External devices which hold wires or pins that are placed through one or both cortices of bone in order to hold the position of a fracture in proper alignment. These devices allow easy access to wounds, adjustment during the course of healing, and more functional use of the limbs involved.
Internal devices used in osteosynthesis to hold the position of the fracture in proper alignment. By applying the principles of biomedical engineering, the surgeon uses metal plates, nails, rods, etc., for the correction of skeletal defects.
Bone lengthening by gradual mechanical distraction. An external fixation device produces the distraction across the bone plate. The technique was originally applied to long bones but in recent years the method has been adapted for use with mandibular implants in maxillofacial surgery.
A bone fixation technique using an external fixator (FIXATORS, EXTERNAL) for lengthening limbs, correcting pseudarthroses and other deformities, and assisting the healing of otherwise hopeless traumatic or pathological fractures and infections, such as chronic osteomyelitis. The method was devised by the Russian orthopedic surgeon Gavriil Abramovich Ilizarov (1921-1992). (From Bull Hosp Jt Dis 1992 Summer;52(1):1)
Increase in the longest dimension of a bone to correct anatomical deficiencies, congenital, traumatic, or as a result of disease. The lengthening is not restricted to long bones. The usual surgical methods are internal fixation and distraction.
A tibial fracture is a medical term that describes a break or crack in the shinbone, one of the two bones in the lower leg, which can occur anywhere along its length due to various traumatic injuries or stresses.
The use of metallic devices inserted into or through bone to hold a fracture in a set position and alignment while it heals.
Rods of bone, metal, or other material used for fixation of the fragments or ends of fractured bones.
A condition in which one of a pair of legs fails to grow as long as the other, which could result from injury or surgery.
Fractures in which there is an external wound communicating with the break of the bone.
The physiological restoration of bone tissue and function after a fracture. It includes BONY CALLUS formation and normal replacement of bone tissue.
Developmental bone diseases are a category of skeletal disorders that arise from disturbances in the normal growth and development of bones, including abnormalities in size, shape, structure, or composition, which can lead to various musculoskeletal impairments and deformities.
The surgical cutting of a bone. (Dorland, 28th ed)
The second longest bone of the skeleton. It is located on the medial side of the lower leg, articulating with the FIBULA laterally, the TALUS distally, and the FEMUR proximally.
Methods of creating machines and devices.
The longest and largest bone of the skeleton, it is situated between the hip and the knee.
Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A medical specialty concerned with the diagnosis and treatment of diseases of the internal organ systems of adults.
The use of internal devices (metal plates, nails, rods, etc.) to hold the position of a fracture in proper alignment.
WHITE MATTER pathway, flanked by nuclear masses, consisting of both afferent and efferent fibers projecting between the WHITE MATTER and the BRAINSTEM. It consists of three distinct parts: an anterior limb, posterior limb, and genu.

Ankle arthrodesis using an anterior AO T plate. (1/513)

We describe a surgical technique for ankle arthrodesis using an anterior approach to the ankle and internal fixation with an anteriorly-placed AO T plate. A total of 33 patients who had ankle arthrodeses have been followed retrospectively. Thirty-one (94%) of the ankles fused although two patients developed tibial stress fractures. Four patients had a superficial infection which did not prevent union. The surgical technique is simple, easily reproducible and gives excellent clinical results with a high rate of union.  (+info)

Characteristics of an extended internal fixation system for polysegmental transpedicular reduction and stabilization of the thoracic, lumbar, and lumbosacral spine. (2/513)

The Kluger internal fixator, with its artificial fulcrum outside the operative site, had to be extended for multisegmental use. Three different prototypes, called Central Bar (CB), Double Bar I (DB I) and Double Bar II (DB II) were designed, which were fully compatible with the existing reduction system. To evaluate the ability of these newly developed systems to provide primary stability in a destabilized spine, their stiffness characteristics and stabilizing effects were investigated in multidirectional biomechanical stability tests and compared with those of the clinically well-known Cotrel-Dubousset (CD) system. The investigations were performed on a spine tester using freshly prepared calf spines. The model tested was that of an intact straight spine followed by a defined three-column lesion simulating the most destabilizing type of injury. Pure moments of up to 7.5 Nm were continuously applied to the top of each specimen in flexion/extension, left/right axial rotation, and left/right lateral bending. Segmental motion was measured using a three-dimensional goniometric linkage system. Range of motion and stiffness within the neutral zone were calculated from obtained load-displacement curves. The DB II attained 112.5% (P = 0.26) of the absolute stiffness of the CD system in flexion and enhanced its stability in extension by up to 144.3% (P = 0.004). In axial rotation of the completely destabilized spine, this system achieved 183.3% of the stiffness of the CD system (P < 0.001), and in lateral bending no motion was measured in the most injured specimens stabilized by the DB II. The DB I, which was the first to be designed and was considered to provide high biomechanical stability, did not attain the stiffness standard set by the CD system in either flexion/extension or axial rotation of the most injured spine. The study confirms that it is worthwhile to evaluate in vitro the biomechanical properties of a newly developed implant before its use in patients, in order to refine weak construction points and help to reduce device-related complications and to better evaluate its efficacy in stabilizing the spine.  (+info)

Recombinant bone morphogenetic protein-7 as an intracorporal bone growth stimulator in unstable thoracolumbar burst fractures in humans: preliminary results. (3/513)

The study presented here is a pilot study in five patients with unstable thoracolumbar spine fractures treated with transpedicular OP-1 transplantation, short segment instrumentation and posterolateral fusion. Recombinant bone morphogenetic protein-7 in combination with a collagen carrier, also referred to as OP-1, has demonstrated ability to induce healing in long-bone segmental defects in dogs, rabbits and monkeys and to induce successful posterolateral spinal fusion in dogs without need for autogenous bone graft. Furthermore OP-1 has been demonstrated to be effective as a bone graft substitute when performing the PLIF maneuver in a sheep model. Five patients with single-level unstable burst fracture and no neurological impairment were treated with intracorporal OP-1 transplantation, posterior fixation (USS) and posterolateral fusion. One patient with osteomalacia and an L2 burst fracture had an additional intracorporal transplantation performed proximal to the instrumented segment, i.e. OP-1 into T 12 and autogenous bone into T 11. Follow-up time was 12-18 months. On serial radiographs, Cobb and kyphotic angles, as well as anterior, middle and posterior column heights, were measured. Serial CT scans were performed to determine the bone mineral density at fracture level. In one case, radiographic and CT evaluation after 3 and 6 months showed severe resorption at the site of transplantation, but after 12 months, new bone had started to fill in at the area of resorption. In all cases there was loss of correction with regard to anterior and middle column height and sagittal balance at the latest follow-up. These preliminary results regarding OP-1 as a bone graft substitute and stimulator of new bone formation have been disappointing, as the OP-1 device in this study was not capable of inducing an early sufficient structural bone support. There are indications to suggest that OP-1 application to a fracture site in humans might result in detrimental enhanced bone resorption as a primary event.  (+info)

Cervical osteotomy for ankylosing spondylitis: an innovative variation on an existing technique. (4/513)

Ankylosing spondylitis can produce severe fixed flexion deformity in the cervical spine. This deformity may be so disabling that it interferes with forward vision, chewing, swallowing and skin care under the chin. The only treatment available is an extension osteotomy of the cervical spine. Existing techniques of cervical osteotomy may be associated with risk of neurological injury. We describe a variation on an existing technique, which provides a controlled method of reduction at the osteotomy site, eliminating sagittal translation. The method employs a modular posterior cervical system consisting of lateral mass and thoracic pedicle screws linked to titanium rods. Our technique substitutes the titanium rod with a temporary malleable rod on one side, allowing controlled reduction of the osteotomy as this rod bends and slides through the thoracic clamps. Once reduction is complete definitive contoured rods are inserted to maintain the correction while fusion takes place. This method appears less hazardous by eliminating sagittal translation, and may reduce the risk of neurological injury during surgery. It achieves rigid internal fixation, obviating the need for a halo vest in the postoperative period.  (+info)

Pain-relieving posterior rod fixation with segmental sublaminar wiring for Pancoast tumor invading the vertebrae. (5/513)

We describe the case of a 44-year-old male patient with Pancoast lung cancer invading the vertebrae. Because irradiation did not relieve his symptoms, we conducted tumor resection with posterior rod fixation with segmental sublaminar wiring of the vertebrae. This enabled the patient to walk and to discontinue morphine immediately after surgery. Although the tumor recurred within the region of the fixation 4 months after surgery, the patient complained of no pain until his death. Although Pancoast lung cancer with extensive vertebral invasion cannot be cured surgically, posterior rod fixation with segmental sublaminar wiring with tumor resection can improve a patient's quality of life by providing immediate, long-term pain relief.  (+info)

Changes in the loads on an internal spinal fixator after iliac-crest autograft. (6/513)

Spines are often stabilised posteriorly by internal fixation and anteriorly by a bone graft. The effect of an autologous bone graft from the iliac crest on implant loads is unknown. We used an internal spinal fixation device with telemetry to measure implant loads for several body positions and activities in nine patients before and after anterior interbody fusion. With the body upright, implant loads were often higher after than before fusion using a bone graft. Distraction of the bridged region led to high implant loads in patients with a fractured vertebra and to marked changes in load in those with degenerative instability. Leaving the lower of the bridged intervertebral discs intact led to only small changes in fixator load after anterior interbody fusion. A bone graft alone does not guarantee a reduction of implant loads.  (+info)

Hartshill rectangle: failure of spinal stabilisation in acute spinal cord injury. (7/513)

A high rate of failure of the internal fixation of unstable spinal fractures in complete cord injured patients was noted in patients referred to the Salisbury Spinal Centre who had been stabilised with a Hartshill rectangle. This prompted a review of the operative notes, radiographs and clinical outcomes of all patients referred to the centre with a Hartshill rectangle in situ. All patients identified with a complete spinal cord injury and Hartshill rectangle were identified. Forty-three such patients referred from 13 different centres were found. Pre- and postoperative radiographs were assessed for fracture pattern and for spinal correction. Operative outcome in terms of pain and complications relating to surgery were identified. The most recent radiographs were assessed for signs of loss of reduction or stabilisation. Follow-up averaged 84 months (range 36-132 months). Of the 43 identified patients, 19 were found to have unsatisfactory stabilisation. Persistent pain, broken implants and worsening kyphosis were the main complications. The failure to use bone graft at the time of stabilisation was significantly (P < 0.001) related to risk of failure. The application and use of the Hartshill is not a technically challenging procedure; however, if the system is to be used, it must be used correctly. Failure to correctly apply the rectangle and to use bone graft will lead to an unacceptably high rate of failure.  (+info)

Decompensation following scoliosis surgery: treatment by decreasing the correction of the main thoracic curve or "letting the spine go". (8/513)

Coronal decompensation following correction of adolescent idiopathic scoliosis (AIS) has been reported to be due to the Cotrel-Dubousset rod derotation maneuver, or to a hypercorrection of the main thoracic curve. The treatment of such decompensation consists classically in observation, bracing, or extension of the instrumentation in the lumbar spine for a King 2 curve, or in the upper thoracic spine for a King 5 curve. As the postoperative decompensation is related to a hypercorrection of the main thoracic curve (relative to the compensatory curve), we hypothesized that if we were to "let the spine go" to some of its initial deformity, the balance of the patient would be improved. The purpose of the study was therefore to report on two cases where a postoperative imbalance following scoliosis surgery was successfully treated by decreasing the correction of the main thoracic curve. Two patients with AIS were found to have significant imbalance after scoliosis surgery. Both patients had been treated for a right thoracic curve (82 degrees and 85 degrees respectively) with an anterior release and posterior instrumentation. The revision surgery consisted for both patients in removing all the hooks between the end vertebrae of the main thoracic curve. This was done before the 3rd postoperative month for both patients. After revision surgery, the balance of both patients improved dramatically within a few weeks. The shoulders became almost level, and the trunk shift improved concomitantly. The Cobb angle increased by 8 degrees and 10 degrees, and the apical vertebra shifted to the right by 15 and 10 mm for the respective patients. These results were stable at 1-year follow-up. In the event of a persisting imbalance, we recommend, in selected cases, letting the spine go by removing all the implants located between the end vertebrae of the main thoracic curve. This adjustment or fine-tuning of the instrumentation should be done before the fusion takes place, and is best achieved with an instrumentation in which the hooks can be easily removed from the rod.  (+info)

An external fixator is a type of orthopedic device used in the treatment of severe fractures or deformities of bones. It consists of an external frame that is attached to the bone with pins or wires that pass through the skin and into the bone. This provides stability to the injured area while allowing for alignment and adjustment of the bone during the healing process.

External fixators are typically used in cases where traditional casting or internal fixation methods are not feasible, such as when there is extensive soft tissue damage, infection, or when a limb needs to be gradually stretched or shortened. They can also be used in reconstructive surgery for bone defects or deformities.

The external frame of the fixator is made up of bars and clamps that are adjustable, allowing for precise positioning and alignment of the bones. The pins or wires that attach to the bone are carefully inserted through small incisions in the skin, and are held in place by the clamps on the frame.

External fixators can be used for a period of several weeks to several months, depending on the severity of the injury and the individual's healing process. During this time, the patient may require regular adjustments and monitoring by an orthopedic surgeon or other medical professional. Once the bone has healed sufficiently, the external fixator can be removed in a follow-up procedure.

Internal fixators are medical devices that are implanted into the body through surgery to stabilize and hold broken or fractured bones in the correct position while they heal. These devices can be made from various materials, such as metal (stainless steel or titanium) or bioabsorbable materials. Internal fixators can take many forms, including plates, screws, rods, nails, wires, or cages, depending on the type and location of the fracture.

The main goal of using internal fixators is to promote bone healing by maintaining accurate reduction and alignment of the fractured bones, allowing for early mobilization and rehabilitation. This can help reduce the risk of complications such as malunion, nonunion, or deformity. Internal fixators are typically removed once the bone has healed, although some bioabsorbable devices may not require a second surgery for removal.

It is important to note that while internal fixators provide stability and support for fractured bones, they do not replace the need for proper immobilization, protection, or rehabilitation during the healing process. Close follow-up with an orthopedic surgeon is essential to ensure appropriate healing and address any potential complications.

Osteogenesis, distraction refers to a surgical procedure and controlled rehabilitation process used in orthopedic surgery, oral and maxillofacial surgery, and neurosurgery to lengthen bones or correct bone deformities. The term "osteogenesis" means bone formation, while "distraction" refers to the gradual separation of bone segments.

In this procedure, a surgeon first cuts the bone (osteotomy) and then applies an external or internal distraction device that slowly moves apart the cut ends of the bone. Over time, new bone forms in the gap between the separated bone segments through a process called distraction osteogenesis. This results in increased bone length or correction of deformities.

Distraction osteogenesis is often used to treat various conditions such as limb length discrepancies, craniofacial deformities, and spinal deformities. The procedure requires careful planning, precise surgical technique, and close postoperative management to ensure optimal outcomes.

The Ilizarov technique is a surgical method used for limb lengthening and reconstruction. It involves the use of an external fixation device, which consists of rings connected by adjustable rods and wires that are attached to the bone. This apparatus allows for gradual distraction (slow, steady stretching) of the bone, allowing new bone tissue to grow in the gap created by the distraction. The Ilizarov technique can be used to treat various conditions such as limb length discrepancies, bone deformities, and nonunions (failed healing of a fracture). It is named after its developer, Gavriil Abramovich Ilizarov, a Soviet orthopedic surgeon.

Bone lengthening is a surgical procedure that involves cutting and then gradually stretching the bone apart, allowing new bone to grow in its place. This process is also known as distraction osteogenesis. The goal of bone lengthening is to increase the length of a bone, either to improve function or to correct a deformity.

The procedure typically involves making an incision in the skin over the bone and using specialized tools to cut through the bone. Once the bone is cut, a device called an external fixator is attached to the bone on either side of the cut. The external fixator is then gradually adjusted over time to slowly stretch the bone apart, creating a gap between the two ends of the bone. As the bone is stretched, new bone tissue begins to grow in the space between the two ends, eventually filling in the gap and lengthening the bone.

Bone lengthening can be used to treat a variety of conditions, including limb length discrepancies, congenital deformities, and injuries that result in bone loss. It is typically performed by an orthopedic surgeon and may require several months of follow-up care to ensure proper healing and growth of the new bone tissue.

A tibial fracture is a medical term that refers to a break in the shin bone, which is called the tibia. The tibia is the larger of the two bones in the lower leg and is responsible for supporting much of your body weight. Tibial fractures can occur in various ways, such as from high-energy trauma like car accidents or falls, or from low-energy trauma in individuals with weakened bones due to osteoporosis or other medical conditions.

Tibial fractures can be classified into different types based on the location, pattern, and severity of the break. Some common types of tibial fractures include:

1. Transverse fracture: A straight break that goes across the bone.
2. Oblique fracture: A diagonal break that slopes across the bone.
3. Spiral fracture: A break that spirals around the bone, often caused by twisting or rotational forces.
4. Comminuted fracture: A break where the bone is shattered into multiple pieces.
5. Open fracture: A break in which the bone pierces through the skin, increasing the risk of infection.
6. Closed fracture: A break in which the bone does not pierce through the skin.

Tibial fractures can cause symptoms such as pain, swelling, bruising, deformity, and difficulty walking or bearing weight on the affected leg. Treatment for tibial fractures may include immobilization with a cast or brace, surgery to realign and stabilize the bone with plates, screws, or rods, and rehabilitation to restore strength, mobility, and function to the injured limb.

Fracture fixation is a surgical procedure in orthopedic trauma surgery where a fractured bone is stabilized using various devices and techniques to promote proper healing and alignment. The goal of fracture fixation is to maintain the broken bone ends in correct anatomical position and length, allowing for adequate stability during the healing process.

There are two main types of fracture fixation:

1. Internal fixation: In this method, metal implants like plates, screws, or intramedullary rods are inserted directly into the bone to hold the fragments in place. These implants can be either removed or left in the body once healing is complete, depending on the type and location of the fracture.

2. External fixation: This technique involves placing pins or screws through the skin and into the bone above and below the fracture site. These pins are then connected to an external frame that maintains alignment and stability. External fixators are typically used when there is significant soft tissue damage, infection, or when internal fixation is not possible due to the complexity of the fracture.

The choice between internal and external fixation depends on various factors such as the type and location of the fracture, patient's age and overall health, surgeon's preference, and potential complications. Both methods aim to provide a stable environment for bone healing while minimizing the risk of malunion, nonunion, or deformity.

I believe you are referring to "bone pins" or "bone nails" rather than "bone nails." These terms are used in the medical field to describe surgical implants made of metal or biocompatible materials that are used to stabilize and hold together fractured bones during the healing process. They can also be used in spinal fusion surgery to provide stability and promote bone growth between vertebrae.

Bone pins or nails typically have a threaded or smooth shaft, with a small diameter that allows them to be inserted into the medullary canal of long bones such as the femur or tibia. They may also have a head or eyelet on one end that allows for attachment to external fixation devices or other surgical instruments.

The use of bone pins and nails has revolutionized orthopedic surgery, allowing for faster healing times, improved stability, and better functional outcomes for patients with fractures or spinal deformities.

'Leg length inequality' (LLIS) is a condition where there is a discrepancy in the lengths of an individual's lower extremities, specifically the bones of the thigh (femur) and/or the leg (tibia/fibula). This discrepancy can be congenital or acquired due to various causes such as fractures, infections, or surgical procedures. The inequality can lead to functional scoliosis, lower back pain, and other musculoskeletal issues. It is typically diagnosed through physical examination and imaging studies like X-rays, and may be treated with various methods including orthotics, shoe lifts, or in some cases, surgical intervention.

An open fracture, also known as a compound fracture, is a type of bone injury in which the bone breaks and penetrates through the skin, creating an open wound. This condition exposes the fractured bone to the external environment, increasing the risk of infection and complicating the healing process. Open fractures can result from high-energy trauma such as car accidents, falls from significant heights, or industrial incidents. Immediate medical attention is crucial for proper treatment and prevention of infection.

Fracture healing is the natural process by which a broken bone repairs itself. When a fracture occurs, the body responds by initiating a series of biological and cellular events aimed at restoring the structural integrity of the bone. This process involves the formation of a hematoma (a collection of blood) around the fracture site, followed by the activation of inflammatory cells that help to clean up debris and prepare the area for repair.

Over time, specialized cells called osteoblasts begin to lay down new bone matrix, or osteoid, along the edges of the broken bone ends. This osteoid eventually hardens into new bone tissue, forming a bridge between the fracture fragments. As this process continues, the callus (a mass of newly formed bone and connective tissue) gradually becomes stronger and more compact, eventually remodeling itself into a solid, unbroken bone.

The entire process of fracture healing can take several weeks to several months, depending on factors such as the severity of the injury, the patient's age and overall health, and the location of the fracture. In some cases, medical intervention may be necessary to help promote healing or ensure proper alignment of the bone fragments. This may include the use of casts, braces, or surgical implants such as plates, screws, or rods.

Developmental bone diseases are a group of medical conditions that affect the growth and development of bones. These diseases are present at birth or develop during childhood and adolescence, when bones are growing rapidly. They can result from genetic mutations, hormonal imbalances, or environmental factors such as poor nutrition.

Some examples of developmental bone diseases include:

1. Osteogenesis imperfecta (OI): Also known as brittle bone disease, OI is a genetic disorder that affects the body's production of collagen, a protein necessary for healthy bones. People with OI have fragile bones that break easily and may also experience other symptoms such as blue sclerae (whites of the eyes), hearing loss, and joint laxity.
2. Achondroplasia: This is the most common form of dwarfism, caused by a genetic mutation that affects bone growth. People with achondroplasia have short limbs and a large head relative to their body size.
3. Rickets: A condition caused by vitamin D deficiency or an inability to absorb or use vitamin D properly. This leads to weak, soft bones that can bow or bend easily, particularly in children.
4. Fibrous dysplasia: A rare bone disorder where normal bone is replaced with fibrous tissue, leading to weakened bones and deformities.
5. Scoliosis: An abnormal curvature of the spine that can develop during childhood or adolescence. While not strictly a developmental bone disease, scoliosis can be caused by various underlying conditions such as cerebral palsy, muscular dystrophy, or spina bifida.

Treatment for developmental bone diseases varies depending on the specific condition and its severity. Treatment may include medication, physical therapy, bracing, or surgery to correct deformities and improve function. Regular follow-up with a healthcare provider is essential to monitor growth, manage symptoms, and prevent complications.

Osteotomy is a surgical procedure in which a bone is cut to shorten, lengthen, or change its alignment. It is often performed to correct deformities or to realign bones that have been damaged by trauma or disease. The bone may be cut straight across (transverse osteotomy) or at an angle (oblique osteotomy). After the bone is cut, it can be realigned and held in place with pins, plates, or screws until it heals. This procedure is commonly performed on bones in the leg, such as the femur or tibia, but can also be done on other bones in the body.

The tibia, also known as the shin bone, is the larger of the two bones in the lower leg and part of the knee joint. It supports most of the body's weight and is a major insertion point for muscles that flex the foot and bend the leg. The tibia articulates with the femur at the knee joint and with the fibula and talus bone at the ankle joint. Injuries to the tibia, such as fractures, are common in sports and other activities that put stress on the lower leg.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

The femur is the medical term for the thigh bone, which is the longest and strongest bone in the human body. It connects the hip bone to the knee joint and plays a crucial role in supporting the weight of the body and allowing movement during activities such as walking, running, and jumping. The femur is composed of a rounded head, a long shaft, and two condyles at the lower end that articulate with the tibia and patella to form the knee joint.

The internal carotid artery is a major blood vessel that supplies oxygenated blood to the brain. It originates from the common carotid artery and passes through the neck, entering the skull via the carotid canal in the temporal bone. Once inside the skull, it branches into several smaller vessels that supply different parts of the brain with blood.

The internal carotid artery is divided into several segments: cervical, petrous, cavernous, clinoid, and supraclinoid. Each segment has distinct clinical significance in terms of potential injury or disease. The most common conditions affecting the internal carotid artery include atherosclerosis, which can lead to stroke or transient ischemic attack (TIA), and dissection, which can cause severe headache, neck pain, and neurological symptoms.

It's important to note that any blockage or damage to the internal carotid artery can have serious consequences, as it can significantly reduce blood flow to the brain and lead to permanent neurological damage or even death. Therefore, regular check-ups and screening tests are recommended for individuals at high risk of developing vascular diseases.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Internal Medicine is a medical specialty that deals with the prevention, diagnosis, and treatment of internal diseases affecting adults. It encompasses a wide range of medical conditions, including those related to the cardiovascular, respiratory, gastrointestinal, hematological, endocrine, infectious, and immune systems. Internists, or general internists, are trained to provide comprehensive care for adult patients, managing both simple and complex diseases, and often serving as primary care physicians. They may also subspecialize in various fields such as cardiology, gastroenterology, nephrology, or infectious disease, among others.

Fracture fixation, internal, is a surgical procedure where a fractured bone is fixed using metal devices such as plates, screws, or rods that are implanted inside the body. This technique helps to maintain the alignment and stability of the broken bone while it heals. The implants may be temporarily or permanently left inside the body, depending on the nature and severity of the fracture. Internal fixation allows for early mobilization and rehabilitation, which can result in a faster recovery and improved functional outcome.

The internal capsule is a critical structure in the brain that consists of a bundle of white matter fibers (nerve tracts) located deep within the cerebral hemispheres. It serves as a major pathway for the transmission of motor, sensory, and cognitive information between different regions of the brain. The internal capsule is divided into several segments, including the anterior limb, genu, posterior limb, and retrolentiform and sublentiform parts.

The fibers within the internal capsule can be categorized into three groups: corticopontine fibers, corticospinal and corticobulbar fibers, and thalamocortical fibers. Corticopontine fibers originate from the cerebral cortex and terminate in the pons. Corticospinal and corticobulbar fibers are responsible for motor functions, with corticospinal fibers controlling movements of the trunk and limbs, while corticobulbar fibers control movements of the face and head. Thalamocortical fibers carry sensory information from the thalamus to the cerebral cortex.

Damage to the internal capsule can result in various neurological deficits, depending on the specific location and extent of the injury. These may include motor impairments, sensory loss, cognitive dysfunction, or a combination of these symptoms.

No FAQ available that match "internal fixators"

No images available that match "internal fixators"