WHITE MATTER pathway, flanked by nuclear masses, consisting of both afferent and efferent fibers projecting between the WHITE MATTER and the BRAINSTEM. It consists of three distinct parts: an anterior limb, posterior limb, and genu.
Hard or soft soluble containers used for the oral administration of medicine.
A physical property showing different values in relation to the direction in or along which the measurement is made. The physical property may be with regard to thermal or electric conductivity or light refraction. In crystallography, it describes crystals whose index of refraction varies with the direction of the incident light. It is also called acolotropy and colotropy. The opposite of anisotropy is isotropy wherein the same values characterize the object when measured along axes in all directions.
Disorders of the centrally located thalamus, which integrates a wide range of cortical and subcortical information. Manifestations include sensory loss, MOVEMENT DISORDERS; ATAXIA, pain syndromes, visual disorders, a variety of neuropsychological conditions, and COMA. Relatively common etiologies include CEREBROVASCULAR DISORDERS; CRANIOCEREBRAL TRAUMA; BRAIN NEOPLASMS; BRAIN HYPOXIA; INTRACRANIAL HEMORRHAGES; and infectious processes.
A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment.
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves.
Disorders of speech articulation caused by imperfect coordination of pharynx, larynx, tongue, or face muscles. This may result from CRANIAL NERVE DISEASES; NEUROMUSCULAR DISEASES; CEREBELLAR DISEASES; BASAL GANGLIA DISEASES; BRAIN STEM diseases; or diseases of the corticobulbar tracts (see PYRAMIDAL TRACTS). The cortical language centers are intact in this condition. (From Adams et al., Principles of Neurology, 6th ed, p489)
The use of diffusion ANISOTROPY data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules.
Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts.
Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure.
An envelope of loose gel surrounding a bacterial cell which is associated with the virulence of pathogenic bacteria. Some capsules have a well-defined border, whereas others form a slime layer that trails off into the medium. Most capsules consist of relatively simple polysaccharides but there are some bacteria whose capsules are made of polypeptides.
Severe or complete loss of motor function on one side of the body. This condition is usually caused by BRAIN DISEASES that are localized to the cerebral hemisphere opposite to the side of weakness. Less frequently, BRAIN STEM lesions; cervical SPINAL CORD DISEASES; PERIPHERAL NERVOUS SYSTEM DISEASES; and other conditions may manifest as hemiplegia. The term hemiparesis (see PARESIS) refers to mild to moderate weakness involving one side of the body.
Non-invasive, endoscopic imaging by use of VIDEO CAPSULE ENDOSCOPES to perform examination of the gastrointestinal tract, especially the small bowel.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.
The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction).
The sac enclosing a joint. It is composed of an outer fibrous articular capsule and an inner SYNOVIAL MEMBRANE.
The thin noncellular outer covering of the CRYSTALLINE LENS composed mainly of COLLAGEN TYPE IV and GLYCOSAMINOGLYCANS. It is secreted by the embryonic anterior and posterior epithelium. The embryonic posterior epithelium later disappears.
Therapy for MOVEMENT DISORDERS, especially PARKINSON DISEASE, that applies electricity via stereotactic implantation of ELECTRODES in specific areas of the BRAIN such as the THALAMUS. The electrodes are attached to a neurostimulator placed subcutaneously.
Neural tracts connecting one part of the nervous system with another.
Bleeding within the subcortical regions of cerebral hemispheres (BASAL GANGLIA). It is often associated with HYPERTENSION or ARTERIOVENOUS MALFORMATIONS. Clinical manifestations may include HEADACHE; DYSKINESIAS; and HEMIPARESIS.
A pill sized videocamera encased in a capsule. It is designed to be swallowed and subsequently traverse the gastrointestinal tract while transmitting diagnostic images along the way.
A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.
Conditions characterized by persistent brain damage or dysfunction as sequelae of cranial trauma. This disorder may result from DIFFUSE AXONAL INJURY; INTRACRANIAL HEMORRHAGES; BRAIN EDEMA; and other conditions. Clinical features may include DEMENTIA; focal neurologic deficits; PERSISTENT VEGETATIVE STATE; AKINETIC MUTISM; or COMA.
The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus.
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
Derived from TELENCEPHALON, cerebrum is composed of a right and a left hemisphere. Each contains an outer cerebral cortex and a subcortical basal ganglia. The cerebrum includes all parts within the skull except the MEDULLA OBLONGATA, the PONS, and the CEREBELLUM. Cerebral functions include sensorimotor, emotional, and intellectual activities.
Degeneration of distal aspects of a nerve axon following injury to the cell body or proximal portion of the axon. The process is characterized by fragmentation of the axon and its MYELIN SHEATH.
Dominance of one cerebral hemisphere over the other in cerebral functions.
The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.
Syndromes which feature DYSKINESIAS as a cardinal manifestation of the disease process. Included in this category are degenerative, hereditary, post-infectious, medication-induced, post-inflammatory, and post-traumatic conditions.
Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE).
A general term referring to a mild to moderate degree of muscular weakness, occasionally used as a synonym for PARALYSIS (severe or complete loss of motor function). In the older literature, paresis often referred specifically to paretic neurosyphilis (see NEUROSYPHILIS). "General paresis" and "general paralysis" may still carry that connotation. Bilateral lower extremity paresis is referred to as PARAPARESIS.
Portion of midbrain situated under the dorsal TECTUM MESENCEPHALI. The two ventrolateral cylindrical masses or peduncles are large nerve fiber bundles providing a tract of passage between the FOREBRAIN with the HINDBRAIN. Ventral MIDBRAIN also contains three colorful structures: the GRAY MATTER (PERIAQUEDUCTAL GRAY), the black substance (SUBSTANTIA NIGRA), and the RED NUCLEUS.
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS.
An anxiety disorder characterized by recurrent, persistent obsessions or compulsions. Obsessions are the intrusive ideas, thoughts, or images that are experienced as senseless or repugnant. Compulsions are repetitive and seemingly purposeful behavior which the individual generally recognizes as senseless and from which the individual does not derive pleasure although it may provide a release from tension.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
Tissue NECROSIS in any area of the brain, including the CEREBRAL HEMISPHERES, the CEREBELLUM, and the BRAIN STEM. Brain infarction is the result of a cascade of events initiated by inadequate blood flow through the brain that is followed by HYPOXIA and HYPOGLYCEMIA in brain tissue. Damage may be temporary, permanent, selective or pan-necrosis.
Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex.
Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain.
Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch.
A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions.
Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM.
Impairment of the ability to perform smoothly coordinated voluntary movements. This condition may affect the limbs, trunk, eyes, pharynx, larynx, and other structures. Ataxia may result from impaired sensory or motor function. Sensory ataxia may result from posterior column injury or PERIPHERAL NERVE DISEASES. Motor ataxia may be associated with CEREBELLAR DISEASES; CEREBRAL CORTEX diseases; THALAMIC DISEASES; BASAL GANGLIA DISEASES; injury to the RED NUCLEUS; and other conditions.
The separation and isolation of tissues for surgical purposes, or for the analysis or study of their structures.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM.
The anterior subdivision of the embryonic PROSENCEPHALON or the corresponding part of the adult prosencephalon that includes the cerebrum and associated structures.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus.
A spectrum of pathological conditions of impaired blood flow in the brain. They can involve vessels (ARTERIES or VEINS) in the CEREBRUM, the CEREBELLUM, and the BRAIN STEM. Major categories include INTRACRANIAL ARTERIOVENOUS MALFORMATIONS; BRAIN ISCHEMIA; CEREBRAL HEMORRHAGE; and others.
The performance of surgical procedures with the aid of a microscope.
Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease.
Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose.
The distal part of the arm beyond the wrist in humans and primates, that includes the palm, fingers, and thumb.
Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level.
Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA.

An application of upper-extremity constraint-induced movement therapy in a patient with subacute stroke. (1/120)

BACKGROUND AND PURPOSE: The purpose of this case report is to demonstrate the application of constraint-induced movement therapy with an individual with upper-extremity hemiparesis within 4 months after sustaining a cerebrovascular accident (stroke). Such patients often fail to develop full potential use of their affected upper extremity, perhaps due to a "learned nonuse phenomenon." CASE DESCRIPTION: The patient was a 61-year-old woman with right-sided hemiparesis resulting from an ischemic lacunar infarct in the posterior limb of the left internal capsule. The patient's less-involved hand was constrained in a mitten so that she could not use the hand during waking hours, except for bathing and toileting. On each weekday of the 14-day intervention period, the patient spent 6 hours being supervised while performing tasks using the paretic upper extremity. Pretreatment, posttreatment, and 3-month follow-up outcome measures included the Wolf Motor Function Test and the Motor Activity Log (MAL). OUTCOMES: For the Wolf Motor Function Test, both the mean and median times to complete 16 tasks improved from pretreatment to posttreatment and from posttreatment to follow-up. Results of the MAL indicated an improved self-report of both "how well" and "how much" the patient used her affected limb in 30 specified daily tasks. These improvements persisted to the follow-up. DISCUSSION: Two weeks of constraining the unaffected limb, coupled with practice of functional movements of the impaired limb, may be an effective method for restoring motor function within a few months after cerebral insult. Encouraging improvements such as these strongly suggest the need for a group design that would explore this type of intervention in more detail.  (+info)

MRI features of intracerebral hemorrhage within 2 hours from symptom onset. (2/120)

BACKGROUND AND PURPOSE: MRI has been increasingly used in the evaluation of acute stroke patients. However, MRI must be able to detect early hemorrhage to be the only imaging screen used before treatment such as thrombolysis. Susceptibility-weighted imaging, an echo-planar T2* sequence, can show intracerebral hemorrhage (ICH) in patients imaged between 2.5 and 5 hours from symptom onset. It is unknown whether MRI can detect ICH earlier than 2.5 hours. We describe 5 patients with ICH who had MRI between 23 and 120 minutes from symptom onset and propose diagnostic patterns of evolution of hyperacute ICH on MRI. METHODS: As part of our acute imaging protocol, all patients with acute stroke within 24 hours from symptom onset were imaged with a set of sequences that included susceptibility-weighted imaging, diffusion- and perfusion-weighted imaging, T1- and T2-weighted imaging, fluid-attenuated inversion recovery (FLAIR), and MR angiography using echo-planar techniques. Five patients with ICH had MRI between 23 and 120 minutes from the onset of symptoms. RESULTS: ICH was identified in all patients. Distinctive patterns of hyperacute ICH and absence of signs of ischemic stroke were the hallmark features of this diagnosis. The hyperacute hematoma appears to be composed of 3 distinct areas: (1) center: isointense to hyperintense heterogeneous signal on susceptibility-weighted and T2-weighted imaging; (2) periphery: hypointense (susceptibility effect) on susceptibility-weighted and T2-weighted imaging; and (3) rim: hypointense on T1-weighted imaging and hyperintense on T2-weighted imaging, representing vasogenic edema encasing the hematoma. CONCLUSIONS: MRI is able to detect hyperacute ICH and show a pattern of evolution of the hematoma within 2 hours from the onset of symptoms.  (+info)

Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. (3/120)

BACKGROUND AND PURPOSE: Infarct size on T2-weighted MRI correlates only modestly with outcome, particularly for small strokes. This may be largely because of differences in the locations of infarcts and consequently in the functional pathways that are damaged. To test this hypothesis quantitatively, we developed a "mask" of the corticospinal pathway to determine whether the extent of stroke intersection with the pathway would be more closely related to clinical motor deficit and axonal injury in the descending motor pathways than total stroke lesion volume. METHODS: Eighteen patients were studied > or =1 month after first ischemic stroke that caused a motor deficit by use of brain T2-weighted imaging, MR spectroscopic (MRS) measurements of the neuronal marker compound N-acetyl aspartate in the posterior limb of the internal capsule, and motor impairment and disability measures. A corticospinal mask based on neuroanatomic landmarks was generated from a subset of the MRI data. The maximum proportion of the cross-sectional area of this mask occupied by stroke was determined for each patient after all brain images were transformed into a common stereotaxic brain space. RESULTS: There was a significant linear relationship between the maximum proportional cross-sectional area of the corticospinal mask occupied by stroke and motor deficit (r(2)=0.82, P<0.001), whereas the relationship between the total stroke volume and motor deficit was better described by a cubic curve (r(2)=0.76, P<0.001). Inspection of the data plots showed that the total stroke volume discriminated poorly between smaller strokes with regard to the extent of associated motor deficit, whereas the maximum proportion of the mask cross-sectional area occupied by stroke appeared to be a more discriminatory marker of motor deficit and also N-acetyl aspartate reduction. CONCLUSIONS: Segmentation of functional motor pathways on MRI allows estimation of the extent of damage specifically to that pathway by the stroke lesion. The extent of stroke intersection with the motor pathways was more linearly related to the magnitude of motor deficit than total lesion volume and appeared to be a better discriminator between small strokes with regard to motor deficit. This emphasizes the importance of the anatomic relationship of the infarct to local structures in determining functional impairment. Prospective studies are necessary to assess whether this approach would allow improved early estimation of prognosis after stroke.  (+info)

The N-methyl-D-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. (4/120)

BACKGROUND AND PURPOSE: Cerebral white matter is as sensitive as gray matter to ischemic injury and is probably amenable to pharmacological intervention. In this study we investigated whether an N-methyl-D-aspartate (NMDA) antagonist, CNS 1102, protects not only cerebral gray matter but also white matter from ischemic injury. METHODS: Ten rats underwent 15 minutes of temporary focal ischemia and were blindly assigned to CNS 1102 intravenous bolus injection (1. 13 mg/kg) followed by intravenous infusion (0.33 mg/kg per hour) for 3.75 hours or to vehicle (n=5 per group) immediately after reperfusion. Seventy-two hours after ischemia, the animals were perfusion fixed for histology. The severity of neuronal necrosis in the cortex and striatum was semiquantitatively analyzed. The Luxol fast blue-periodic acid Schiff stain and Bielschowsky's silver stain were used to measure optical densities (ODs) of myelin and axons, respectively, in the internal capsule of both hemispheres, and the OD ratio was calculated to reflect the severity of white matter damage. RESULTS: Neuronal damage in both the cortex and the striatum was significantly better in the drug-treated group than in the placebo group (P<0.05). The OD ratio of both the axons (0.93+/-0.08 versus 0.61+/-0.18; P<0.01) and the myelin sheath (0.95+/-0.07 versus 0.67+/-0.19; P=0.01) was significantly higher in the CNS 1102 group than in the placebo group. The neurological score was significantly improved in the drug-treated group (P<0.05). CONCLUSIONS: The NMDA receptor antagonist CNS 1102 protects not only cerebral gray matter but also white matter from ischemic injury, most probably by preventing degeneration of white matter structures such as myelin and axons.  (+info)

Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. (5/120)

The thalamocortical axon (TCA) projection originates in dorsal thalamus, conveys sensory input to the neocortex, and has a critical role in cortical development. We show that the secreted axon guidance molecule netrin-1 acts in vitro as an attractant and growth promoter for dorsal thalamic axons and is required for the proper development of the TCA projection in vivo. As TCAs approach the hypothalamus, they turn laterally into the ventral telencephalon and extend toward the cortex through a population of netrin-1-expressing cells. DCC and neogenin, receptors implicated in mediating the attractant effects of netrin-1, are expressed in dorsal thalamus, whereas unc5h2 and unc5h3, netrin-1 receptors implicated in repulsion, are not. In vitro, dorsal thalamic axons show biased growth toward a source of netrin-1, which can be abolished by netrin-1-blocking antibodies. Netrin-1 also enhances overall axon outgrowth from explants of dorsal thalamus. The biased growth of dorsal thalamic axons toward the internal capsule zone of ventral telencephalic explants is attenuated, but not significantly, by netrin-1-blocking antibodies, suggesting that it releases another attractant activity for TCAs in addition to netrin-1. Analyses of netrin-1 -/- mice reveal that the TCA projection through the ventral telencephalon is disorganized, their pathway is abnormally restricted, and fewer dorsal thalamic axons reach cortex. These findings demonstrate that netrin-1 promotes the growth of TCAs through the ventral telencephalon and cooperates with other guidance cues to control their pathfinding from dorsal thalamus to cortex.  (+info)

Striatocapsular haemorrhage. (6/120)

Haemorrhages in the striatocapsular area, or striatocapsular haemorrhages (SCHs), have been regarded as a single entity, although the area is composed of several functionally discrete structures that receive blood supply from different arteries. We analysed the morphological and clinical presentations of 215 cases of SCHs according to a new classification method we have designed on the basis of arterial territories. SCHs were divided into six types: (i) anterior type (Heubner's artery); (ii) middle type (medial lenticulostriate artery); (iii) posteromedial type (anterior choroidal artery); (iv) posterolateral type (posteromedial branches of lateral lenticulostriate artery); (v) lateral type (most lateral branches of lateral lenticulostriate artery); and (vi) massive type. The anterior type (11%) formed small caudate haematomas, always ruptured into the lateral ventricle, causing severe headache, and mild contralateral hemiparesis developed occasionally. The outcome was excellent. The middle type (7%) involved the globus pallidus and medial putamen, frequently causing contralateral hemiparesis and transient conjugate eye deviation to the lesion side. About 50% of the patients recovered to normal. The posteromedial type (4%) formed very small haematomas in the posterior limb of the internal capsule and presented with mild dysarthria, contralateral hemiparesis and sensory deficit, with excellent outcome in general. The posterolateral type (33%) affected the posterior half of the putamen and posterior limb of the internal capsule and presented with impaired consciousness and contralateral hemiparesis with either language dysfunction or contralateral neglect. The outcome was fair to poor but there were no deaths. The lateral type (21%) formed large elliptical haematomas between the putamen and insular cortex. Contralateral hemiparesis with language dysfunction or contralateral neglect developed frequently but resolved over several weeks. The clinical outcome was relatively excellent except when the haematoma size was very large. The massive type (24%) formed huge haematomas affecting the entire striatocapsular area. Marked sensorimotor deficits and impaired consciousness, ocular movement dysfunctions including the 'wrong-way' eyes were observed quite frequently. The outcome was very poor with a case fatality rate of 81%. The clinico-radiological presentations suggested its origin was the same as the posterolateral type.  (+info)

Diffusion anisotropy of the internal capsule and the corona radiata in association with stroke and tumors as measured by diffusion-weighted MR imaging. (7/120)

BACKGROUND AND PURPOSE: Diffusion-weighted MR images have enabled measurement of directionality of diffusion (anisotropy) in white matter. To investigate differences in the anisotropy for various types of pathologic findings and the association between the anisotropy of tracts and neurologic dysfunction, we compared the anisotropy of the posterior limb of the internal capsule and the corona radiata between patients with stroke and those with tumors and between patients with and without hemiparesis. METHODS: Thirty-three patients consisting of 11 with tumors and 22 with ischemic disease (16 acute infarction, four old infarction, and two transient ischemic attack) and nine control patients were studied with a 1.5-T MR imager. Diffusion-weighted images were obtained with diffusion gradients applied in three orthogonal directions. The diffusion anisotropy measurements were obtained from regions of interests defined within the internal capsule and the corona radiata. RESULTS: The diffusion anisotropy was significantly reduced in all internal capsules and coronae radiata involved by infarcts, tumors, and peritumoral edema compared with that of the control patients (P <.0001). This reduction was most prominent in the tracts involved by tumors (P <.05). The anisotropy of the internal capsules and coronae radiata was significantly decreased in cases with moderate-to-severe hemiparesis as compared with those with no or mild hemiparesis (P <.0001). Diffusion anisotropy tended to be also reduced in normal-appearing internal capsules and coronae radiata that were remote from the involved segment of the corticospinal tract. CONCLUSION: The degree of impaired diffusion anisotropy may vary in different pathologic conditions and correlate with neurologic dysfunction. The measurement of diffusion anisotropy may provide additional information relating to neurologic function and transneuronal effects.  (+info)

MR imaging of seven presumed cases of central pontine and extrapontine myelinolysis. (8/120)

MRI was performed in seven patients with presumed central pontine and extrapontine myelinolysis. The underlying diseases were diabetes, lung cancer, Wilson disease, trauma, alcoholism, renal insufficiency and hemodialysis. CPM was found in four cases (in two of them extrapontine lesions were considered as resulting from Wilson disease), CPM and EPM in three patients. The localization of extrapontine changes included cerebellum, cerebral peduncles, caudate and lentiform nuclei, internal capsules, white matter and cortex of the cerebrum.  (+info)

The internal capsule is a critical structure in the brain that consists of a bundle of white matter fibers (nerve tracts) located deep within the cerebral hemispheres. It serves as a major pathway for the transmission of motor, sensory, and cognitive information between different regions of the brain. The internal capsule is divided into several segments, including the anterior limb, genu, posterior limb, and retrolentiform and sublentiform parts.

The fibers within the internal capsule can be categorized into three groups: corticopontine fibers, corticospinal and corticobulbar fibers, and thalamocortical fibers. Corticopontine fibers originate from the cerebral cortex and terminate in the pons. Corticospinal and corticobulbar fibers are responsible for motor functions, with corticospinal fibers controlling movements of the trunk and limbs, while corticobulbar fibers control movements of the face and head. Thalamocortical fibers carry sensory information from the thalamus to the cerebral cortex.

Damage to the internal capsule can result in various neurological deficits, depending on the specific location and extent of the injury. These may include motor impairments, sensory loss, cognitive dysfunction, or a combination of these symptoms.

A capsule is a type of solid pharmaceutical dosage form in which the drug is enclosed in a small shell or container, usually composed of gelatin or other suitable material. The shell serves to protect the drug from degradation, improve its stability and shelf life, and facilitate swallowing by making it easier to consume. Capsules come in various sizes and colors and can contain one or more drugs in powder, liquid, or solid form. They are typically administered orally but can also be used for other routes of administration, such as rectal or vaginal.

Anisotropy is a medical term that refers to the property of being directionally dependent, meaning that its properties or characteristics vary depending on the direction in which they are measured. In the context of medicine and biology, anisotropy can refer to various biological structures, tissues, or materials that exhibit different physical or chemical properties along different axes.

For example, certain types of collagen fibers in tendons and ligaments exhibit anisotropic behavior because they are stronger and stiffer when loaded along their long axis compared to being loaded perpendicular to it. Similarly, some brain tissues may show anisotropy due to the presence of nerve fibers that are organized in specific directions, leading to differences in electrical conductivity or diffusion properties depending on the orientation of the measurement.

Anisotropy is an important concept in various medical fields, including radiology, neurology, and materials science, as it can provide valuable information about the structure and function of biological tissues and help guide diagnostic and therapeutic interventions.

Thalamic diseases refer to conditions that affect the thalamus, which is a part of the brain that acts as a relay station for sensory and motor signals to the cerebral cortex. The thalamus plays a crucial role in regulating consciousness, sleep, and alertness. Thalamic diseases can cause a variety of symptoms depending on the specific area of the thalamus that is affected. These symptoms may include sensory disturbances, motor impairment, cognitive changes, and altered levels of consciousness. Examples of thalamic diseases include stroke, tumors, multiple sclerosis, infections, and degenerative disorders such as dementia and Parkinson's disease. Treatment for thalamic diseases depends on the underlying cause and may include medications, surgery, or rehabilitation therapy.

Diffusion Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to produce detailed images of the body's internal structures, particularly the brain and nervous system. In diffusion MRI, the movement of water molecules in biological tissues is measured and analyzed to generate contrast in the images based on the microstructural properties of the tissue.

Diffusion MRI is unique because it allows for the measurement of water diffusion in various directions, which can reveal important information about the organization and integrity of nerve fibers in the brain. This technique has been widely used in research and clinical settings to study a variety of neurological conditions, including stroke, traumatic brain injury, multiple sclerosis, and neurodegenerative diseases such as Alzheimer's disease.

In summary, diffusion MRI is a specialized type of MRI that measures the movement of water molecules in biological tissues to generate detailed images of the body's internal structures, particularly the brain and nervous system. It provides valuable information about the microstructural properties of tissues and has important applications in both research and clinical settings.

Myelinated nerve fibers are neuronal processes that are surrounded by a myelin sheath, a fatty insulating substance that is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. This myelin sheath helps to increase the speed of electrical impulse transmission, also known as action potentials, along the nerve fiber. The myelin sheath has gaps called nodes of Ranvier where the electrical impulses can jump from one node to the next, which also contributes to the rapid conduction of signals. Myelinated nerve fibers are typically found in the peripheral nerves and the optic nerve, but not in the central nervous system (CNS) tracts that are located within the brain and spinal cord.

Dysarthria is a motor speech disorder that results from damage to the nervous system, particularly the brainstem or cerebellum. It affects the muscles used for speaking, causing slurred, slow, or difficult speech. The specific symptoms can vary depending on the underlying cause and the extent of nerve damage. Treatment typically involves speech therapy to improve communication abilities.

Diffusion Tensor Imaging (DTI) is a type of magnetic resonance imaging (MRI) technique that allows for the measurement and visualization of water diffusion in biological tissues, particularly in the brain. DTI provides information about the microstructural organization and integrity of nerve fibers within the brain by measuring the directionality of water diffusion in the brain's white matter tracts.

In DTI, a tensor is used to describe the three-dimensional diffusion properties of water molecules in each voxel (three-dimensional pixel) of an MRI image. The tensor provides information about the magnitude and direction of water diffusion, which can be used to calculate various diffusion metrics such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). These metrics provide insights into the structural properties of nerve fibers, including their orientation, density, and integrity.

DTI has numerous clinical applications, such as in the diagnosis and monitoring of neurological disorders like multiple sclerosis, traumatic brain injury, and neurodegenerative diseases. It can also be used for presurgical planning to identify critical white matter tracts that need to be preserved during surgery.

The pyramidal tracts, also known as the corticospinal tracts, are bundles of nerve fibers that run through the brainstem and spinal cord, originating from the cerebral cortex. These tracts are responsible for transmitting motor signals from the brain to the muscles, enabling voluntary movement and control of the body.

The pyramidal tracts originate from the primary motor cortex in the frontal lobe of the brain and decussate (cross over) in the lower medulla oblongata before continuing down the spinal cord. The left pyramidal tract controls muscles on the right side of the body, while the right pyramidal tract controls muscles on the left side of the body.

Damage to the pyramidal tracts can result in various motor impairments, such as weakness or paralysis, spasticity, and loss of fine motor control, depending on the location and extent of the damage.

The corpus callosum is the largest collection of white matter in the brain, consisting of approximately 200 million nerve fibers. It is a broad, flat band of tissue that connects the two hemispheres of the brain, allowing them to communicate and coordinate information processing. The corpus callosum plays a crucial role in integrating sensory, motor, and cognitive functions between the two sides of the brain. Damage to the corpus callosum can result in various neurological symptoms, including difficulties with movement, speech, memory, and social behavior.

Bacterial capsules are slimy, gel-like layers that surround many types of bacteria. They are made up of polysaccharides, proteins, or lipopolysaccharides and are synthesized by the bacterial cell. These capsules play a crucial role in the virulence and pathogenicity of bacteria as they help the bacteria to evade the host's immune system and promote their survival and colonization within the host. The presence of a capsule can also contribute to the bacteria's resistance to desiccation, phagocytosis, and antibiotics.

The chemical composition and structure of bacterial capsules vary among different species of bacteria, which is one factor that contributes to their serological specificity and allows for their identification and classification using methods such as the Quellung reaction or immunofluorescence microscopy.

Hemiplegia is a medical term that refers to paralysis affecting one side of the body. It is typically caused by damage to the motor center of the brain, such as from a stroke, head injury, or brain tumor. The symptoms can vary in severity but often include muscle weakness, stiffness, and difficulty with coordination and balance on the affected side. In severe cases, the individual may be unable to move or feel anything on that side of the body. Hemiplegia can also affect speech, vision, and other functions controlled by the damaged area of the brain. Rehabilitation therapy is often recommended to help individuals with hemiplegia regain as much function as possible.

Capsule endoscopy is a medical procedure that uses a small, pill-sized camera to capture images of the digestive tract. The capsule is swallowed and transmits images wirelessly as it moves through the gastrointestinal (GI) tract, allowing doctors to examine the lining of the small intestine, which can be difficult to reach with traditional endoscopes.

The procedure is commonly used to diagnose and monitor conditions such as Crohn's disease, celiac disease, obscure gastrointestinal bleeding, and tumors in the small intestine. The images captured by the capsule are transmitted to a recorder worn by the patient, and then reviewed and analyzed by a healthcare professional.

Capsule endoscopy is generally considered safe and non-invasive, with few risks or side effects. However, it may not be suitable for everyone, including patients with swallowing difficulties, pacemakers, or certain gastrointestinal obstructions. It's important to consult with a healthcare provider to determine if capsule endoscopy is the right diagnostic tool for a particular condition.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

Cerebral infarction, also known as a "stroke" or "brain attack," is the sudden death of brain cells caused by the interruption of their blood supply. It is most commonly caused by a blockage in one of the blood vessels supplying the brain (an ischemic stroke), but can also result from a hemorrhage in or around the brain (a hemorrhagic stroke).

Ischemic strokes occur when a blood clot or other particle blocks a cerebral artery, cutting off blood flow to a part of the brain. The lack of oxygen and nutrients causes nearby brain cells to die. Hemorrhagic strokes occur when a weakened blood vessel ruptures, causing bleeding within or around the brain. This bleeding can put pressure on surrounding brain tissues, leading to cell death.

Symptoms of cerebral infarction depend on the location and extent of the affected brain tissue but may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; and severe headache with no known cause. Immediate medical attention is crucial for proper diagnosis and treatment to minimize potential long-term damage or disability.

A joint capsule is the fibrous sac that encloses a synovial joint, which is a type of joint characterized by the presence of a cavity filled with synovial fluid. The joint capsule provides stability and strength to the joint, while also allowing for a range of motion. It consists of two layers: an outer fibrous layer and an inner synovial membrane. The fibrous layer is made up of dense connective tissue that helps to stabilize the joint, while the synovial membrane produces synovial fluid, which lubricates the joint and reduces friction during movement.

The crystalline lens of the eye is covered by a transparent, elastic capsule known as the lens capsule. This capsule is made up of collagen and forms the continuous outer layer of the lens. It is highly resistant to both physical and chemical insults, which allows it to protect the lens fibers within. The lens capsule is important for maintaining the shape and transparency of the lens, which are essential for proper focusing of light onto the retina.

Deep brain stimulation (DBS) is a surgical procedure that involves the implantation of a medical device called a neurostimulator, which sends electrical impulses to specific targets in the brain. The impulses help to regulate abnormal brain activity, and can be used to treat a variety of neurological conditions, including Parkinson's disease, essential tremor, dystonia, and obsessive-compulsive disorder.

During the procedure, electrodes are implanted into the brain and connected to the neurostimulator, which is typically implanted in the chest. The neurostimulator can be programmed to deliver electrical impulses at varying frequencies, amplitudes, and pulse widths, depending on the specific needs of the patient.

DBS is generally considered a safe and effective treatment option for many patients with neurological conditions, although it does carry some risks, such as infection, bleeding, and hardware complications. It is typically reserved for patients who have not responded well to other forms of treatment, or who experience significant side effects from medication.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

A basal ganglia hemorrhage is a type of intracranial hemorrhage, which is defined as bleeding within the skull or brain. Specifically, a basal ganglia hemorrhage involves bleeding into the basal ganglia, which are clusters of neurons located deep within the forebrain and are involved in regulating movement, cognition, and emotion.

Basal ganglia hemorrhages can result from various factors, including hypertension (high blood pressure), cerebral amyloid angiopathy, illicit drug use (such as cocaine or amphetamines), and head trauma. Symptoms of a basal ganglia hemorrhage may include sudden onset of severe headache, altered consciousness, weakness or paralysis on one side of the body, difficulty speaking or understanding speech, and visual disturbances.

Diagnosis of a basal ganglia hemorrhage typically involves imaging studies such as computed tomography (CT) or magnetic resonance imaging (MRI). Treatment may include supportive care, medications to control symptoms, and surgical intervention in some cases. The prognosis for individuals with a basal ganglia hemorrhage varies depending on the severity of the bleed, the presence of underlying medical conditions, and the timeliness and effectiveness of treatment.

A capsule endoscope is a type of medical device used for minimally invasive examination of the digestive tract. It is a small, pill-sized capsule that contains a miniaturized camera, light source, and transmitter. The patient swallows the capsule, which then travels through the gastrointestinal (GI) tract while transmitting images to an external receiver worn by the patient.

The capsule endoscope typically captures approximately 50,000 to 60,000 color images during its journey through the digestive tract, providing detailed visualization of the mucosal lining of the small intestine, which can be difficult to reach with traditional endoscopes. The examination is called capsule endoscopy or wireless capsule enteroscopy.

Capsule endoscopes are mainly used for diagnosing various gastrointestinal conditions such as obscure gastrointestinal bleeding, inflammatory bowel disease (IBD), small bowel tumors, and celiac disease. The procedure is generally safe, non-invasive, and well-tolerated by patients, with minimal discomfort or preparation required compared to traditional endoscopies. However, it may not be suitable for all patients, particularly those with swallowing difficulties, known or suspected gastrointestinal obstructions, or certain implanted electronic devices that could interfere with the capsule's signal transmission.

Computer-assisted image processing is a medical term that refers to the use of computer systems and specialized software to improve, analyze, and interpret medical images obtained through various imaging techniques such as X-ray, CT (computed tomography), MRI (magnetic resonance imaging), ultrasound, and others.

The process typically involves several steps, including image acquisition, enhancement, segmentation, restoration, and analysis. Image processing algorithms can be used to enhance the quality of medical images by adjusting contrast, brightness, and sharpness, as well as removing noise and artifacts that may interfere with accurate diagnosis. Segmentation techniques can be used to isolate specific regions or structures of interest within an image, allowing for more detailed analysis.

Computer-assisted image processing has numerous applications in medical imaging, including detection and characterization of lesions, tumors, and other abnormalities; assessment of organ function and morphology; and guidance of interventional procedures such as biopsies and surgeries. By automating and standardizing image analysis tasks, computer-assisted image processing can help to improve diagnostic accuracy, efficiency, and consistency, while reducing the potential for human error.

A chronic brain injury, also known as a traumatic brain injury (TBI), is an injury to the brain that results in long-term or permanent impairment. It is caused by a significant blow to the head or body, or by a penetrating head injury that disrupts the normal functioning of the brain.

Chronic brain injuries can result in a wide range of physical, cognitive, and emotional symptoms, including:

* Persistent headaches or migraines
* Difficulty with memory, concentration, and decision-making
* Changes in mood, such as depression, anxiety, or irritability
* Difficulty with communication, including speaking and understanding language
* Sensory problems, such as vision or hearing loss
* Seizures
* Balance and coordination problems
* Weakness or paralysis on one side of the body

These symptoms can vary in severity and may not be immediately apparent following the initial injury. In some cases, they may not become apparent until days, weeks, or even months after the injury.

Chronic brain injuries are often classified as mild, moderate, or severe based on the level of consciousness loss and the presence of other neurological deficits. Mild TBIs, also known as concussions, may not cause long-term impairment, while moderate to severe TBIs can result in significant disability and require ongoing rehabilitation and support.

Treatment for chronic brain injuries typically involves a multidisciplinary approach that includes medical management of symptoms, physical therapy, occupational therapy, speech and language therapy, and counseling or psychotherapy. In some cases, surgery may be necessary to address structural damage to the brain.

The Globus Pallidus is a structure in the brain that is part of the basal ganglia, a group of nuclei associated with movement control and other functions. It has two main subdivisions: the external (GPe) and internal (GPi) segments. The GPe receives input from the striatum and sends inhibitory projections to the subthalamic nucleus, while the GPi sends inhibitory projections to the thalamus, which in turn projects to the cerebral cortex. These connections allow for the regulation of motor activity, with abnormal functioning of the Globus Pallidus being implicated in various movement disorders such as Parkinson's disease and Huntington's disease.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

The cerebrum is the largest part of the brain, located in the frontal part of the skull. It is divided into two hemispheres, right and left, which are connected by a band of nerve fibers called the corpus callosum. The cerebrum is responsible for higher cognitive functions such as thinking, learning, memory, language, perception, and consciousness.

The outer layer of the cerebrum is called the cerebral cortex, which is made up of gray matter containing billions of neurons. This region is responsible for processing sensory information, generating motor commands, and performing higher-level cognitive functions. The cerebrum also contains several subcortical structures such as the thalamus, hypothalamus, hippocampus, and amygdala, which play important roles in various brain functions.

Damage to different parts of the cerebrum can result in a range of neurological symptoms, depending on the location and severity of the injury. For example, damage to the left hemisphere may affect language function, while damage to the right hemisphere may affect spatial perception and visual-spatial skills.

Wallerian degeneration is a process that occurs following damage to the axons of neurons (nerve cells). After an axon is severed or traumatically injured, it undergoes a series of changes including fragmentation and removal of the distal segment of the axon, which is the part that is separated from the cell body. This process is named after Augustus Waller, who first described it in 1850.

The degenerative changes in the distal axon are characterized by the breakdown of the axonal cytoskeleton, the loss of myelin sheath (the fatty insulating material that surrounds and protects the axon), and the infiltration of macrophages to clear away the debris. These events lead to the degeneration of the distal axon segment, which is necessary for successful regeneration of the injured nerve.

Wallerian degeneration is a crucial process in the nervous system's response to injury, as it enables the regrowth of axons and the reestablishment of connections between neurons. However, if the regenerative capacity of the neuron is insufficient or the environment is not conducive to growth, functional recovery may be impaired, leading to long-term neurological deficits.

Cerebral dominance is a concept in neuropsychology that refers to the specialization of one hemisphere of the brain over the other for certain cognitive functions. In most people, the left hemisphere is dominant for language functions such as speaking and understanding spoken or written language, while the right hemisphere is dominant for non-verbal functions such as spatial ability, face recognition, and artistic ability.

Cerebral dominance does not mean that the non-dominant hemisphere is incapable of performing the functions of the dominant hemisphere, but rather that it is less efficient or specialized in those areas. The concept of cerebral dominance has been used to explain individual differences in cognitive abilities and learning styles, as well as the laterality of brain damage and its effects on cognition and behavior.

It's important to note that cerebral dominance is a complex phenomenon that can vary between individuals and can be influenced by various factors such as genetics, environment, and experience. Additionally, recent research has challenged the strict lateralization of functions and suggested that there is more functional overlap and interaction between the two hemispheres than previously thought.

The cerebral cortex is the outermost layer of the brain, characterized by its intricate folded structure and wrinkled appearance. It is a region of great importance as it plays a key role in higher cognitive functions such as perception, consciousness, thought, memory, language, and attention. The cerebral cortex is divided into two hemispheres, each containing four lobes: the frontal, parietal, temporal, and occipital lobes. These areas are responsible for different functions, with some regions specializing in sensory processing while others are involved in motor control or associative functions. The cerebral cortex is composed of gray matter, which contains neuronal cell bodies, and is covered by a layer of white matter that consists mainly of myelinated nerve fibers.

Movement disorders are a group of neurological conditions that affect the control and coordination of voluntary movements. These disorders can result from damage to or dysfunction of the cerebellum, basal ganglia, or other parts of the brain that regulate movement. Symptoms may include tremors, rigidity, bradykinesia (slowness of movement), akathisia (restlessness and inability to remain still), dystonia (sustained muscle contractions leading to abnormal postures), chorea (rapid, unpredictable movements), tics, and gait disturbances. Examples of movement disorders include Parkinson's disease, Huntington's disease, Tourette syndrome, and dystonic disorders.

The cerebral ventricles are a system of interconnected fluid-filled cavities within the brain. They are located in the center of the brain and are filled with cerebrospinal fluid (CSF), which provides protection to the brain by cushioning it from impacts and helping to maintain its stability within the skull.

There are four ventricles in total: two lateral ventricles, one third ventricle, and one fourth ventricle. The lateral ventricles are located in each cerebral hemisphere, while the third ventricle is located between the thalami of the two hemispheres. The fourth ventricle is located at the base of the brain, above the spinal cord.

CSF flows from the lateral ventricles into the third ventricle through narrow passageways called the interventricular foramen. From there, it flows into the fourth ventricle through another narrow passageway called the cerebral aqueduct. CSF then leaves the fourth ventricle and enters the subarachnoid space surrounding the brain and spinal cord, where it can be absorbed into the bloodstream.

Abnormalities in the size or shape of the cerebral ventricles can indicate underlying neurological conditions, such as hydrocephalus (excessive accumulation of CSF) or atrophy (shrinkage) of brain tissue. Imaging techniques, such as computed tomography (CT) or magnetic resonance imaging (MRI), are often used to assess the size and shape of the cerebral ventricles in clinical settings.

Paresis is a medical term that refers to a partial loss of voluntary muscle function. It is often described as muscle weakness, and it can affect one or several parts of the body. Paresis can be caused by various conditions, including nerve damage, stroke, spinal cord injuries, multiple sclerosis, and infections like polio or botulism. The severity of paresis can range from mild to severe, depending on the underlying cause and the specific muscles involved. Treatment for paresis typically focuses on addressing the underlying condition causing it.

The tegmentum mesencephali, also known as the mesencephalic tegmentum, is a region in the midbrain (mesencephalon) of the brainstem. It contains several important structures including the periaqueductal gray matter, the nucleus raphe, the reticular formation, and various cranial nerve nuclei. The tegmentum mesencephali plays a crucial role in various functions such as pain modulation, sleep-wake regulation, eye movement control, and cardiovascular regulation.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

The putamen is a round, egg-shaped structure that is a part of the basal ganglia, located in the forebrain. It is situated laterally to the globus pallidus and medially to the internal capsule. The putamen plays a crucial role in regulating movement and is involved in various functions such as learning, motivation, and habit formation.

It receives input from the cerebral cortex via the corticostriatal pathway and sends output to the globus pallidus and substantia nigra pars reticulata, which are also part of the basal ganglia circuitry. The putamen is heavily innervated by dopaminergic neurons from the substantia nigra pars compacta, and degeneration of these neurons in Parkinson's disease leads to a significant reduction in dopamine levels in the putamen, resulting in motor dysfunction.

Obsessive-Compulsive Disorder (OCD) is a mental health disorder characterized by the presence of obsessions and compulsions. Obsessions are recurrent and persistent thoughts, urges, or images that are intrusive, unwanted, and often distressing. Compulsions are repetitive behaviors or mental acts that an individual feels driven to perform in response to an obsession or according to rigid rules, and which are aimed at preventing or reducing anxiety or distress, or preventing some dreaded event or situation. These obsessions and/or compulsions cause significant distress, take up a lot of time (an hour or more a day), and interfere with the individual's daily life, including social activities, relationships, and work or school performance. OCD is considered a type of anxiety disorder and can also co-occur with other mental health conditions.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Brain infarction, also known as cerebral infarction, is a type of stroke that occurs when blood flow to a part of the brain is blocked, often by a blood clot. This results in oxygen and nutrient deprivation to the brain tissue, causing it to become damaged or die. The effects of a brain infarction depend on the location and extent of the damage, but can include weakness, numbness, paralysis, speech difficulties, memory loss, and other neurological symptoms.

Brain infarctions are often caused by underlying medical conditions such as atherosclerosis, atrial fibrillation, or high blood pressure. Treatment typically involves addressing the underlying cause of the blockage, administering medications to dissolve clots or prevent further clotting, and providing supportive care to manage symptoms and prevent complications.

The motor cortex is a region in the frontal lobe of the brain that is responsible for controlling voluntary movements. It is involved in planning, initiating, and executing movements of the limbs, body, and face. The motor cortex contains neurons called Betz cells, which have large cell bodies and are responsible for transmitting signals to the spinal cord to activate muscles. Damage to the motor cortex can result in various movement disorders such as hemiplegia or paralysis on one side of the body.

The caudate nucleus is a part of the brain located within the basal ganglia, a group of structures that are important for movement control and cognition. It has a distinctive C-shaped appearance and plays a role in various functions such as learning, memory, emotion, and motivation. The caudate nucleus receives inputs from several areas of the cerebral cortex and sends outputs to other basal ganglia structures, contributing to the regulation of motor behavior and higher cognitive processes.

The occipital lobe is the portion of the cerebral cortex that lies at the back of the brain (posteriorly) and is primarily involved in visual processing. It contains areas that are responsible for the interpretation and integration of visual stimuli, including color, form, movement, and recognition of objects. The occipital lobe is divided into several regions, such as the primary visual cortex (V1), secondary visual cortex (V2 to V5), and the visual association cortex, which work together to process different aspects of visual information. Damage to the occipital lobe can lead to various visual deficits, including blindness or partial loss of vision, known as a visual field cut.

Chronic brain damage is a condition characterized by long-term, persistent injury to the brain that results in cognitive, physical, and behavioral impairments. It can be caused by various factors such as trauma, hypoxia (lack of oxygen), infection, toxic exposure, or degenerative diseases. The effects of chronic brain damage may not be immediately apparent and can worsen over time, leading to significant disability and reduced quality of life.

The symptoms of chronic brain damage can vary widely depending on the severity and location of the injury. They may include:

* Cognitive impairments such as memory loss, difficulty concentrating, trouble with problem-solving and decision-making, and decreased learning ability
* Motor impairments such as weakness, tremors, poor coordination, and balance problems
* Sensory impairments such as hearing or vision loss, numbness, tingling, or altered sense of touch
* Speech and language difficulties such as aphasia (problems with understanding or producing speech) or dysarthria (slurred or slow speech)
* Behavioral changes such as irritability, mood swings, depression, anxiety, and personality changes

Chronic brain damage can be diagnosed through a combination of medical history, physical examination, neurological evaluation, and imaging studies such as MRI or CT scans. Treatment typically focuses on managing symptoms and maximizing function through rehabilitation therapies such as occupational therapy, speech therapy, and physical therapy. In some cases, medication or surgery may be necessary to address specific symptoms or underlying causes of the brain damage.

Nerve fibers are specialized structures that constitute the long, slender processes (axons) of neurons (nerve cells). They are responsible for conducting electrical impulses, known as action potentials, away from the cell body and transmitting them to other neurons or effector organs such as muscles and glands. Nerve fibers are often surrounded by supportive cells called glial cells and are grouped together to form nerve bundles or nerves. These fibers can be myelinated (covered with a fatty insulating sheath called myelin) or unmyelinated, which influences the speed of impulse transmission.

Ataxia is a medical term that refers to a group of disorders affecting coordination, balance, and speech. It is characterized by a lack of muscle control during voluntary movements, causing unsteady or awkward movements, and often accompanied by tremors. Ataxia can affect various parts of the body, such as the limbs, trunk, eyes, and speech muscles. The condition can be congenital or acquired, and it can result from damage to the cerebellum, spinal cord, or sensory nerves. There are several types of ataxia, including hereditary ataxias, degenerative ataxias, cerebellar ataxias, and acquired ataxias, each with its own specific causes, symptoms, and prognosis. Treatment for ataxia typically focuses on managing symptoms and improving quality of life, as there is no cure for most forms of the disorder.

In medical terms, dissection refers to the separation of the layers of a biological tissue or structure by cutting or splitting. It is often used to describe the process of surgically cutting through tissues, such as during an operation to separate organs or examine their internal structures.

However, "dissection" can also refer to a pathological condition in which there is a separation of the layers of a blood vessel wall by blood, creating a false lumen or aneurysm. This type of dissection is most commonly seen in the aorta and can be life-threatening if not promptly diagnosed and treated.

In summary, "dissection" has both surgical and pathological meanings related to the separation of tissue layers, and it's essential to consider the context in which the term is used.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Brain diseases, also known as neurological disorders, refer to a wide range of conditions that affect the brain and nervous system. These diseases can be caused by various factors such as genetics, infections, injuries, degeneration, or structural abnormalities. They can affect different parts of the brain, leading to a variety of symptoms and complications.

Some examples of brain diseases include:

1. Alzheimer's disease - a progressive degenerative disorder that affects memory and cognitive function.
2. Parkinson's disease - a movement disorder characterized by tremors, stiffness, and difficulty with coordination and balance.
3. Multiple sclerosis - a chronic autoimmune disease that affects the nervous system and can cause a range of symptoms such as vision loss, muscle weakness, and cognitive impairment.
4. Epilepsy - a neurological disorder characterized by recurrent seizures.
5. Brain tumors - abnormal growths in the brain that can be benign or malignant.
6. Stroke - a sudden interruption of blood flow to the brain, which can cause paralysis, speech difficulties, and other neurological symptoms.
7. Meningitis - an infection of the membranes surrounding the brain and spinal cord.
8. Encephalitis - an inflammation of the brain that can be caused by viruses, bacteria, or autoimmune disorders.
9. Huntington's disease - a genetic disorder that affects muscle coordination, cognitive function, and mental health.
10. Migraine - a neurological condition characterized by severe headaches, often accompanied by nausea, vomiting, and sensitivity to light and sound.

Brain diseases can range from mild to severe and may be treatable or incurable. They can affect people of all ages and backgrounds, and early diagnosis and treatment are essential for improving outcomes and quality of life.

The telencephalon is the most anterior (front) region of the embryonic brain, which eventually develops into the largest portion of the adult human brain, including the cerebral cortex, basal ganglia, and olfactory bulbs. It is derived from the prosencephalon (forebrain) during embryonic development and is responsible for higher cognitive functions such as thinking, perception, and language. The telencephalon can be further divided into two hemispheres, each containing regions associated with different functions.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

The frontal lobe is the largest lobes of the human brain, located at the front part of each cerebral hemisphere and situated in front of the parietal and temporal lobes. It plays a crucial role in higher cognitive functions such as decision making, problem solving, planning, parts of social behavior, emotional expressions, physical reactions, and motor function. The frontal lobe is also responsible for what's known as "executive functions," which include the ability to focus attention, understand rules, switch focus, plan actions, and inhibit inappropriate behaviors. It is divided into five areas, each with its own specific functions: the primary motor cortex, premotor cortex, Broca's area, prefrontal cortex, and orbitofrontal cortex. Damage to the frontal lobe can result in a wide range of impairments, depending on the location and extent of the injury.

Cerebrovascular disorders are a group of medical conditions that affect the blood vessels of the brain. These disorders can be caused by narrowing, blockage, or rupture of the blood vessels, leading to decreased blood flow and oxygen supply to the brain. The most common types of cerebrovascular disorders include:

1. Stroke: A stroke occurs when a blood vessel in the brain becomes blocked or bursts, causing a lack of oxygen and nutrients to reach brain cells. This can lead to permanent damage or death of brain tissue.
2. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA occurs when blood flow to the brain is temporarily blocked, often by a blood clot. Symptoms may last only a few minutes to a few hours and typically resolve on their own. However, a TIA is a serious warning sign that a full-blown stroke may occur in the future.
3. Aneurysm: An aneurysm is a weakened or bulging area in the wall of a blood vessel. If left untreated, an aneurysm can rupture and cause bleeding in the brain.
4. Arteriovenous malformation (AVM): An AVM is a tangled mass of abnormal blood vessels that connect arteries and veins. This can lead to bleeding in the brain or stroke.
5. Carotid stenosis: Carotid stenosis occurs when the carotid arteries, which supply blood to the brain, become narrowed or blocked due to plaque buildup. This can increase the risk of stroke.
6. Vertebrobasilar insufficiency: This condition occurs when the vertebral and basilar arteries, which supply blood to the back of the brain, become narrowed or blocked. This can lead to symptoms such as dizziness, vertigo, and difficulty swallowing.

Cerebrovascular disorders are a leading cause of disability and death worldwide. Risk factors for these conditions include age, high blood pressure, smoking, diabetes, high cholesterol, and family history. Treatment may involve medications, surgery, or lifestyle changes to reduce the risk of further complications.

Microsurgery is a surgical technique that requires the use of an operating microscope and fine instruments to perform precise surgical manipulations. It is commonly used in various fields such as ophthalmology, neurosurgery, orthopedic surgery, and plastic and reconstructive surgery. The magnification provided by the microscope allows surgeons to work on small structures like nerves, blood vessels, and tiny bones. Some of the most common procedures that fall under microsurgery include nerve repair, replantation of amputated parts, and various types of reconstructions such as free tissue transfer for cancer reconstruction or coverage of large wounds.

Computer-assisted image interpretation is the use of computer algorithms and software to assist healthcare professionals in analyzing and interpreting medical images. These systems use various techniques such as pattern recognition, machine learning, and artificial intelligence to help identify and highlight abnormalities or patterns within imaging data, such as X-rays, CT scans, MRI, and ultrasound images. The goal is to increase the accuracy, consistency, and efficiency of image interpretation, while also reducing the potential for human error. It's important to note that these systems are intended to assist healthcare professionals in their decision making process and not to replace them.

The internal carotid artery is a major blood vessel that supplies oxygenated blood to the brain. It originates from the common carotid artery and passes through the neck, entering the skull via the carotid canal in the temporal bone. Once inside the skull, it branches into several smaller vessels that supply different parts of the brain with blood.

The internal carotid artery is divided into several segments: cervical, petrous, cavernous, clinoid, and supraclinoid. Each segment has distinct clinical significance in terms of potential injury or disease. The most common conditions affecting the internal carotid artery include atherosclerosis, which can lead to stroke or transient ischemic attack (TIA), and dissection, which can cause severe headache, neck pain, and neurological symptoms.

It's important to note that any blockage or damage to the internal carotid artery can have serious consequences, as it can significantly reduce blood flow to the brain and lead to permanent neurological damage or even death. Therefore, regular check-ups and screening tests are recommended for individuals at high risk of developing vascular diseases.

In medical terms, a hand is the part of the human body that is attached to the forearm and consists of the carpus (wrist), metacarpus, and phalanges. It is made up of 27 bones, along with muscles, tendons, ligaments, and other soft tissues. The hand is a highly specialized organ that is capable of performing a wide range of complex movements and functions, including grasping, holding, manipulating objects, and communicating through gestures. It is also richly innervated with sensory receptors that provide information about touch, temperature, pain, and proprioception (the sense of the position and movement of body parts).

Image enhancement in the medical context refers to the process of improving the quality and clarity of medical images, such as X-rays, CT scans, MRI scans, or ultrasound images, to aid in the diagnosis and treatment of medical conditions. Image enhancement techniques may include adjusting contrast, brightness, or sharpness; removing noise or artifacts; or applying specialized algorithms to highlight specific features or structures within the image.

The goal of image enhancement is to provide clinicians with more accurate and detailed information about a patient's anatomy or physiology, which can help inform medical decision-making and improve patient outcomes.

A cerebral hemorrhage, also known as an intracranial hemorrhage or intracerebral hemorrhage, is a type of stroke that results from bleeding within the brain tissue. It occurs when a weakened blood vessel bursts and causes localized bleeding in the brain. This bleeding can increase pressure in the skull, damage nearby brain cells, and release toxic substances that further harm brain tissues.

Cerebral hemorrhages are often caused by chronic conditions like hypertension (high blood pressure) or cerebral amyloid angiopathy, which weakens the walls of blood vessels over time. Other potential causes include trauma, aneurysms, arteriovenous malformations, illicit drug use, and brain tumors. Symptoms may include sudden headache, weakness, numbness, difficulty speaking or understanding speech, vision problems, loss of balance, and altered level of consciousness. Immediate medical attention is required to diagnose and manage cerebral hemorrhage through imaging techniques, supportive care, and possible surgical interventions.

Wikimedia Commons has media related to Internal capsule. Stained brain slice images which include the "internal capsule" at the ... thalamic pontine fibers The posterior limb of internal capsule (or occipital part) is the portion of the internal capsule ... The internal capsule consists of three parts and is V-shaped when cut horizontally, in a transverse plane. the bend in the V is ... The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It ...
Internal capsule Extreme capsule Powell, Meshell (13 January 2014). "What Is the External Capsule?". wiseGEEK. Conjecture ... But the external capsule eventually joins the internal capsule around the lentiform nucleus. Superficial dissection of brain- ... The putamen separates the external capsule from the internal capsule medially and the claustrum separates it from the extreme ... The capsule itself appears as a thin white sheet of white matter. The external capsule is a route for cholinergic fibers from ...
... Internal capsule External capsule Jones, Jeremy. "Extreme capsule , Radiology Reference Article ... the extreme capsule is the outermost from the external capsule and the inner internal capsule. It is most easily visible in a ... The extreme capsule is separated from the external capsule by the claustrum, and the extreme capsule separates the claustrum ... The extreme capsule (Latin: capsula extrema) is a series of nerve tracts between the claustrum and the insular cortex. It is ...
Central facial palsy can be caused by a lacunar infarct affecting fibers in the internal capsule going to the nucleus. The ... Central facial palsy can be caused by a lacunar infarct affecting fibers in the internal capsule going to the nucleus. The ... These are corticobulbar fibers travelling in internal capsule. Infranuclear lesions refer to the majority of causes of facial ... 2008). Harrison's principles of internal medicine (17th ed.). New York: McGraw-Hill Medical. ISBN 978-0-07-147693-5. Garro A, ...
... with a few fibers in the posterior limb of the internal capsule) to the midbrain. In the midbrain, the internal capsule becomes ... The tract descends through the corona radiata and then the genu of the internal capsule ( ...
The internal capsule is seen as dividing the two parts of the dorsal striatum. Sensorimotor input is mostly to the putamen. An ... then cross the internal capsule to reach the upper part of the medial pallidum where they enter the pallidal laminae, from ... the dorsal striatum is divided by a large tract called the internal capsule into two masses named the caudate nucleus and the ... dorsally to the substantia nigra and medial to the internal capsule. The subthalamic nucleus is lenticular in form and of ...
The internal capsule contains the explosive and a primer/detonator tube. A thin wire ring locks the two body halves together at ... a specific place, fixing the overall length, so as not to bind the internal parts. To use, the pull tab with the attached ...
Possible sites of lesions include the thalamus, internal capsule, and basal ganglia. While aphasia has traditionally been ... the internal and external capsules, and the caudate nucleus of the basal ganglia. The area and extent of brain damage or ... Journal of Internal Medicine. 249 (5): 413-422. doi:10.1046/j.1365-2796.2001.00812.x. PMID 11350565. S2CID 32102500. "Aphasia ... JAMA Internal Medicine. 174 (8): 1244-1251. doi:10.1001/jamainternmed.2014.2534. PMC 4527047. PMID 24915005. "Causes and ...
In rodents, the internal capsule is poorly developed such that the caudate and putamen are not separated but form one large ... In primates and other mammals, it is divided by the anterior limb of a white matter tract called the internal capsule into two ... Emos, Marc Christopher; Agarwal, Sanjeev (2019), "Neuroanatomy, Internal Capsule", StatPearls, StatPearls Publishing, PMID ... "Organization of the Anterior Limb of the Internal Capsule in the Rat". The Journal of Neuroscience. 37 (10): 2539-2554. doi: ...
From there, the axons cross the internal capsule as the comb system. Axons arrives at the lateral border of the subthalamic ... nuclei are separated from the lateral and medial regions by the lamella superior and are everywhere surrounded by a capsule of ...
His CT shows hemorrhagic lesions involving both internal capsules. He was comatose for several weeks and awoke quadriparetic, ... The patient had no other neurologic deficits and spoke fluently, although with poor internal volume control of her voice. ... due to bilateral interruption of the ascending auditory pathway associated with hemorrhagic lesions of both internal capsules. ... and extreme capsules. Signal abnormalities extended into the right temporal lobe. ...
III). Its effect on the abnormal electrocorticogram induced by destruction of the internal capsule]". Nihon Yakurigaku Zasshi. ...
... especially in capsules with stepwise tunable pores and tunable internal functions Coordination chemistry at surfaces, in pores ... "Guests on Different Internal Capsule Sites Exchange with Each Other and with the Outside". Angewandte Chemie International ... Substrates enter through these pores, and they can react to form a variety of species depending on the internal tapestry of the ... Several new phenomena under confined conditions can be studied by variation of the internal ligands with hydrophilic and/or ...
It is also dorsal to the substantia nigra and medial to the internal capsule. It was first described by Jules Bernard Luys in ... clearly the internal globus pallidus (GPi). Some researchers have reported internal axon collaterals. However, there is little ... but it is likely composed of several internal domains. The primate subthalamic nucleus is often divided in three internal ... through the ansa lenticularis as often said but by radiating fibers crossing the medial pallidum first and the internal capsule ...
The (SNpr) and the internal globus pallidus (GPi) are separated by the internal capsule. The pars reticulata bears a strong ... The two are sometimes considered parts of the same structure, separated by the white matter of the internal capsule. Like those ... Bolam, J. P.; Brown, M. T. C.; Moss, J.; Magill, P. J. (1 January 2009), "Basal Ganglia: Internal Organization", in Squire, ... structural and functional resemblance to the internal part of the globus pallidus. ...
These are the signs of a right-sided stroke possibly within the internal capsule. The presence of the orthopaedic footwear ...
Histopathology is found mainly in the eyes and internal organs' capsules. Lesions on the ocular area consist of extensive ... but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster of Lg2 may be a genomic ... Macroscopic lesions in affected fish are typical of acute systemic disease with strong congestion in the internal organs and ... leading to hemorrhages and petechias at the surface of internal organs. As few as 10 bacterial cells per fish can cause an ...
There is no time for the internal convection in each drop or capsule to occur. Ultimately, large amounts of microcapsules have ... In this way, encapsuled in small capsules, the fluid can be handled as a powder. The cyclodextrins can absorb an estimated 60 ... An auxiliary material for a capsule may be any readily water-soluble substance (e.g. carbohydrate such as dextrins (starch ... Electron micrographs of micro-capsules of powdered alcohol can be seen. "粉末酒アルコック・ライトカクテル新タイプギフトセット (佐藤食品工業)" ("Powdered ...
Enzymes can be immobilized to the capsule membrane. In this case, the capsule external diameter was 500 µm and internal ... Capsule external diameters were 740 µm and 680 µm and internal diameters were 570 µm and 500 µm. Agitation was 300 rpm. ... Dibutyl sebacate capsules were disposable because liquid core came out from capsules in the back-extraction. On the contrary, ... Dibutyl sebacate and oleic acid formed liquid cores in capsules because they do not diffuse away from capsules and have ...
The T-14's crew of three is protected by an internal armored capsule. Both the chassis and the turret are equipped with the ... The crew of three is seated in an armoured capsule in the front of the hull, which will also include a toilet for the crew. The ...
It runs rostral to the pyramidal tract in the posterior limb of the internal capsule. Then, it courses posteriorly toward the ...
These thin-walled fruit have two internal capsules, and support seed dormancy. Placentation is apical, the style is 5 to 6 mm ...
... is a medical procedure used to record internal images of the gastrointestinal tract for use in disease ... Capsule endoscopy uses a small vitamin-sized wireless camera to capture images of a patient's digestive tract. The capsule is ... Capsule endoscopy is considered to be a very safe method for gastrointestinal tract examination. The capsule is usually ... A transmitted radio-frequency signal emitted by some capsules can be used to accurately estimate the location of the capsule ...
... and then into the subplate and the internal capsule. Therefore, these cells are the origin of the earliest efferent pathway of ...
StPD symptoms may also be influenced by reduced internal capsule, which carries information to the cerebral cortex. People with ... April 2004). "Volume reduction of the right anterior limb of the internal capsule in patients with schizotypal disorder". ... November 2012). "Anterior limb of the internal capsule in schizotypal personality disorder: fiber-tract counting, volume, and ... Children with schizotypal symptoms usually are more likely to indulge in internal fantasies, more anxious, socially isolated, ...
January 2010). "Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: ... the anterior limb of the internal capsule for depression as well as obsessive compulsive disorder (OCD), centromedian/ ...
The geniculate fibers are the fibers in the region of the genu of the internal capsule; they originate in the motor part of the ...
Hemorrhage into the basal ganglia or thalamus causes contralateral hemiplegia due to damage to the internal capsule. Other ...
... oil contains almost 60% linoleic acid (omega 6). It is available in capsule, oil or powder form, with both internal and ... The dried seed capsules can also be used in flower arrangements. In traditional medicine, the seeds are used as a carminative ... The fruit is a capsule composed of several united follicles, each containing numerous seeds; in some species (e.g. Nigella ... damascena), the capsule is large and inflated. The seeds of Nigella sativa, known as kalonji, black cumin, black caraway, black ...
Subtype 2 shows increased volume in the basal ganglia and internal capsule, with otherwise normal brain volume. Diffusion ...
Wikimedia Commons has media related to Internal capsule. Stained brain slice images which include the "internal capsule" at the ... thalamic pontine fibers The posterior limb of internal capsule (or occipital part) is the portion of the internal capsule ... The internal capsule consists of three parts and is V-shaped when cut horizontally, in a transverse plane. the bend in the V is ... The internal capsule is a white matter structure situated in the inferomedial part of each cerebral hemisphere of the brain. It ...
sublenticular limb of internal capsule - sublentiform limb of internal capsule pars sublentiformis capsulae internae … Medical ... retrolenticular limb of internal capsule - retrolentiform limb of internal capsule pars retrolentiformis capsulae internae … ... part to the internal capsule.. Fibres. * The posterior limb of the internal capsule contains corticospinal fiber. s and sensory ... The internal capsule is an area of white matter. in the brain. that separates the caudate nucleus. and the thalamus. from the ...
120 hours revision of 500 Video Lectures Crash Course on Anatomy, Physiology, Biochemistry based on University Previous Exam Question Papers..
The internal capsule is one pricey piece of brain real estate! It contains all of the pathways that allow information to be ... of the internal capsule Damage to the internal capsule can be devastating neurologically because it contains so many vital ... The internal capsule is one pricey piece of brain real estate! It contains all of the pathways that allow information to be ... The Internal Capsule: Some Pricey Brain Real Estate. April 9, 2023. April 9, 2023. virtualmedstudent ...
Internal Capsule is a specific area of white matter in the brain that separates the caudate nucleus and the thalamus from the ... Internal Capsule "Internal Capsule" In our bodys brain, the Internal Capsule is an area of white matter in the brain that ... Internal Capsule ⌊Life (Life Sciences). ⌊Ecosystems of Life. ⌊Intracorporeal Ecosystems. ⌊Body Proper (corpus humanum). ⌊Body ... In our bodys brain, the Internal Capsule is a white matter neural pathway, flanked by nuclear masses, consisting of both ...
Cortex and internal capsule. The voluntary responses of the facial muscles (eg, smiling when taking a photograph) arise from ... Discharges from the facial motor area are carried through fascicles of the corticobulbar tract to the internal capsule, then ... enters the internal acoustic meatus (internal auditory canal [IAC]) with the facial nerve. The AICA branches into the ... Cerebellopontine Angle and the Internal Acoustic Meatus. The facial nerve emerges from the brainstem with the nerve of Wrisberg ...
Long-term Outcome of Deep Brain Stimulation of the Ventral Part of the Anterior Limb of the Internal Capsule in a Cohort of 50 ... Long-term Outcome of Deep Brain Stimulation of the Ventral Part of the Anterior Limb of the Internal Capsule in a Cohort of 50 ... Long-term Outcome of Deep Brain Stimulation of the Ventral Part of the Anterior Limb of the Internal Capsule in a Cohort of 50 ... Long-term Outcome of Deep Brain Stimulation of the Ventral Part of the Anterior Limb of the Internal Capsule in a Cohort of 50 ...
If posterior limb of the internal capsule is involved, characteristic upper motor neuron lesion results.. Copper deposition in ... Coronal section of the brain highlighting lentiform nucleus, caudate nucleus & internal capsule ... Coronal section of the brain highlighting lentiform nucleus, caudate nucleus & internal capsule. ...
IDP dMRI TBSS L3 Posterior limb of internal capsule L. Dataset: ubm-a-455. ... ubm-a-455: IDP dMRI TBSS L3 Posterior limb of internal capsule L ... ubm-a-453: IDP dMRI TBSS L3 Anterior limb of internal capsule L ... ubm-a-407: IDP dMRI TBSS L2 Posterior limb of internal capsule L ... ubm-a-357: IDP dMRI TBSS L1 Anterior limb of internal capsule L ... ubm-a-359: IDP dMRI TBSS L1 Posterior limb of internal capsule L ... ubm-a-405: IDP dMRI TBSS L2 Anterior limb of internal capsule L ...
... internal capsule; CPu, caudate putamen; LGP, lateral globus pallidus; ec, external capsule. Scale bars, 100 μm (a,c,e,g), 25 μm ...
Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule, and ... Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule and ... Reduction of both FDC and FD were noticed in the anterior limb of the internal capsule. The anterior limb of the internal ... the internal capsule, the external capsule, the splenium of the corpus callosum and in the bilateral cerebral peduncles. ...
Im not sure it can... - AirPort Time Capsule A1470 ... AirPort Time Capsule A1470 Released alongside the AirPort ... New 8TB ,HDD installed: continuing error internal disk needs repair. Ive replaced the failed 3TB HDD(SATA 6Gb/s 64MB Cache ... internal disk needs repair. Ive tried soft, hard and factory default resets, but neither Finder or Disk Utility sees the TC ... Extreme base station, this hard drive equipped variant offers 802.11ac speed on a time capsule NAS. ...
ELEMENTS by Cellulosic Internal Capsule Sampler. Zinc (Zn). 8200pdf icon. ELEMENTS in Tissues. ...
... and inversely varied with FA in the bilateral internal capsule (IC) at 2-weeks (p = 0.0294, FDR corrected) and 6-months (p = ... Swor RA] Internal capsule microstructure mediates the relationship between childhood maltreatment and PTSD following adulthood ... Internal capsule microstructure mediates the relationship between childhood maltreatment and PTSD following adulthood trauma ... and inversely varied with FA in the bilateral internal capsule (IC) at 2-weeks (p = 0.0294, FDR corrected) and 6-months (p = ...
CD, Caudate nucleus; P, putamen; VP, ventral putamen;GP, globus pallidum; AC, anterior commissure; IC, internal capsule. ... Scale bar, 1 mm.CD, Caudate nucleus; P, putamen;AC, anterior commissure; IC, internal capsule. ... Scale bar, 1 mm.CD, Caudate nucleus; P, putamen;AC, anterior commissure; IC, internal capsule. ... begins more caudally than that in case M1-89 and is restricted to small patches along the medial border of the internal capsule ...
3V, Third ventricle; AHP, anterior hypothalamus; DM, dorsomedial hypothalamus; ic, internal capsule; ml, medial lemniscus; mp, ... For intracerebral drug infusion, 28 gauge internal cannula injectors (PlasticsOne) were connected to Nanofil syringes through ...
Triphala Internal Cleanser - Tablets, Capsules, Powder: IN STOCK $8.99. - $14.50. Add to Wishlist. ...
Internal capsule lateral to caudate nucleus; superior occipitofrontal fasciculus; substantia nigra. The head and body of the ... Internal capsule lateral to caudate nucleus; superior occipitofrontal fasciculus; substantia nigra. Image #17-1. KEYWORDS: ... Broken ends of fibers passing from head of caudate nucleus into internal capsule ... caudate nucleus have been scraped away to demonstrate discret bundles of fibers in the internal capsule. The majority of these ...
Posterior limb of the internal capsule fractional anisotropy showed potential to distinguish those patients with rapid ... CONCLUSIONS: Posterior limb of the internal capsule fractional anisotropy is a candidate prognostic marker in amyotrophic ... anisotropy and progression rate for a region of the corticospinal tract spanning the posterior limb of the internal capsule, ... Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis. ...
ELEMENTS by Cellulosic Internal Capsule Sampler. 7502. ZINC OXIDE. 7600. CHROMIUM, HEXAVALENT. ...
Glasses size of internal capsule. < 147 mm. 3D support. Side By side ...
Haemorrhoids, Bleeding & Non Bleeding Piles, Fistula, Internal & External Piles, Painful Defecation. Online Shopping. Free ... Saras Brahmi Capsules ( Memory loss, brain fatigue syndrome, mental stress ). Arsho Care Capsules ( Internal and external piles ... Reknown Capsules ( Renal colic, Kidney dysfunction, recurrent urinary tract infection ). Thyrex Capsules ( Regulates endocrine ... Swas Care Capsules ( Bronchial Congestion, whooping cough, sore throat ). Sinit Capsules ( Sneezing, nasal congestion, Stuffy ...
L indicates lentiform; I, insula; C, caudate; IC, internal capsule; M, MCA. ...
Internal capsule tuned for speech in a gaming environment for optimizing vocal clarity ... The Capsule Mini packs the best-in-class audio of the Capsule into a uniquely small form factor, capturing unexpectedly big ... Small, sleek, smooth, and silent-Boom Arm Mini supports both Capsule and Capsule Mini to make efficient use of space while ... Internal shock mounting relieves any worry of your mic bumping into your desk mid-game ...
internal capsule. ICA. interstitial nucleus of Cajal. ICAS. inferior ramus of calcarine sulcus. ...
a Section of cerebrum showing embolism in left internal capsule (see arrow). b Section of heart with transmural apical late ... Patients with distant organ embolic events may be seen at the internal medicine, orthopaedics or neurology department with ... at the internal medicine, orthopaedics or neurology department with localised symptoms and a common denominator of positive ...
General orientation view of dissection of diencephalon, internal capsule and lentiform nucleus. Image #12-2. KEYWORDS: Brain, ... The lentiform nucleus and internal capsule have been further cut away posteriorly. The geniculate bodies are sectioned ... General orientation view of dissection of diencephalon, internal capsule and lentiform nucleus. ...
Internal Rycote Lyre-based capsule shock-mounting system. *Ultralow-noise transformerless circuitry ... minimizing external vibrations at the capsule level. The capsule is then married to high-grade electronics that have been ... The HF6 capsule is suspended inside the microphone using Rycotes industry-leading Lyre system to help reduce vibration and ... It features Rodes updated HF6 capsule, which is designed to provide a detailed midrange response with smooth highs and warm ...
... he has amassed his own internal time capsule collection, stacked to the roof with stories, examples, and best practices. ... Trash Capsules. An updated capsule for 2389, and which included special Kindles. (Photo: Courtesy Knute Berger/ Washington ... Knute Berger is on the right, and the girl is one of the Keepers of the Capsule who updated the capsule in 2014. (Photo: ... They filled the capsule with a Kewpie doll, a copy of LIFE, a bunch of seeds, and many samples of plastic. It would stay sealed ...

No FAQ available that match "internal capsule"

No images available that match "internal capsule"