdose, your pet should also be re-evaluated before Lactated Ringer's Injections are continued. (petmd.com)
  • Lactated Ringer's Injection, USP is a sterile, nonpyrogenic solution for fluid and electrolyte replenishment in single dose containers for intravenous administration. (petrx.com)
  • Lactated Ringer's Injection, USP is not for use in the treatment of lactic acidosis. (petrx.com)
  • Lactated Ringer's Injection, USP must be used with caution. (petrx.com)
  • Caution must be exercised in the administration of Lactated Ringer's Injection, USP to patients receiving corticosteroids or corticotropin. (petrx.com)
  • A lactate blood test is most often used to diagnose lactic acidosis and find out how severe it is. (medlineplus.gov)
  • In the vast landscape of food additives and nutritional supplements, calcium lactate stands out due to its multifaceted applications. (marketpublishers.com)
  • Calcium lactate, due to its superior absorption rate in the body, has become a preferred choice among consumers looking for calcium supplements. (marketpublishers.com)
  • Beyond edibles and supplements, calcium lactate has found a niche in industries like wastewater treatment and construction due to its unique chemical properties. (marketpublishers.com)
  • Figure 4: Deletion of Mpc1 increases lactate production and accelerates the activation of HFSCs. (nature.com)
  • Calcium lactate can act as an antacid, helping to relieve heartburn and indigestion by neutralizing excess stomach acid. (marketpublishers.com)
  • Besides, the demand for calcium lactate in the food industry is spurred by the mounting demand for natural sources of calcium to replace synthetic additives. (marketpublishers.com)
  • Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. (nature.com)
  • Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. (jci.org)
  • One of the best measures of running fitness is lactate threshold (LT), which is the running speed or heart rate at which lactate - an intermediate product of aerobic metabolism in the muscles - begins to accumulate rapidly in the bloodstream. (outsideonline.com)
  • L-lactate is the most commonly measured level, as it is the only form produced in human metabolism. (medscape.com)
  • D-lactate is a byproduct of bacterial metabolism and may accumulate in patients with short-gut syndrome or in those with a history of gastric bypass or small-bowel resection. (medscape.com)
  • dom sample of healthy lactating mothers in Shiraz, one of the five principal cities in the Current guidelines published by national ad- country and the most developed city in the visory bodies for nutrient intakes during south. (who.int)
  • A 2% random sample of 266 lactating tion places nutritional demands on the mothers was selected in 1998. (who.int)
  • The women were visited at home and and lactating women and their effects on given a face-to-face interview by a trained mothers and children. (who.int)
  • Breast pain is the most common complaint among lactating mothers who seek medical help. (hkmj.org)
  • Blocked duct was the most common cause of breast pain in lactating mothers. (hkmj.org)
  • This may be a suitable time for Hong Kong to set up one or more public full-time breastfeeding clinics to provide a better service to lactating mothers and to facilitate professional training and research. (hkmj.org)
  • Most breast pain in lactating mothers is not necessarily due to bacterial or fungal infection but due to duct blockage that can be relieved promptly by gentle breast massage and milk expression. (hkmj.org)
  • Breast pain, which may lead to cessation of breastfeeding, is the most common complaint of lactating mothers seen in a private general paediatric clinic run by a doctor (author) trained in 2000 as an International Lactation Consultant. (hkmj.org)
  • Clinical records of lactating mothers who presented with breast pain over a 6-month period (January to June 2015) were retrieved. (hkmj.org)
  • Conclusion In Japan, where iodine intake is sufficient, administration of inorganic iodine to lactating mothers with Graves disease did not affect thyroid function in most infants despite high levels of exposure to iodine via breast milk. (medscape.com)
  • [ 7 , 8 ] Studies of the administration of inorganic iodine during breastfeeding found that when lactating mothers with euthyroidism received overdoses of iodine, preterm newborn infants and neonates ingested excessive levels of iodine through the breast milk and developed hypothyroidism. (medscape.com)
  • [ 9-12 ] However, no studies have evaluated the effects of inorganic iodine administered to lactating mothers with Graves disease on infant thyroid function. (medscape.com)
  • Calcium lactate serves as a readily absorbable source of calcium, aiding in the prevention of osteoporosis and related bone disorders. (marketpublishers.com)
  • This investigation aimed at validating a simple, submaximal approach based on blood lactate accumulation ([Δlactate]) at the third minute of cycling in a large cohort of men and women of different ages. (jssm.org)
  • Given that lactating women have not been included in COVID-19 vaccine trials, the Academy of Breastfeeding Medicine relied on biological plausibility and expert opinion to inform its statement. (healthday.com)
  • In addition, the statement suggests lactating women discuss the risks and benefits of vaccination with their health care provider. (healthday.com)
  • ABSTRACT Tables of food frequency and nutrient intake were created for a random sample of 266 lactating women from different areas of Shiraz city, Islamic Republic of Iran. (who.int)
  • Knowledge about the nutritional status of lactating women in the Islamic Republic i of Iran is minimal and inadequate. (who.int)
  • Conditions that affect how much oxygen your body uses and disorders that affect how your body makes energy or gets rid of extra lactate. (medlineplus.gov)
  • With the growing emphasis on clean labeling and natural ingredients, the status of calcium lactate as a naturally occurring compound positions it favorably in the market. (marketpublishers.com)
  • This research compound is the lactate salt form of dovitinib. (lclabs.com)
  • L'apport en vitamine C et en protéines était significativement plus élevé que les apports alimen- taires recommandés aux États-Unis d'Amérique tandis que l'apport en calcium et en fer était significative- ment inférieur. (who.int)
  • Does a lactating mare have higher calcium requirements than the typical mature horse? (americanfarriers.com)
  • Calcium lactate is one of such compounds. (marketpublishers.com)
  • Whether it's improving the texture of baked goodies or fortifying our bones, calcium lactate has made a unique mark. (marketpublishers.com)
  • Calcium lactate is a salt derived from lactic acid. (marketpublishers.com)
  • Calcium lactate offers numerous health benefits and is widely recognized for its role in promoting bone health, muscle function, and overall well-being. (marketpublishers.com)
  • Adequate calcium intake, facilitated by calcium lactate, ensures proper muscle function, reducing the risk of muscle cramps and spasms. (marketpublishers.com)
  • In the food industry, calcium lactate is used as a food additive to enhance firmness and texture, particularly in products like cheese and canned vegetables. (marketpublishers.com)
  • Historically, calcium lactate was used for calcium enrichment in foods and as a treatment for calcium deficiencies. (marketpublishers.com)
  • Calcium lactate is used as a food additive, primarily as a source of calcium. (marketpublishers.com)
  • Calcium lactate can be used as a calcium supplement in various pharmaceutical formulations, particularly in antacid and calcium tablet products. (marketpublishers.com)
  • Calcium lactate is also utilized in the cosmetic and personal care industry, as well as in industrial applications such as water treatment. (marketpublishers.com)
  • The calcium lactate market has witnessed substantial growth in recent years, driven by various factors, including increased health awareness among consumers, a surge in the food and beverage industry, increasing adoption in the pharmaceutical sector, and expanding applications in different industrial sectors. (marketpublishers.com)
  • As a result, the global calcium lactate market is projected to continue gaining traction in the coming years. (marketpublishers.com)
  • The use of calcium lactate as a firming agent, acidulant, and flavor enhancer in products like baked goods, beverages, and dairy products has been on the rise. (marketpublishers.com)
  • As the food industry maintains a steady growth pace, so does the demand for calcium lactate. (marketpublishers.com)
  • The COVID-19 pandemic has affected the supply chains of numerous sectors, and the calcium lactate market is no exception. (marketpublishers.com)
  • The dynamic world of beauty and skincare has embraced calcium lactate for its myriad benefits. (marketpublishers.com)
  • The Asia-Pacific region, driven primarily by China and India, is a front-runner in the global calcium lactate market. (marketpublishers.com)
  • Lactate threshold is the exercise intensity at which lactate (lactic acid) starts to accumulate in the bloodstream. (garmin.com)
  • Within the limitations of lactate measurements, this 3-min submaximal test offers an economical and practical approach to obtain a first estimate of the MLSS. (jssm.org)
  • Early lactating broodmares have the highest Ca intake recommendations, starting at 59 grams per day for a 1,100-pound horse and then tapering off throughout lactation. (americanfarriers.com)
  • Exercise scientists determine lactate threshold in a laboratory environment. (outsideonline.com)
  • Maximal Lactate steady-state (MLSS) demarcates sustainable from unsustainable exercise and is used for evaluation/monitoring of exercise capacity. (jssm.org)
  • My leading theory is that during and following intense exercise, lactate produced by muscles is delivered and consumed by the brain," Gibbons noted. (medscape.com)
  • What is a lactate test? (medlineplus.gov)
  • This test measures the level of lactate, also called lactic acid, in a sample of your blood. (medlineplus.gov)
  • Why do I need a lactate test? (medlineplus.gov)
  • What happens during a lactate test? (medlineplus.gov)
  • Make sure you don't clench your fist during the test, as this can temporarily raise lactate levels. (medlineplus.gov)
  • Lactate accumulation from a submaximal test can be used to predict the maximal lactate steady state (MLSS). (jssm.org)
  • 95% CI, 1.19 to 1.70) compared with lactate-guided therapy. (aafp.org)
  • Although the use of red blood cell transfusions, dobutamine, vasopressor infusions, and mechanical ventilation did not differ between the two groups, lactate-guided therapy was associated with more treatment with fluids and vasodilators. (aafp.org)
  • Presence of lactate clearance may help identify patients who are appropriately responding to therapy. (aafp.org)
  • Lactate is mostly made in your muscles and red blood cells when they break down food for energy. (medlineplus.gov)
  • It's normal to have brief increases in lactate when you're exercising or doing other hard physical work. (medlineplus.gov)
  • Normally, you have low levels of lactate in your blood and CFS. (medlineplus.gov)
  • If lactate levels get too high, your blood becomes too acidic. (medlineplus.gov)
  • One is that you will run faster at the point where your blood lactate level spikes. (outsideonline.com)
  • 3. Understanding, Testing and Evaluating Blood Lactate. (fasterskier.com)
  • 4. How to Analyze and Evaluate Blood Lactate Tests, by Torbjorn Karlsen and John Aalberg. (fasterskier.com)
  • Lactate clearance, defined as the reduction of lactate over time, may also be useful to predict mortality. (aafp.org)
  • 8 Lactate clearance demonstrated a sensitivity of 0.67, specificity of 0.73, positive likelihood ratio of 2.52, and negative likelihood ratio of 0.45 for predicting mortality. (aafp.org)
  • The administration of lactate ions should be done with great care in those conditions in which there is an increased level or an impaired utilization of these ions, such as severe hepatic insufficiency. (petrx.com)
  • Halobetasol-Ammonium Lactate Combination Package, Ointment And Lotion (Comb. (webmd.com)
  • How to use Halobetasol-Ammonium Lactate Combination Package, Ointment And Lotion (Comb. (webmd.com)
  • High levels of lactate may be a sign of a wide variety of medical conditions. (medlineplus.gov)
  • Usually, your lactate levels decrease quickly when you stop the activity. (medlineplus.gov)
  • If you have been diagnosed with high levels of lactate, you may need to have repeated tests to monitor your condition. (medlineplus.gov)
  • Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. (nature.com)
  • High levels of lactate can in turn promote higher expression of HIF-1 α . (hindawi.com)
  • In addition, the increase in plasma-derived BDNF correlated with a sixfold increase in circulating lactate irrespective of feeding or fasting state. (medscape.com)