Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
Compounds that inhibit HMG-CoA reductases. They have been shown to directly lower cholesterol synthesis.
A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver.
Mevalonic acid is a crucial intermediate compound in the HMG-CoA reductase pathway, which is a metabolic route that produces cholesterol, other steroids, and isoprenoids in cells.
A derivative of LOVASTATIN and potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It may also interfere with steroid hormone production. Due to the induction of hepatic LDL RECEPTORS, it increases breakdown of LDL CHOLESTEROL.
7-carbon saturated monocarboxylic acids.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Azoles of one NITROGEN and two double bonds that have aromatic chemical properties.
Substances used to lower plasma CHOLESTEROL levels.
Glutarates are organic compounds, specifically carboxylic acids, that contain a five-carbon chain with two terminal carboxyl groups and a central methyl group, playing a role in various metabolic processes, including the breakdown of certain amino acids. They can also refer to their salts or esters. Please note that this definition is concise and may not cover all aspects of glutarates in depth.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
Oxidoreductases that are specific for the reduction of NITRATES.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.
A strongly basic anion exchange resin whose main constituent is polystyrene trimethylbenzylammonium Cl(-) anion.
Ribonucleotide Reductases are enzymes that catalyze the conversion of ribonucleotides to deoxyribonucleotides, which is a crucial step in DNA synthesis and repair, utilizing a radical mechanism for this conversion.
An antilipemic fungal metabolite isolated from cultures of Nocardia autotrophica. It acts as a competitive inhibitor of HMG CoA reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES).
Cholesterol which is substituted by a hydroxy group in any position.
Steroids with a hydroxyl group at C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain. (IUPAC Steroid Nomenclature, 1987)
A FLAVOPROTEIN oxidoreductase that occurs both as a soluble enzyme and a membrane-bound enzyme due to ALTERNATIVE SPLICING of a single mRNA. The soluble form is present mainly in ERYTHROCYTES and is involved in the reduction of METHEMOGLOBIN. The membrane-bound form of the enzyme is found primarily in the ENDOPLASMIC RETICULUM and outer mitochondrial membrane, where it participates in the desaturation of FATTY ACIDS; CHOLESTEROL biosynthesis and drug metabolism. A deficiency in the enzyme can result in METHEMOGLOBINEMIA.
Phosphoric or pyrophosphoric acid esters of polyisoprenoids.
A group of enzymes that oxidize diverse nitrogenous substances to yield nitrite. (Enzyme Nomenclature, 1992) EC 1.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.
The rate dynamics in chemical or physical systems.
An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29.
A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5
A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4.
Eicosamethyl octacontanonadecasen-1-o1. Polyprenol found in animal tissues that contains about 20 isoprene residues, the one carrying the alcohol group being saturated.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Cell surface receptors for AUTOCRINE MOTILITY FACTOR, which is the secreted form of GLUCOSE-6-PHOSPHATE ISOMERASE. The receptor has an unusual composition in that it shares some structural similarities with G-PROTEIN-COUPLED RECEPTORS and functions as an ubiquitin protein ligase when internalized.
Enzymes that catalyze the reversible reduction of NAD by NADPH to yield NADP and NADH. This reaction permits the utilization of the reducing properties of NADPH by the respiratory chain and in the reverse direction it allows the reduction of NADP for biosynthetic purposes.
Chemical compounds derived from acids by the elimination of a molecule of water.
Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.
Cytochrome reductases are enzymes that catalyze the transfer of electrons from donor molecules to cytochromes in electron transport chains, playing a crucial role in cellular respiration and energy production within cells.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the synthesis of hydroxymethylglutaryl-CoA from acetyl-CoA and acetoacetyl-CoA. This is a key enzyme in steroid biosynthesis. This enzyme was formerly listed as EC 4.1.3.5.
A post-translational modification of proteins by the attachment of an isoprenoid to the C-terminal cysteine residue. The isoprenoids used, farnesyl diphosphate or geranylgeranyl diphosphate, are derived from the same biochemical pathway that produces cholesterol.
Fatty acids which are unsaturated in only one position.
An enzyme of the oxidoreductase class that catalyzes the reaction 7,8-dihyrofolate and NADPH to yield 5,6,7,8-tetrahydrofolate and NADPH+, producing reduced folate for amino acid metabolism, purine ring synthesis, and the formation of deoxythymidine monophosphate. Methotrexate and other folic acid antagonists used as chemotherapeutic drugs act by inhibiting this enzyme. (Dorland, 27th ed) EC 1.5.1.3.
Cholesterol present in food, especially in animal products.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
A membrane-bound cytochrome P450 enzyme that catalyzes the 7-alpha-hydroxylation of CHOLESTEROL in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP7, converts cholesterol to 7-alpha-hydroxycholesterol which is the first and rate-limiting step in the synthesis of BILE ACIDS.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A family of sterols commonly found in plants and plant oils. Alpha-, beta-, and gamma-isomers have been characterized.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
A flavoprotein amine oxidoreductase that catalyzes the reversible conversion of 5-methyltetrahydrofolate to 5,10-methylenetetrahydrofolate. This enzyme was formerly classified as EC 1.1.1.171.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Established cell cultures that have the potential to propagate indefinitely.
A sterol regulatory element binding protein that regulates GENES involved in CHOLESTEROL synthesis and uptake.
A subclass of enzymes which includes all dehydrogenases acting on carbon-carbon bonds. This enzyme group includes all the enzymes that introduce double bonds into substrates by direct dehydrogenation of carbon-carbon single bonds.
Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
An NAD-dependent enzyme that catalyzes the oxidation of nitrite to nitrate. It is a FLAVOPROTEIN that contains IRON and MOLYBDENUM and is involved in the first step of nitrate assimilation in PLANTS; FUNGI; and BACTERIA. It was formerly classified as EC 1.6.6.1.
Reductases that catalyze the reaction of peptide-L-methionine -S-oxide + thioredoxin to produce peptide-L-methionine + thioredoxin disulfide + H(2)O.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones.
Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking.
An enzyme of the oxidoreductase class that catalyzes the formation of 2'-deoxyribonucleotides from the corresponding ribonucleotides using NADPH as the ultimate electron donor. The deoxyribonucleoside diphosphates are used in DNA synthesis. (From Dorland, 27th ed) EC 1.17.4.1.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
NAD(P)H:(quinone acceptor) oxidoreductases. A family that includes three enzymes which are distinguished by their sensitivity to various inhibitors. EC 1.6.99.2 (NAD(P)H DEHYDROGENASE (QUINONE);) is a flavoprotein which reduces various quinones in the presence of NADH or NADPH and is inhibited by dicoumarol. EC 1.6.99.5 (NADH dehydrogenase (quinone)) requires NADH, is inhibited by AMP and 2,4-dinitrophenol but not by dicoumarol or folic acid derivatives. EC 1.6.99.6 (NADPH dehydrogenase (quinone)) requires NADPH and is inhibited by dicoumarol and folic acid derivatives but not by 2,4-dinitrophenol.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.

A 'distributed degron' allows regulated entry into the ER degradation pathway. (1/69)

Protein degradation is employed in both regulation and quality control. Regulated degradation of specific proteins is often mediated by discrete regions of primary sequence known as degrons, whereas protein quality control involves recognition of structural features common to damaged or misfolded proteins, rather than specific features of an individual protein. The yeast HMG-CoA reductase isozyme Hmg2p undergoes stringently regulated degradation by machinery that is also required for ER quality control. The 523 residue N-terminal transmembrane domain of Hmg2p is necessary and sufficient for regulated degradation. To understand how Hmg2p undergoes regulated degradation by the ER quality control pathway, we analyzed over 300 mutants of Hmg2p. Regulated degradation of Hmg2p requires information distributed over the entire transmembrane domain. Accordingly, we refer to this determinant as a 'distributed' degron, which has functional aspects consistent with both regulation and quality control. The Hmg2p degron functions in the specific, regulated degradation of Hmg2p and can impart regulated degradation to fusion proteins. However, its recognition is based on dispersed structural features rather than primary sequence motifs. This mode of targeting has important consequences both for the prediction of degradation substrates and as a potential therapeutic strategy for targeted protein degradation using endogenous degradation pathways.  (+info)

Activation of the cholesterol pathway and Ras maturation in response to stress. (2/69)

All cells depend on sterols and isoprenoids derived from mevalonate (MVA) for growth, differentiation, and maintenance of homeostatic functions. In plants, environmental insults like heat and sunlight trigger the synthesis of isoprene, also derived from MVA, and this phenomenon has been associated with enhanced tolerance to heat. Here, we show that in human prostate adenocarcinoma PC-3M cells heat shock leads to activation of the MVA pathway. This is characterized by a dose- and time-dependent elevation in 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) activity, enhanced sterol and isoprenoid synthesis, and increased protein prenylation. Furthermore, prenylation and subsequent membrane localization of Ras, a central player in cell signaling, was rapidly induced following heat stress. These effects were dose-dependent, augmented with repeated insults, and were prevented by culturing cells in the presence of lovastatin, a competitive inhibitor of HMGR. Enhanced Ras maturation by heat stress was also associated with a heightened activation of extracellular signal-regulated kinase (ERK), a key mediator of both mitogenic and stress signaling pathways, in response to subsequent growth factor stimulation. Thus, activation of the MVA pathway may constitute an important adaptive host response to stress, and have significant implications to carcinogenesis.  (+info)

A highly ordered structure in V(D)J recombination cleavage complexes is facilitated by HMG1. (3/69)

Central to understanding the process of V(D)J recombination is appreciation of the protein-DNA complex which assembles on the recombination signal sequences (RSS). In addition to RAG1 and RAG2, the protein HMG1 is known to stimulate the efficiency of the cleavage reaction. Using electrophoretic mobility shift analysis we show that HMG1 stimulates the in vitro assembly of a stable complex with the RAG proteins on each RSS. We use UV crosslinking studies of this complex with azido-phenacyl derivatized probes to map the contact sites between the RAG proteins, HMG1 derivatives and the RSS. We find that the RAG proteins make contacts at the nonamer, heptamer and adjacent coding region. The HMG1 protein by itself appears to localize at the 3' side of the nonamer, but a cooperative complex with the RAG proteins is positioned at the 3' side of the heptamer and adjacent spacer in the 12RSS. In the complex with RAG proteins, HMG1 is positioned primarily in the spacer of the 23RSS. We suggest that bends introduced into these DNA substrates at specific locations by the RAG proteins and HMG1 may help distinguish the 12RSS from the 23RSS and may therefore play an important role in the coordinated reaction.  (+info)

A gene cluster for the mevalonate pathway from Streptomyces sp. Strain CL190. (4/69)

A biosynthetic 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1. 1.1.34), the rate-limiting enzyme of the mevalonate pathway for isopentenyl diphosphate biosynthesis, had previously been purified from Streptomyces sp. strain CL190 and its corresponding gene (hmgr) had been cloned (S. Takahashi, T. Kuzuyama, and H. Seto, J. Bacteriol. 181:1256-1263, 1999). Sequence analysis of the flanking regions of the hmgr gene revealed five new open reading frames, orfA to -E, which showed similarity to those encoding eucaryotic and archaebacterial enzymes for the mevalonate pathway. Feeding experiments with [1-(13)C]acetate demonstrated that Escherichia coli JM109 harboring the hmgr gene and these open reading frames used the mevalonate pathway under induction with isopropyl beta-D-thiogalactopyranoside. This transformant could grow in the presence of fosmidomycin, a potent and specific inhibitor of the nonmevalonate pathway, indicating that the mevalonate pathway, intrinsically absent in E. coli, is operating in the E. coli transformant. The hmgr gene and orfABCDE are thus unambiguously shown to be responsible for the mevalonate pathway and to form a gene cluster in the genome of Streptomyces sp. strain CL190.  (+info)

Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. (5/69)

The reverse tetracycline-dependent transactivator system was employed in insulinoma INS-1 cells to achieve controlled inducible expression of hepatocyte nuclear factor-1 alpha (HNF1 alpha)-P291fsinsC, the most common mutation associated with subtype 3 of maturity-onset diabetes of the young (MODY3). Nuclear localized HNF1 alpha-P291fsinsC protein exerts its dominant-negative effects by competing with endogenous HNF1 alpha for the cognate DNA-binding site. HNF1 alpha controls multiple genes implicated in pancreatic beta-cell function and notably in metabolism- secretion coupling. In addition to reduced expression of the genes encoding insulin, glucose transporter-2, L-pyruvate kinase, aldolase B and 3-hydroxy-3-methylglutaryl coenzyme A reductase, induction of HNF1 alpha-P291fsinsC also significantly inhibits expression of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) E1 subunit mRNA and protein. OGDH enzyme activity and [(14)C]pyruvate oxidation were also reduced. In contrast, the mRNA and protein levels of mitochondrial uncoupling protein-2 were dramatically increased by HNF1 alpha-P291fsinsC induction. As predicted from this altered gene expression profile, HNF1 alpha-P291fsinsC also inhibits insulin secretory responses to glucose and leucine, correlated with impaired nutrient-evoked mitochondrial ATP production and mitochondrial membrane hyperpolarization. These unprecedented results suggest the molecular mechanism of HNF1 alpha-P291fsinsC causing beta-cell dysfunction.  (+info)

Age-related changes in cholesterol metabolism in macrosomic offspring of rats with streptozotocin-induced diabetes. (6/69)

The aim of this study was to determine the impact of diabetic macrosomia on cholesterol and lipoprotein metabolism. Age-related changes in the activities of serum LCAT, hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and ACAT, the major enzymes involved in cholesterol metabolism, were determined in macrosomic offspring of streptozotocin-induced diabetic rats. Hepatic, serum, and lipoprotein cholesterol contents were also examined. Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin (40 mg/kg body weight) on day 5 of gestation. Control pregnant rats were injected with citrate buffer. At birth, macrosomic pups had higher serum, LDL-HDL(1), and HDL(2-3) cholesterol levels (P < 0.05) associated with increased LCAT activity (+57%) compared with control values. At 1 and 2 months of life, serum and lipoprotein cholesterol concentrations in macrosomic rats were similar to those of controls, whereas LCAT activity remained elevated about 1.5-fold. In addition, there was no change in hepatic cholesterol contents but hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and ACAT activities were higher in both macrosomic males and females than in their respective controls (P < 0.01). By 3 months, macrosomic rats had developed hypercholesterolemia with a rise in all lipoproteins. Enzyme activities were still increased in these mature macrosomic rats, and hepatic cholesteryl esters were higher only in macrosomic females. These data demonstrate an overproduction, combined with overutilization, of cholesterol during the phase of rapid growth in macrosomic rats. However, cholesterol oversynthesis exceeded its removal and was a major contributor to hypercholesterolemia in adult macrosomic rats. In conclusion, macrosomia was associated with alterations in cholesterol metabolism through adulthood.  (+info)

Purification of brain peroxisomes and localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase. (7/69)

At least three different subcellular compartments, including peroxisomes, are involved in cholesterol biosynthesis. Because proper CNS development depends on de novo cholesterol biosynthesis, peroxisomes must play a critical functional role in this process. Surprisingly, no information is available on the peroxisomal isoprenoid/cholesterol biosynthesis pathway in normal brain tissue or on the compartmentalization of isoprene metabolism in the CNS. This has been due mainly to the lack of a well-defined isolation procedure for brain tissue, and also to the presence of myelin in brain tissue, which results in significant contamination of subcellular fractions. As a first step in characterizing the peroxisomal isoprenoid pathway in the CNS, we have established a purification procedure to isolate peroxisomes and other cellular organelles from the brain stem, cerebellum and spinal cord of the mouse brain. We demonstrate by use of marker enzymes and immunoblotting with antibodies against organelle specific proteins that the isolated peroxisomes are highly purified and well separated from the ER and mitochondria, and are free of myelin contamination. The isolated peroxisomal fraction was purified at least 40-fold over the original homogenate. In addition, we show by analytical subcellular fractionation and immunoelectron microscopy that HMG-CoA reductase protein and activity are localized both in the ER and peroxisomes in the CNS.  (+info)

Scavenger receptor class B type I affects cholesterol homeostasis by magnifying cholesterol flux between cells and HDL. (8/69)

Results from several laboratories clearly indicate that expression of scavenger receptor class B type I (SR-BI) enhances the bidirectional flux of cholesterol between cells and lipoproteins. Because the activity of HMG-CoA reductase, the key enzyme in cholesterol biosynthesis, is regulated by cell cholesterol content, we designed experiments to investigate the effect of SR-BI expression on the activity of this enzyme and on net cellular cholesterol mass. In addition, we compared the function of SR-BI with its human homolog, CD36 and LIMPII analogous 1. Our experiments demonstrate that both receptors enhance the flux of unesterified or free cholesterol bidirectionally, down a concentration gradient. Receptor-mediated cholesterol flux can effectively modulate multiple aspects of cellular cholesterol metabolism, including the pool that regulates the activity of HMG-CoA reductase. We also found that constitutive expression of SR-BI alters the steady state level of cellular cholesterol and phospholipid when SR-BI-expressing cells are maintained in medium containing serum lipoproteins. All of these effects are proportional to the level of receptor on the cell surface. These data indicate that the level of SR-BI expression determines both the rate of free cholesterol flux and the steady state level of cellular cholesterol.  (+info)

Hydroxymethylglutaryl CoA (HMG-CoA) reductase is an enzyme that plays a crucial role in the synthesis of cholesterol in the body. It is found in the endoplasmic reticulum of cells and catalyzes the conversion of HMG-CoA to mevalonic acid, which is a key rate-limiting step in the cholesterol biosynthetic pathway.

The reaction catalyzed by HMG-CoA reductase is as follows:

HMG-CoA + 2 NADPH + 2 H+ → mevalonic acid + CoA + 2 NADP+

This enzyme is the target of statin drugs, which are commonly prescribed to lower cholesterol levels in the treatment of cardiovascular diseases. Statins work by inhibiting HMG-CoA reductase, thereby reducing the production of cholesterol in the body.

Hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors, also known as statins, are a class of cholesterol-lowering medications. They work by inhibiting the enzyme HMG-CoA reductase, which plays a central role in the production of cholesterol in the liver. By blocking this enzyme, the liver is stimulated to take up more low-density lipoprotein (LDL) cholesterol from the bloodstream, leading to a decrease in LDL cholesterol levels and a reduced risk of cardiovascular disease.

Examples of HMG-CoA reductase inhibitors include atorvastatin, simvastatin, pravastatin, rosuvastatin, and fluvastatin. These medications are commonly prescribed to individuals with high cholesterol levels, particularly those who are at risk for or have established cardiovascular disease.

It's important to note that while HMG-CoA reductase inhibitors can be effective in reducing LDL cholesterol levels and the risk of cardiovascular events, they should be used as part of a comprehensive approach to managing high cholesterol, which may also include lifestyle modifications such as dietary changes, exercise, and weight management.

Lovastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. It works by inhibiting HMG-CoA reductase, an enzyme that plays a crucial role in the production of cholesterol in the body. By reducing the amount of cholesterol produced in the liver, lovastatin helps to decrease the levels of low-density lipoprotein (LDL) or "bad" cholesterol and triglycerides in the blood, while increasing the levels of high-density lipoprotein (HDL) or "good" cholesterol.

Lovastatin is available in both immediate-release and extended-release forms, and it is typically taken orally once or twice a day, depending on the dosage prescribed by a healthcare provider. Common side effects of lovastatin include headache, nausea, diarrhea, and muscle pain, although more serious side effects such as liver damage and muscle weakness are possible, particularly at higher doses.

It is important to note that lovastatin should not be taken by individuals with active liver disease or by those who are pregnant or breastfeeding. Additionally, it may interact with certain other medications, so it is essential to inform a healthcare provider of all medications being taken before starting lovastatin therapy.

Mevalonic acid is not a term that is typically used in medical definitions, but rather it is a biochemical concept. Mevalonic acid is a key intermediate in the biosynthetic pathway for cholesterol and other isoprenoids. It is formed from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) by the enzyme HMG-CoA reductase, which is the target of cholesterol-lowering drugs known as statins.

In a medical context, mevalonic acid may be mentioned in relation to certain rare genetic disorders, such as mevalonate kinase deficiency (MKD) or hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), which are caused by mutations in the gene encoding mevalonate kinase, an enzyme involved in the metabolism of mevalonic acid. These conditions can cause recurrent fevers, rashes, joint pain, and other symptoms.

Simvastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. It works by inhibiting HMG-CoA reductase, an enzyme that plays a key role in the production of cholesterol in the body. By reducing the amount of cholesterol produced by the liver, simvastatin helps to lower the levels of LDL (low-density lipoprotein) or "bad" cholesterol and triglycerides in the blood, while increasing HDL (high-density lipoprotein) or "good" cholesterol.

Simvastatin is used to prevent cardiovascular diseases such as heart attacks and strokes in individuals with high cholesterol levels, particularly those who have other risk factors such as diabetes, hypertension, or a history of smoking. It is available in various strengths and forms, and is typically taken orally once a day, usually in the evening.

Like all medications, simvastatin can cause side effects, ranging from mild to severe. Common side effects include headache, muscle pain, and gastrointestinal symptoms such as nausea, constipation, or diarrhea. Rare but serious side effects may include liver damage, muscle breakdown (rhabdomyolysis), and increased risk of diabetes. It is important to follow the dosage instructions carefully and inform your healthcare provider of any pre-existing medical conditions or medications you are taking, as these may affect the safety and efficacy of simvastatin.

Heptanoic acid, also known as enanthic acid, is an organic compound with the formula CH3(CH2)5COOH. It is a fatty acid with a 7-carbon chain, and it is a colorless liquid that is slightly soluble in water and fully miscible with ether and ethanol.

Heptanoic acid is not typically considered a medical term, as it is not a substance that is directly related to human health or disease. However, like other fatty acids, heptanoic acid can be metabolized in the body for energy and used in various physiological processes. Abnormal levels of certain fatty acids, including heptanoic acid, may be associated with various medical conditions, such as metabolic disorders or genetic diseases that affect fatty acid metabolism.

It's important to note that Heptanoic Acid is not a common term in medicine, and it's more related to chemistry and biochemistry fields.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

"Pyrroles" is not a medical term in and of itself, but "pyrrole" is an organic compound that contains one nitrogen atom and four carbon atoms in a ring structure. In the context of human health, "pyrroles" often refers to a group of compounds called pyrrol derivatives or pyrrole metabolites.

In clinical settings, "pyrroles" is sometimes used to refer to a urinary metabolite called "pyrrole-protein conjugate," which contains a pyrrole ring and is excreted in the urine. Elevated levels of this compound have been associated with certain psychiatric and behavioral disorders, such as schizophrenia and mood disorders. However, the relationship between pyrroles and these conditions is not well understood, and more research is needed to establish a clear medical definition or diagnostic criteria for "pyrrole disorder" or "pyroluria."

Anticholesteremic agents are a class of medications that are used to lower the levels of cholesterol and other fats called lipids in the blood. These medications work by reducing the production of cholesterol in the body, increasing the removal of cholesterol from the bloodstream, or preventing the absorption of cholesterol in the digestive tract.

There are several types of anticholesteremic agents, including:

1. Statins: These medications work by blocking a liver enzyme that is necessary for the production of cholesterol. Examples of statins include atorvastatin, simvastatin, and rosuvastatin.
2. Bile acid sequestrants: These medications bind to bile acids in the digestive tract and prevent them from being reabsorbed into the bloodstream. This causes the liver to produce more bile acids, which in turn lowers cholesterol levels. Examples of bile acid sequestrants include cholestyramine and colesevelam.
3. Nicotinic acid: Also known as niacin, this medication works by reducing the production of very low-density lipoproteins (VLDL) in the liver, which are a major source of bad cholesterol.
4. Fibrates: These medications work by increasing the removal of cholesterol from the bloodstream and reducing the production of VLDL in the liver. Examples of fibrates include gemfibrozil and fenofibrate.
5. PCSK9 inhibitors: These are a newer class of medications that work by blocking the action of a protein called PCSK9, which helps regulate the amount of cholesterol in the blood. By blocking PCSK9, these medications increase the number of LDL receptors on the surface of liver cells, which leads to increased removal of LDL from the bloodstream.

Anticholesteremic agents are often prescribed for people who have high cholesterol levels and are at risk for heart disease or stroke. By lowering cholesterol levels, these medications can help reduce the risk of heart attack, stroke, and other cardiovascular events.

Glutarates are compounds that contain a glutaric acid group. Glutaric acid is a carboxylic acid with a five-carbon chain and two carboxyl groups at the 1st and 5th carbon positions. Glutarates can be found in various substances, including certain foods and medications.

In a medical context, glutarates are sometimes used as ingredients in pharmaceutical products. For example, sodium phenylbutyrate, which is a salt of phenylbutyric acid and butyric acid, contains a glutaric acid group and is used as a medication to treat urea cycle disorders.

Glutarates can also be found in some metabolic pathways in the body, where they play a role in energy production and other biochemical processes. However, abnormal accumulation of glutaric acid or its derivatives can lead to certain medical conditions, such as glutaric acidemia type I, which is an inherited disorder of metabolism that can cause neurological symptoms and other health problems.

Alcohol oxidoreductases are a class of enzymes that catalyze the oxidation of alcohols to aldehydes or ketones, while reducing nicotinamide adenine dinucleotide (NAD+) to NADH. These enzymes play an important role in the metabolism of alcohols and other organic compounds in living organisms.

The most well-known example of an alcohol oxidoreductase is alcohol dehydrogenase (ADH), which is responsible for the oxidation of ethanol to acetaldehyde in the liver during the metabolism of alcoholic beverages. Other examples include aldehyde dehydrogenases (ALDH) and sorbitol dehydrogenase (SDH).

These enzymes are important targets for the development of drugs used to treat alcohol use disorder, as inhibiting their activity can help to reduce the rate of ethanol metabolism and the severity of its effects on the body.

Nitrate reductases are a group of enzymes that catalyze the reduction of nitrate (NO3-) to nitrite (NO2-). This process is an essential part of the nitrogen cycle, where nitrate serves as a terminal electron acceptor in anaerobic respiration for many bacteria and archaea. In plants, this enzyme plays a crucial role in nitrogen assimilation by reducing nitrate to ammonium (NH4+), which can then be incorporated into organic compounds. Nitrate reductases require various cofactors, such as molybdenum, heme, and/or FAD, for their activity. There are three main types of nitrate reductases: membrane-bound (which use menaquinol as an electron donor), cytoplasmic (which use NADH or NADPH as an electron donor), and assimilatory (which also use NADH or NADPH as an electron donor).

Coenzyme A, often abbreviated as CoA or sometimes holo-CoA, is a coenzyme that plays a crucial role in several important chemical reactions in the body, particularly in the metabolism of carbohydrates, fatty acids, and amino acids. It is composed of a pantothenic acid (vitamin B5) derivative called pantothenate, an adenosine diphosphate (ADP) molecule, and a terminal phosphate group.

Coenzyme A functions as a carrier molecule for acetyl groups, which are formed during the breakdown of carbohydrates, fatty acids, and some amino acids. The acetyl group is attached to the sulfur atom in CoA, forming acetyl-CoA, which can then be used as a building block for various biochemical pathways, such as the citric acid cycle (Krebs cycle) and fatty acid synthesis.

In summary, Coenzyme A is a vital coenzyme that helps facilitate essential metabolic processes by carrying and transferring acetyl groups in the body.

Ferredoxin-NADP Reductase (FDNR) is an enzyme that catalyzes the electron transfer from ferredoxin to NADP+, reducing it to NADPH. This reaction plays a crucial role in several metabolic pathways, including photosynthesis and nitrogen fixation.

In photosynthesis, FDNR is located in the stroma of chloroplasts and receives electrons from ferredoxin, which is reduced by photosystem I. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the Calvin cycle for carbon fixation.

In nitrogen fixation, FDNR is found in the nitrogen-fixing bacteria and receives electrons from ferredoxin, which is reduced by nitrogenase. The enzyme then transfers these electrons to NADP+, generating NADPH, which is used in the reduction of nitrogen gas (N2) to ammonia (NH3).

FDNR is a flavoprotein that contains a FAD cofactor and an iron-sulfur cluster. The enzyme catalyzes the electron transfer through a series of conformational changes that bring ferredoxin and NADP+ in close proximity, allowing for efficient electron transfer.

Cholestyramine resin is a medication used to treat high levels of cholesterol in the blood. It is a type of drug called a bile acid sequestrant, which works by binding to bile acids in the digestive system and preventing them from being reabsorbed into the body. This leads to an increased removal of cholesterol from the body, which can help lower the levels of cholesterol in the blood.

Cholestyramine resin is available as a powder that is mixed with water or other fluids and taken by mouth. It may be used alone or in combination with other medications to treat high cholesterol. In addition to its use for lowering cholesterol, cholestyramine resin may also be used to treat itching associated with partial biliary obstruction (blockage of the bile ducts) and to reduce the absorption of certain drugs, such as digitalis and thyroid hormones.

It is important to follow the instructions of a healthcare provider when taking cholestyramine resin, as the medication can interfere with the absorption of other medications and nutrients. It may also cause gastrointestinal side effects, such as constipation, bloating, and gas.

Ribonucleotide Reductases (RNRs) are enzymes that play a crucial role in DNA synthesis and repair. They catalyze the conversion of ribonucleotides to deoxyribonucleotides, which are the building blocks of DNA. This process involves the reduction of the 2'-hydroxyl group of the ribose sugar to a hydrogen, resulting in the formation of deoxyribose.

RNRs are highly regulated and exist in various forms across different species. They are divided into three classes (I, II, and III) based on their structure, mechanism, and cofactor requirements. Class I RNRs are further divided into two subclasses (Ia and Ib), which differ in their active site architecture and regulation.

Class Ia RNRs, found in eukaryotes and some bacteria, contain a stable tyrosyl radical that acts as the catalytic center for hydrogen abstraction. Class Ib RNRs, found in many bacteria, use a pair of iron centers to perform the same function. Class II RNRs are present in some bacteria and archaea and utilize adenosine triphosphate (ATP) as a cofactor for reduction. Class III RNRs, found in anaerobic bacteria and archaea, use a unique mechanism involving a radical S-adenosylmethionine (SAM) cofactor to facilitate the reduction reaction.

RNRs are essential for DNA replication and repair, and their dysregulation has been linked to various diseases, including cancer and neurodegenerative disorders. Therefore, understanding the structure, function, and regulation of RNRs is of great interest in biochemistry, molecular biology, and medicine.

Pravastatin is a medication that belongs to a class of drugs called statins, which are used to lower cholesterol levels in the blood. Specifically, pravastatin works by inhibiting HMG-CoA reductase, an enzyme involved in the production of cholesterol in the liver. By reducing the amount of cholesterol produced, pravastatin helps to decrease the levels of low-density lipoprotein (LDL) or "bad" cholesterol and increase the levels of high-density lipoprotein (HDL) or "good" cholesterol in the blood.

Pravastatin is used to prevent cardiovascular diseases such as heart attacks and strokes, particularly in people with high cholesterol levels, diabetes, or other risk factors for heart disease. It is available in tablet form and is typically taken once daily. As with any medication, pravastatin should be taken under the supervision of a healthcare provider, who will determine the appropriate dosage based on the individual's medical history and current health status.

Hydroxycholesterols are a type of sterol that is formed in the body when cholesterol, a steroid alcohol, undergoes hydroxylation. This means that one or more hydroxyl groups (-OH) are added to the cholesterol molecule. There are several different types of hydroxycholesterols, including 24-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol, among others. These compounds play important roles in various physiological processes, such as regulating cholesterol metabolism and contributing to the formation of bile acids. They have also been studied for their potential involvement in atherosclerosis, Alzheimer's disease, and other health conditions.

Sterols are a type of organic compound that is derived from steroids and found in the cell membranes of organisms. In animals, including humans, cholesterol is the most well-known sterol. Sterols help to maintain the structural integrity and fluidity of cell membranes, and they also play important roles as precursors for the synthesis of various hormones and other signaling molecules. Phytosterols are plant sterols that have been shown to have cholesterol-lowering effects in humans when consumed in sufficient amounts.

Polyisoprenyl phosphates are a type of organic compound that play a crucial role in the biosynthesis of various essential biomolecules in cells. They are formed by the addition of isoprene units, which are five-carbon molecules with a branched structure, to a phosphate group.

In medical terms, polyisoprenyl phosphates are primarily known for their role as intermediates in the biosynthesis of dolichols and farnesylated proteins. Dolichols are long-chain isoprenoids that function as lipid carriers in the synthesis of glycoproteins, which are proteins that contain carbohydrate groups attached to them. Farnesylated proteins, on the other hand, are proteins that have been modified with a farnesyl group, which is a 15-carbon isoprenoid. This modification plays a role in the localization and function of certain proteins within the cell.

Abnormalities in the biosynthesis of polyisoprenyl phosphates and their downstream products have been implicated in various diseases, including cancer, neurological disorders, and genetic syndromes. Therefore, understanding the biology and regulation of these compounds is an active area of research with potential therapeutic implications.

Nitrite reductases are a group of enzymes that catalyze the reduction of nitrite (NO2-) to nitric oxide (NO). This reaction is an important part of the nitrogen cycle, particularly in denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes. Nitrite reductases can be classified into two main types based on their metal co-factors: copper-containing nitrite reductases (CuNiRs) and cytochrome cd1 nitrite reductases. CuNiRs are typically found in bacteria and fungi, while cytochrome cd1 nitrite reductases are primarily found in bacteria. These enzymes play a crucial role in the global nitrogen cycle and have potential implications for environmental and medical research.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Glutathione reductase (GR) is an enzyme that plays a crucial role in maintaining the cellular redox state. The primary function of GR is to reduce oxidized glutathione (GSSG) to its reduced form (GSH), which is an essential intracellular antioxidant. This enzyme utilizes nicotinamide adenine dinucleotide phosphate (NADPH) as a reducing agent in the reaction, converting it to NADP+. The medical definition of Glutathione Reductase is:

Glutathione reductase (GSR; EC 1.8.1.7) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) in the presence of NADPH as a cofactor. This enzyme is essential for maintaining the cellular redox balance and protecting cells from oxidative stress by regenerating the active form of glutathione, a vital antioxidant and detoxifying agent.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Flavin Mononucleotide (FMN) Reductase is an enzyme that catalyzes the reduction of FMN to FMNH2 using NADH or NADPH as an electron donor. This enzyme plays a crucial role in the electron transport chain and is involved in various redox reactions within the cell. It is found in many organisms, including bacteria, fungi, plants, and animals. In humans, FMN Reductase is encoded by the RIBFLR gene and is primarily located in the mitochondria. Defects in this enzyme can lead to various metabolic disorders.

Thioredoxin-disulfide reductase (Txnrd, TrxR) is an enzyme that belongs to the pyridine nucleotide-disulfide oxidoreductase family. It plays a crucial role in maintaining the intracellular redox balance by reducing disulfide bonds in proteins and keeping them in their reduced state. This enzyme utilizes NADPH as an electron donor to reduce thioredoxin (Trx), which then transfers its electrons to various target proteins, thereby regulating their activity, protein folding, and antioxidant defense mechanisms.

Txnrd is essential for several cellular processes, including DNA synthesis, gene expression, signal transduction, and protection against oxidative stress. Dysregulation of Txnrd has been implicated in various pathological conditions, such as cancer, neurodegenerative diseases, and inflammatory disorders. Therefore, understanding the function and regulation of this enzyme is of great interest for developing novel therapeutic strategies.

NADPH-ferrihemoprotein reductase, also known as diaphorase or NO synthase reductase, is an enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing cofactor. This reaction plays a crucial role in various biological processes such as the detoxification of certain compounds and the regulation of cellular signaling pathways.

The systematic name for this enzyme is NADPH:ferrihemoprotein oxidoreductase, and it belongs to the family of oxidoreductases that use NADH or NADPH as electron donors. The reaction catalyzed by this enzyme can be represented as follows:

NADPH + H+ + ferrihemoprotein ↔ NADP+ + ferrohemoprotein

In this reaction, the ferric (FeIII) form of hemoproteins is reduced to its ferrous (FeII) form by accepting electrons from NADPH. This enzyme is widely distributed in various tissues and organisms, including bacteria, fungi, plants, and animals. It has been identified as a component of several multi-enzyme complexes involved in different metabolic pathways, such as nitric oxide synthase (NOS) and cytochrome P450 reductase.

In summary, NADPH-ferrihemoprotein reductase is an essential enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing agent, playing a critical role in various biological processes and metabolic pathways.

Dolichol is a type of lipid molecule that is involved in the process of protein glycosylation within the endoplasmic reticulum of eukaryotic cells. Glycosylation is the attachment of sugar molecules to proteins, and it plays a crucial role in various biological processes such as protein folding, trafficking, and cell-cell recognition.

Dolichols are long-chain polyisoprenoid alcohols that serve as carriers for the sugars during glycosylation. They consist of a hydrophobic tail made up of many isoprene units and a hydrophilic head group. The dolichol molecule is first activated by the addition of a diphosphate group to its terminal end, forming dolichyl pyrophosphate.

The sugars that will be attached to the protein are then transferred from their nucleotide sugar donors onto the dolichyl pyrophosphate carrier, creating a dolichol-linked oligosaccharide. This oligosaccharide is then transferred en bloc to the target protein in a process called "oligosaccharyltransferase" (OST) reaction.

Defects in dolichol biosynthesis or function can lead to various genetic disorders, such as congenital disorders of glycosylation (CDG), which are characterized by abnormal protein glycosylation and a wide range of clinical manifestations, including developmental delay, neurological impairment, and multi-systemic involvement.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Autocrine motility factor (AMF) receptors are cell surface proteins that bind to autocrine motility factor, a cytokine produced and released by certain types of cancer cells. The binding of AMF to its receptor activates signaling pathways within the same cell that produces it, leading to changes in cell behavior such as increased motility and invasiveness. This process is known as autocrine signaling and plays a role in tumor progression and metastasis.

The AMF receptor has been identified as the product of the gene for the insulin-like growth factor I receptor (IGF1R), which is a tyrosine kinase receptor that regulates cell growth, differentiation, and survival. The activation of the IGF1R by AMF leads to the activation of downstream signaling pathways such as the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt pathways, which promote cell motility and invasion.

In summary, Autocrine Motility Factor (AMF) receptors are a type of cell surface proteins that bind to AMF, leading to the activation of signaling pathways within the same cell that produces it, promoting changes in cell behavior such as increased motility and invasiveness, which play a role in tumor progression and metastasis.

NADP Transhydrogenases are a class of enzymes that catalyze the interconversion of nicotinamide adenine dinucleotide phosphate (NADPH) and nicotinamide adenine dinucleotide (NADH), using either protons or electrons as the reducing equivalents. These enzymes play a crucial role in maintaining the redox balance within cells by facilitating the transfer of reducing equivalents between different metabolic pathways.

There are two types of NADP Transhydrogenases: soluble and membrane-bound. The soluble type, also known as NAD(P)+ transhydrogenase or THI (transhydrogenase inner), is found in the mitochondrial matrix and catalyzes the reaction:

NADPH + NAD+ ⇌ NADP+ + NADH

This enzyme uses the proton motive force generated by the electron transport chain to drive the reduction of NADP+ with NADH.

The membrane-bound type, also known as NAD(P) transhydrogenase or THI (transhydrogenase integral), is located in the inner mitochondrial membrane and catalyzes the reverse reaction:

NADP+ + NADH ⇌ NADPH + NAD+

This enzyme uses the energy from reduced nicotinamide adenine dinucleotide (NADH) to reduce nicotinamide adenine dinucleotide phosphate (NADP+), thus generating NADPH. This reaction is driven by the proton motive force generated by the electron transport chain, and it plays a crucial role in maintaining the redox balance within cells.

In summary, NADP Transhydrogenases are enzymes that facilitate the interconversion of NADPH and NADH, using either protons or electrons as reducing equivalents. They play an essential role in maintaining the redox balance within cells by facilitating the transfer of reducing equivalents between different metabolic pathways.

Anhydrides are chemical compounds that form when a single molecule of water is removed from an acid, resulting in the formation of a new compound. The term "anhydride" comes from the Greek words "an," meaning without, and "hydor," meaning water.

In organic chemistry, anhydrides are commonly formed by the removal of water from a carboxylic acid. For example, when acetic acid (CH3COOH) loses a molecule of water, it forms acetic anhydride (CH3CO)2O. Acetic anhydride is a reactive compound that can be used to introduce an acetyl group (-COCH3) into other organic compounds.

Inorganic anhydrides are also important in chemistry and include compounds such as sulfur trioxide (SO3), which is an anhydride of sulfuric acid (H2SO4). Sulfur trioxide can react with water to form sulfuric acid, making it a key intermediate in the production of this important industrial chemical.

It's worth noting that some anhydrides can be hazardous and may require special handling and safety precautions.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

Cytochrome reductases are a group of enzymes that play a crucial role in the electron transport chain, a process that occurs in the mitochondria of cells and is responsible for generating energy in the form of ATP (adenosine triphosphate). Specifically, cytochrome reductases are responsible for transferring electrons from one component of the electron transport chain to another, specifically to cytochromes.

There are several types of cytochrome reductases, including NADH dehydrogenase (also known as Complex I), succinate dehydrogenase (also known as Complex II), and ubiquinone-cytochrome c reductase (also known as Complex III). These enzymes help to facilitate the flow of electrons through the electron transport chain, which is essential for the production of ATP and the maintenance of cellular homeostasis.

Defects in cytochrome reductases can lead to a variety of mitochondrial diseases, which can affect multiple organ systems and may be associated with symptoms such as muscle weakness, developmental delays, and cardiac dysfunction.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Hydroxymethylglutaryl-CoA Synthase (HMG-CoA Synthase) is a key enzyme in the cholesterol biosynthesis pathway. It catalyzes the reaction of acetoacetyl-CoA and acetyl-CoA to form HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A), which is a crucial intermediate in the synthesis of cholesterol, ketone bodies, and other isoprenoids.

There are two isoforms of this enzyme: HMG-CoA synthase 1 (HMGCS1) and HMG-CoA synthase 2 (HMGCS2). HMGCS1 is primarily expressed in the liver and is involved in cholesterol synthesis, while HMGCS2 is mainly found in the brain, kidney, and liver, where it plays a role in ketone body synthesis during periods of fasting or low-carbohydrate diets.

Defects in HMG-CoA synthase can lead to metabolic disorders, such as hypocholesterolemia (low cholesterol levels) and hyperketonemia (elevated ketone bodies). Additionally, inhibitors of HMG-CoA synthase are used as cholesterol-lowering drugs, known as statins, to treat conditions like hyperlipidemia and prevent cardiovascular diseases.

Protein prenylation is a post-translational modification process in which a lipophilic group, such as a farnesyl or geranylgeranyl moiety, is covalently attached to specific cysteine residues near the carboxy-terminus of proteins. This modification plays a crucial role in membrane targeting and protein-protein interactions, particularly for proteins involved in signal transduction pathways, such as Ras family GTPases. The enzymes responsible for prenylation are called protein prenyltransferases, and their dysfunction has been implicated in various diseases, including cancer and neurodegenerative disorders.

Monounsaturated fatty acids (MUFAs) are a type of fatty acid that contains one double bond in its chemical structure. The presence of the double bond means that there is one less hydrogen atom, hence the term "unsaturated." In monounsaturated fats, the double bond occurs between the second and third carbon atoms in the chain, which makes them "mono"unsaturated.

MUFAs are considered to be a healthy type of fat because they can help reduce levels of harmful cholesterol (low-density lipoprotein or LDL) while maintaining levels of beneficial cholesterol (high-density lipoprotein or HDL). They have also been associated with a reduced risk of heart disease and improved insulin sensitivity.

Common sources of monounsaturated fats include olive oil, canola oil, avocados, nuts, and seeds. It is recommended to consume MUFAs as part of a balanced diet that includes a variety of nutrient-dense foods.

Tetrahydrofolate dehydrogenase (EC 1.5.1.20) is an enzyme involved in folate metabolism. The enzyme catalyzes the oxidation of tetrahydrofolate (THF) to dihydrofolate (DHF), while simultaneously reducing NADP+ to NADPH.

The reaction can be summarized as follows:

THF + NADP+ -> DHF + NADPH + H+

This enzyme plays a crucial role in the synthesis of purines and thymidylate, which are essential components of DNA and RNA. Therefore, any defects or deficiencies in tetrahydrofolate dehydrogenase can lead to various medical conditions, including megaloblastic anemia and neural tube defects during fetal development.

Dietary cholesterol is a type of cholesterol that comes from the foods we eat. It is present in animal-derived products such as meat, poultry, dairy products, and eggs. While dietary cholesterol can contribute to an increase in blood cholesterol levels for some people, it's important to note that saturated and trans fats have a more significant impact on blood cholesterol levels than dietary cholesterol itself.

The American Heart Association recommends limiting dietary cholesterol intake to less than 300 milligrams per day for most people, and less than 200 milligrams per day for those with a history of heart disease or high cholesterol levels. However, individual responses to dietary cholesterol can vary, so it's essential to monitor blood cholesterol levels and adjust dietary habits accordingly.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

NADH, NADPH oxidoreductases are a class of enzymes that catalyze the redox reaction between NADH or NADPH and various electron acceptors. These enzymes play a crucial role in cellular metabolism by transferring electrons from NADH or NADPH to other molecules, which is essential for many biochemical reactions.

NADH (nicotinamide adenine dinucleotide hydrogen) and NADPH (nicotinamide adenine dinucleotide phosphate hydrogen) are coenzymes that act as electron carriers in redox reactions. They consist of a nicotinamide ring, which undergoes reduction or oxidation by accepting or donating electrons and a proton (H+).

NADH, NADPH oxidoreductases are classified based on their structure and mechanism of action. Some examples include:

1. Dehydrogenases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing an organic substrate. Examples include lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase.
2. Oxidases: These enzymes catalyze the oxidation of NADH or NADPH to NAD+ or NADP+ while reducing molecular oxygen (O2) to water (H2O). Examples include NADH oxidase and NADPH oxidase.
3. Reductases: These enzymes catalyze the reduction of various electron acceptors using NADH or NADPH as a source of electrons. Examples include glutathione reductase, thioredoxin reductase, and nitrate reductase.

Overall, NADH, NADPH oxidoreductases are essential for maintaining the redox balance in cells and play a critical role in various metabolic pathways, including energy production, detoxification, and biosynthesis.

NAD (Nicotinamide Adenine Dinucleotide) is a coenzyme found in all living cells. It plays an essential role in cellular metabolism, particularly in redox reactions, where it acts as an electron carrier. NAD exists in two forms: NAD+, which accepts electrons and becomes reduced to NADH. This pairing of NAD+/NADH is involved in many fundamental biological processes such as generating energy in the form of ATP during cellular respiration, and serving as a critical cofactor for various enzymes that regulate cellular functions like DNA repair, gene expression, and cell death.

Maintaining optimal levels of NAD+/NADH is crucial for overall health and longevity, as it declines with age and in certain disease states. Therefore, strategies to boost NAD+ levels are being actively researched for their potential therapeutic benefits in various conditions such as aging, neurodegenerative disorders, and metabolic diseases.

Cholesterol 7-alpha-hydroxylase (CYP7A1) is an enzyme that plays a crucial role in the regulation of cholesterol homeostasis in the body. It is located in the endoplasmic reticulum of hepatic cells and is responsible for the rate-limiting step in the synthesis of bile acids from cholesterol.

The enzyme catalyzes the conversion of cholesterol to 7α-hydroxycholesterol, which is then further metabolized to form primary bile acids, including cholic acid and chenodeoxycholic acid. These bile acids are essential for the digestion and absorption of fats and fat-soluble vitamins in the small intestine.

Additionally, CYP7A1 is also involved in the regulation of cholesterol levels in the body by providing negative feedback to the synthesis of cholesterol in the liver. When cholesterol levels are high, the activity of CYP7A1 increases, leading to an increase in bile acid synthesis and a decrease in cholesterol levels. Conversely, when cholesterol levels are low, the activity of CYP7A1 decreases, reducing bile acid synthesis and allowing cholesterol levels to rise.

Abnormalities in CYP7A1 function have been implicated in several diseases, including gallstones, liver disease, and cardiovascular disease.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Sitosterols are a type of plant sterol or phytosterol that are structurally similar to cholesterol, a steroid lipid found in animals. They are found in small amounts in human diets, primarily in vegetable oils, nuts, seeds, and avocados. Sitosterols are not synthesized by the human body but can be absorbed from the diet and have been shown to lower cholesterol levels in the blood when consumed in sufficient quantities. This is because sitosterols compete with cholesterol for absorption in the digestive tract, reducing the amount of cholesterol that enters the bloodstream. Some margarines and other foods are fortified with sitosterols or other phytosterols to help reduce cholesterol levels in people with high cholesterol.

NADP (Nicotinamide Adenine Dinucleotide Phosphate) is a coenzyme that plays a crucial role as an electron carrier in various redox reactions in the human body. It exists in two forms: NADP+, which functions as an oxidizing agent and accepts electrons, and NADPH, which serves as a reducing agent and donates electrons.

NADPH is particularly important in anabolic processes, such as lipid and nucleotide synthesis, where it provides the necessary reducing equivalents to drive these reactions forward. It also plays a critical role in maintaining the cellular redox balance by participating in antioxidant defense mechanisms that neutralize harmful reactive oxygen species (ROS).

In addition, NADP is involved in various metabolic pathways, including the pentose phosphate pathway and the Calvin cycle in photosynthesis. Overall, NADP and its reduced form, NADPH, are essential molecules for maintaining proper cellular function and energy homeostasis.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Sterol Regulatory Element Binding Protein 2 (SREBP-2) is a transcription factor that plays a crucial role in the regulation of cholesterol homeostasis in the body. It is a member of the SREBP family, which also includes SREBP-1a and SREBP-1c, and is encoded by the SREBF2 gene.

SREBP-2 is primarily involved in the regulation of genes that are necessary for cholesterol synthesis and uptake. When cholesterol levels in the body are low, SREBP-2 gets activated and moves from the endoplasmic reticulum to the Golgi apparatus, where it undergoes proteolytic cleavage to release its active form. The active SREBP-2 then translocates to the nucleus and binds to sterol regulatory elements (SREs) in the promoter regions of target genes, thereby inducing their transcription.

The target genes of SREBP-2 include HMG-CoA reductase, which is a rate-limiting enzyme in cholesterol synthesis, and LDL receptor, which is responsible for the uptake of low-density lipoprotein (LDL) or "bad" cholesterol from the bloodstream. By upregulating the expression of these genes, SREBP-2 helps to increase cholesterol levels in the body and maintain cholesterol homeostasis.

Dysregulation of SREBP-2 has been implicated in various diseases, including atherosclerosis, cardiovascular disease, and cancer.

Oxidoreductases acting on CH-CH group donors are a class of enzymes within the larger group of oxidoreductases, which are responsible for catalyzing oxidation-reduction reactions. Specifically, this subclass of enzymes acts upon donors containing a carbon-carbon (CH-CH) bond, where one atom or group of atoms is oxidized and another is reduced during the reaction process. These enzymes play crucial roles in various metabolic pathways, including the breakdown and synthesis of carbohydrates, lipids, and amino acids.

The reactions catalyzed by these enzymes involve the transfer of electrons and hydrogen atoms between the donor and an acceptor molecule. This process often results in the formation or cleavage of carbon-carbon bonds, making them essential for numerous biological processes. The systematic name for this class of enzymes is typically structured as "donor:acceptor oxidoreductase," where donor and acceptor represent the molecules involved in the electron transfer process.

Examples of enzymes that fall under this category include:

1. Aldehyde dehydrogenases (EC 1.2.1.3): These enzymes catalyze the oxidation of aldehydes to carboxylic acids, using NAD+ as an electron acceptor.
2. Dihydrodiol dehydrogenase (EC 1.3.1.14): This enzyme is responsible for the oxidation of dihydrodiols to catechols in the biodegradation of aromatic compounds.
3. Succinate dehydrogenase (EC 1.3.5.1): A key enzyme in the citric acid cycle, succinate dehydrogenase catalyzes the oxidation of succinate to fumarate and reduces FAD to FADH2.
4. Xylose reductase (EC 1.1.1.307): This enzyme is involved in the metabolism of pentoses, where it reduces xylose to xylitol using NADPH as a cofactor.

Naphthalene is not typically referred to as a medical term, but it is a chemical compound with the formula C10H8. It is a white crystalline solid that is aromatic and volatile, and it is known for its distinctive mothball smell. In a medical context, naphthalene is primarily relevant as a potential toxin or irritant.

Naphthalene can be found in some chemical products, such as mothballs and toilet deodorant blocks. Exposure to high levels of naphthalene can cause symptoms such as nausea, vomiting, diarrhea, and headaches. Long-term exposure has been linked to anemia and damage to the liver and nervous system.

In addition, naphthalene is a known environmental pollutant that can be found in air, water, and soil. It is produced by the combustion of fossil fuels and is also released from some industrial processes. Naphthalene has been shown to have toxic effects on aquatic life and may pose a risk to human health if exposure levels are high enough.

Methionine sulfoxide reductases (MSRs) are a group of enzymes that catalyze the reduction of methionine sulfoxides back to methionine in proteins. Methionine residues in proteins can be oxidized by reactive oxygen species (ROS) or other oxidizing agents, leading to the formation of methionine sulfoxide. This modification can affect protein function and stability. MSRs play a crucial role in protecting proteins from oxidative damage and maintaining their proper function.

There are two types of MSRs, designated as MSRA and MSRB. MSRA reduces methionine-S-sulfoxides, while MSRB reduces methionine-R-sulfoxides. Both enzymes require the cofactor thioredoxin to reduce the methionine sulfoxide back to methionine. The activity of MSRs is important in various biological processes, including protein folding, stress response, and aging. Defects in MSRs have been implicated in several diseases, such as Alzheimer's disease, Parkinson's disease, and cancer.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Microsomes are subcellular membranous vesicles that are obtained as a byproduct during the preparation of cellular homogenates. They are not naturally occurring structures within the cell, but rather formed due to fragmentation of the endoplasmic reticulum (ER) during laboratory procedures. Microsomes are widely used in various research and scientific studies, particularly in the fields of biochemistry and pharmacology.

Microsomes are rich in enzymes, including the cytochrome P450 system, which is involved in the metabolism of drugs, toxins, and other xenobiotics. These enzymes play a crucial role in detoxifying foreign substances and eliminating them from the body. As such, microsomes serve as an essential tool for studying drug metabolism, toxicity, and interactions, allowing researchers to better understand and predict the effects of various compounds on living organisms.

Bile acids and salts are naturally occurring steroidal compounds that play a crucial role in the digestion and absorption of lipids (fats) in the body. They are produced in the liver from cholesterol and then conjugated with glycine or taurine to form bile acids, which are subsequently converted into bile salts by the addition of a sodium or potassium ion.

Bile acids and salts are stored in the gallbladder and released into the small intestine during digestion, where they help emulsify fats, allowing them to be broken down into smaller molecules that can be absorbed by the body. They also aid in the elimination of waste products from the liver and help regulate cholesterol metabolism.

Abnormalities in bile acid synthesis or transport can lead to various medical conditions, such as cholestatic liver diseases, gallstones, and diarrhea. Therefore, understanding the role of bile acids and salts in the body is essential for diagnosing and treating these disorders.

LDL receptors (Low-Density Lipoprotein Receptors) are cell surface receptors that play a crucial role in the regulation of cholesterol homeostasis within the body. They are responsible for recognizing and binding to LDL particles, also known as "bad cholesterol," which are then internalized by the cell through endocytosis.

Once inside the cell, the LDL particles are broken down, releasing their cholesterol content, which can be used for various cellular processes such as membrane synthesis and hormone production. The LDL receptors themselves are recycled back to the cell surface, allowing for continued uptake of LDL particles.

Mutations in the LDL receptor gene can lead to a condition called familial hypercholesterolemia, which is characterized by high levels of LDL cholesterol in the blood and an increased risk of premature cardiovascular disease.

Ribonucleoside Diphosphate Reductase (RNR) is an enzyme that plays a crucial role in the regulation of DNA synthesis and repair. It catalyzes the conversion of ribonucleoside diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs), which are the building blocks of DNA. This reaction is essential for the synthesis of new DNA strands during replication and repair processes. The enzyme's activity is tightly regulated, as it must be carefully controlled to prevent errors in DNA synthesis that could lead to mutations and genomic instability. RNR is a target for chemotherapeutic agents due to its essential role in DNA synthesis.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Quinone reductases are a group of enzymes that catalyze the reduction of quinones to hydroquinones, using NADH or NADPH as an electron donor. This reaction is important in the detoxification of quinones, which are potentially toxic compounds produced during the metabolism of certain drugs, chemicals, and endogenous substances.

There are two main types of quinone reductases: NQO1 (NAD(P)H:quinone oxidoreductase 1) and NQO2 (NAD(P)H:quinone oxidoreductase 2). NQO1 is a cytosolic enzyme that can reduce a wide range of quinones, while NQO2 is a mitochondrial enzyme with a narrower substrate specificity.

Quinone reductases have been studied for their potential role in cancer prevention and treatment, as they may help to protect cells from oxidative stress and DNA damage caused by quinones and other toxic compounds. Additionally, some quinone reductase inhibitors have been developed as chemotherapeutic agents, as they can enhance the cytotoxicity of certain drugs that require quinone reduction for activation.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Acyl Coenzyme A (often abbreviated as Acetyl-CoA or Acyl-CoA) is a crucial molecule in metabolism, particularly in the breakdown and oxidation of fats and carbohydrates to produce energy. It is a thioester compound that consists of a fatty acid or an acetate group linked to coenzyme A through a sulfur atom.

Acyl CoA plays a central role in several metabolic pathways, including:

1. The citric acid cycle (Krebs cycle): In the mitochondria, Acyl-CoA is formed from the oxidation of fatty acids or the breakdown of certain amino acids. This Acyl-CoA then enters the citric acid cycle to produce high-energy electrons, which are used in the electron transport chain to generate ATP (adenosine triphosphate), the main energy currency of the cell.
2. Beta-oxidation: The breakdown of fatty acids occurs in the mitochondria through a process called beta-oxidation, where Acyl-CoA is sequentially broken down into smaller units, releasing acetyl-CoA, which then enters the citric acid cycle.
3. Ketogenesis: In times of low carbohydrate availability or during prolonged fasting, the liver can produce ketone bodies from acetyl-CoA to supply energy to other organs, such as the brain and heart.
4. Protein synthesis: Acyl-CoA is also involved in the modification of proteins by attaching fatty acid chains to them (a process called acetylation), which can influence protein function and stability.

In summary, Acyl Coenzyme A is a vital molecule in metabolism that connects various pathways related to energy production, fatty acid breakdown, and protein modification.

Class I HMG-CoA reductases catalyse the NADP-dependent synthesis of mevalonate from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). ... There are two distinct classes of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase enzymes: class I consists of eukaryotic ... Class II HMG-CoA reductases catalyse the reverse reaction of class I enzymes, namely the NAD-dependent synthesis of HMG-CoA ... Class I HMG-CoA reductases consist of an N-terminal membrane domain (lacking in archaeal enzymes), and a C-terminal catalytic ...
... nad-dependent MeSH D08.811.682.047.385.415.750 - hydroxymethylglutaryl-coa-reductases, nadp-dependent MeSH D08.811.682.047.393 ... hydroxymethylglutaryl coa reductases MeSH D08.811.682.047.385.415.250 - hydroxymethylglutaryl-coa reductases, ... ferredoxin-nadp reductase MeSH D08.811.682.667.092 - glutathione reductase MeSH D08.811.682.667.124 - hydrogensulfite reductase ... reductase (nadph, b-specific) MeSH D08.811.682.660.425 - Glutaryl-CoA dehydrogenase MeSH D08.811.682.660.462 - isovaleryl-coa ...
NADP-oxidoreductase (acetylating-CoA) 3-hydroxy-3-methylglutaryl CoA reductase (NADPH) hydroxymethylglutaryl-CoA reductase ( ... Portal: Biology v t e (EC 1.1.1, NADPH-dependent enzymes, Enzymes of known structure, All stub articles, EC 1.1.1 stubs). ... 3-hydroxy-3-methylglutaryl-CoA reductase β-hydroxy-β-methylglutaryl coenzyme A reductase hydroxymethylglutaryl CoA reductase ( ... NADPH) S-3-hydroxy-3-methylglutaryl-CoA reductase NADPH-hydroxymethylglutaryl-CoA reductase HMGCoA reductase-mevalonate: ...
... protochlorophyllide reductase (ATP-dependent) EC 1.3.7.8: benzoyl-CoA reductase EC 1.3.7.9: 4-hydroxybenzoyl-CoA reductase EC ... hydroxymethylglutaryl-CoA reductase (NADPH) EC 1.1.1.35: 3-hydroxyacyl-CoA dehydrogenase EC 1.1.1.36: acetoacetyl-CoA reductase ... NADP-retinol dehydrogenase EC 1.1.1.301: D-arabitol-phosphate dehydrogenase EC 1.1.1.302: 2,5-diamino-6-(ribosylamino)-4(3H)- ... cis-2-enoyl-CoA reductase (NADPH) EC 1.3.1.38: trans-2-enoyl-CoA reductase (NADPH) EC 1.3.1.39: trans-2-enoyl-CoA reductase ( ...
Class I HMG-CoA reductases catalyse the NADP-dependent synthesis of mevalonate from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). ... There are two distinct classes of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase enzymes: class I consists of eukaryotic ... Class II HMG-CoA reductases catalyse the reverse reaction of class I enzymes, namely the NAD-dependent synthesis of HMG-CoA ... Class I HMG-CoA reductases consist of an N-terminal membrane domain (lacking in archaeal enzymes), and a C-terminal catalytic ...
Class I HMG-CoA reductases catalyse the NADP-dependent synthesis of mevalonate from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). ... There are two distinct classes of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase enzymes: class I consists of eukaryotic ... Class II HMG-CoA reductases catalyse the reverse reaction of class I enzymes, namely the NAD-dependent synthesis of HMG-CoA ... In archaea, HMG-CoA reductase is a cytoplasmic enzyme involved in the biosynthesis of the isoprenoids side chains of lipids [ ( ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
methylglyoxal reductase (NADPH-dependent) activity GO:0043892 * 2-methylacyl-CoA dehydrogenase activity ... hydroxymethylglutaryl-CoA reductase activity GO:0042282 * 2-hexadecenal reductase activity GO:0047543 ... valine dehydrogenase (NADP) activity GO:0050391 * 15,16-dihydrobiliverdin:ferredoxin oxidoreductase activity ...
3 Hydroxy 3 methylglutaryl coenzyme A reductase, NADP dependent use Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... 3 Hydroxy 3 methylglutaryl CoA Reductase use Hydroxymethylglutaryl CoA Reductases ... 2-Enoyl-CoA Hydratase 2 use Enoyl-CoA Hydratase 2 2-Enoyl-CoA Hydratase, 3-Hydroxyacyl-CoA Dehydrogenase-delta 3, delta 2-Enoyl ... 3 Hydroxyacyl CoA Dehydrogenases use 3-Hydroxyacyl CoA Dehydrogenases 3 Hydroxyacyl CoA Dehydrogenase use 3-Hydroxyacyl-CoA ...
NADPIron-Sulfur ProteinsPulse RadiolysisSulfitesHemeproteinsMethionine Sulfoxide ReductasesHydroxymethylglutaryl-CoA Reductase ... back to hemoglobin is the NADH-dependant methemoglobin reductase system, in which the enzyme cytochrome-b5 reductase plays a ... There are two main types of HMG-CoA reductases: HMG-CoA reductase 1 and HMG-CoA reductase 2. HMG-CoA reductase 1 is primarily ... Hydroxymethylglutaryl CoA reductases (HMG-CoA reductases) are a class of enzymes that play a critical role in the metabolism of ...
CoA ReductasesMesnaPantothenic AcidNADPropanediol DehydrataseNADPAcetate-CoA LigaseMevalonic AcidHydroxymethylglutaryl-CoA ... NADP-dependentMethylmalonyl-CoA MutaseOxidation-ReductionAcyltransferasesAmino Acid SequenceMethaneAcetatesEscherichia coli ... Propanediol DehydrataseKineticsMethanosarcina barkeriNADPAcetate-CoA LigaseMevalonic AcidHydroxymethylglutaryl-CoA Reductase ... Palmitoyl Coenzyme ALovastatinMalonyl Coenzyme AOxidoreductasesPyridoxal PhosphateHydroxymethylglutaryl-CoA-Reductases, NADP- ...
Polakowski T, Stahl U, Lang C (1998) Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene ... the NADP(+)-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiol Sgm 150:2209-2220 ... Enzymes: CoA coenzyme A; Erg10p acetoacetyl-CoA thiolase; Erg13p hydroxymethylglutaryl-coenzyme A synthase; Hmg1/2p ... Acsp acetyl-CoA synthetase; Aclp ATP-citrate lyase; Acc1p/Hfa1p acetyl-CoA carboxylase; Pox1-6p peroxisome acyl-CoA oxidase 1-6 ...
Cellular processes Cellular processes Detoxification CoA-disulfide reductase (TIGR03385; EC 1.8.1.14; HMM-score: 16.2) ... DAO; FAD dependent oxidoreductase (PF01266; HMM-score: 22.9) K_oxygenase; L-lysine 6-monooxygenase (NADPH-requiring) (PF13434; ... NADP_Rossmann (CL0063) Mqo; Malate:quinone oxidoreductase (Mqo) (PF06039; HMM-score: 719.5) ... hydroxymethylglutaryl-CoA synthase [1] (data from MRSA252). ⊟Expression & Regulation[edit , edit source]. ...
hydroxymethylglutaryl-CoA synthase activity. IEP. Enrichment. MF. GO:0004743. pyruvate kinase activity. IEP. Enrichment. ... SRP-dependent cotranslational protein targeting to membrane. IEP. Enrichment. BP. GO:0006720. isoprenoid metabolic process. IEP ... ribonucleoside-diphosphate reductase activity. IEP. Enrichment. BP. GO:0070727. cellular macromolecule localization. IEP. ... oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor. None. Extended. ...
"Isohexenylglutaryl-CoA/hydroxy-methylglutaryl-CoA lyase","protein_coding" "Sro559_g166400.1","Contig536.g6956","Seminavis ... "NADPH-dependent FMN reductase","protein_coding" "Sro44_g026680.1","Contig358.g4837","Seminavis robusta","Extended synaptotagmin ... NADP-dependent oxidoreductase domain [Interproscan].","protein_coding" "SymbC1.scaffold914.1","914.1","Cladocopium sp. clade C ... "NADP-dependent glyceraldehyde-3-phosphate dehydrogenase","protein_coding" "lcl,LHPG02000017.1_cds_PRW33172.1_3448","PRW33172"," ...
Although all cell lines express mRNA encoding for hydroxymethylglutaryl-CoA reductase (HMGCR), the mitochondrial translocator ... aldo-keto reductase (NADP) activity - androsterone dehydrogenase (A-specific) activity - androsterone dehydrogenase activity - ... The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner ... Members of the short-chain dehydrogenase/reductase (SDR) and aldo-keto reductase (AKR) superfamilies mediate the reduction of ...
... with concomitant loss of CoA, by the action of hydroxymethylglutaryl-CoA reductase, to yield mevalonate:. ... 14 molecules of NADPH required for the reductive steps in the synthesis of palmitic acid arise largely from the NADP-dependent ... Condensation of palmityl-CoA with acetyl-CoA yields b-ketostearyl-CoA, which is reduced by NADPH to b-hydroxystearyl-CoA. The ... Acetyl-S-CoA + acetyl-S-CoA Û acetoacetyl-S-CoA + CoA-SH. ... Palmitoyl-CoA + NADPH + H+ + O2 ® palmitoleyl-CoA + NADP+ + 2H2 ...
Accepted name: hydroxymethylglutaryl-CoA lyase. Reaction: (S)-3-hydroxy-3-methylglutaryl-CoA = acetyl-CoA + acetoacetate. For ... Reaction: a long-chain aldehyde + O2 + 2 NADPH + 2 H+ = an alkane + formate + H2O + 2 NADP+. Glossary: a long-chain aldehyde = ... Accepted name: tRNA 4-demethylwyosine synthase (AdoMet-dependent). Reaction: N1-methylguanine37 in tRNAPhe + pyruvate + S- ... reductase.. Links to other databases: BRENDA, EXPASY, KEGG, Metacyc, PDB, CAS registry number: 94185-90-7. References:. 1. ...
Although all cell lines express mRNA encoding for hydroxymethylglutaryl-CoA reductase (HMGCR), the mitochondrial translocator ... aldo-keto reductase (NADP) activity - androsterone dehydrogenase (A-specific) activity - androsterone dehydrogenase activity - ... The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner ... Members of the short-chain dehydrogenase/reductase (SDR) and aldo-keto reductase (AKR) superfamilies mediate the reduction of ...
Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent / metabolism Actions. * Search in PubMed * Search in MeSH ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
HMG CoA-Reductases, NADP-Dependent Hydroxymethylglutaryl-CoA-Reductase (NADP) Hydroxymethylglutaryl-Coenzyme A Reductase (NADP ... 2002; hydroxymethylglutaryl-CoA-reductase (NADP) now HYDROXYMETHYLGLUTARYL-COA-REDUCTASES, NADP-DEPENDENT was indexed under ... Hydroxymethylglutaryl-CoA Reductases, NAD-Dependent [D08.811.682.047.820.150.415.250] * Hydroxymethylglutaryl-CoA-Reductases, ... NADP-dependent Term UI T120911. LexicalTag NON. ThesaurusID NLM (2002). HMG CoA-Reductases, NADP-Dependent Term UI T440785. ...
HMG CoA-Reductases, NADP-Dependent Hydroxymethylglutaryl-CoA-Reductase (NADP) Hydroxymethylglutaryl-Coenzyme A Reductase (NADP ... 2002; hydroxymethylglutaryl-CoA-reductase (NADP) now HYDROXYMETHYLGLUTARYL-COA-REDUCTASES, NADP-DEPENDENT was indexed under ... Hydroxymethylglutaryl-CoA Reductases, NAD-Dependent [D08.811.682.047.820.150.415.250] * Hydroxymethylglutaryl-CoA-Reductases, ... NADP-dependent Term UI T120911. LexicalTag NON. ThesaurusID NLM (2002). HMG CoA-Reductases, NADP-Dependent Term UI T440785. ...
CoA-Reductases, NADP-Dependent HMG HMG CoA Reductases, NADP Dependent HMG CoA-Reductases, NADP-Dependent Hydroxymethylglutaryl- ... NADP-dependent. CoA-Reductases, NADP-Dependent HMG. HMG CoA Reductases, NADP Dependent. HMG CoA-Reductases, NADP-Dependent. ... CoA-Reductase (NADP) Hydroxymethylglutaryl-Coenzyme A Reductase (NADP) NADP-Dependent HMG CoA-Reductases NADP-dependent ... Hydroxymethylglutaryl-Coenzyme A Reductase (NADP). NADP-Dependent HMG CoA-Reductases. NADP-dependent Hydroxymethylglutaryl-CoA- ...
N0000167245 Polyvinylpyridine N-Oxide N0000167038 Cyclic N-Oxides N0000167955 Hydroxymethylglutaryl-CoA-Reductases, NADP- ... AMP-Dependent Protein Kinase Type I N0000178580 Cyclic AMP-Dependent Protein Kinase Type II N0000170598 Cyclic AMP-Dependent ... Nitrate Reductases N0000167943 Ribonucleotide Reductases N0000175178 Arsenate Reductases N0000167956 Hydroxymethylglutaryl-CoA ... Reductase N0000167802 Ferredoxin-NADP Reductase N0000167811 NADPH-Ferrihemoprotein Reductase N0000167887 FMN Reductase ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
NAD-Dependent D8.811.682.47.385.415.250 D8.811.682.47.820.150.415.250 Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent ... D1.625.62.437 Hydroxymethylglutaryl CoA Reductases D8.811.682.47.385.415 D8.811.682.47.820.150.415 Hydroxymethylglutaryl-CoA ... E2.831.200 Cortisone Reductase D8.811.682.47.436.400.150 D8.811.682.47.820.125.150 Coxa Valga C5.550.338 Coxa Vara C5.550.353 ... C25.775.100.250 Aldehyde Reductase D8.811.682.47.820.275 Alexander Disease C10.228.518.625.312 alpha-2-Antiplasmin D12.776. ...
Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent. *Hypnotics and Sedatives. *I-kappa B Kinase ...
Hydroxymethylglutaryl-CoA reductase, class I/II IPR002202 - 0.0. - Sma3. Malate dehydrogenase, type 2 IPR010945 - 0.0. - ... Malate dehydrogenase, NADP-dependent, plants IPR011273 - 0.0. - Sma3. Malate dehydrogenase, NAD-dependent, cytosolic IPR011274 ... oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor GO:0016616 Molecular Function 0.0. - ...
hydroxymethylglutaryl-CoA synthase, mitochondrial P54869. Phuc Le et al., 2005. Hsd17b12. very-long-chain 3-oxoacyl-CoA ... reductase. O70503. Phuc Le et al., 2005. Hsd3b4. NADPH-dependent 3-keto-steroid reductase Hsd3b4. Q61767. Phuc Le et al., 2005 ... isocitrate dehydrogenase [NADP] cytoplasmic. O88844. Phuc Le et al., 2005. Ier2. immediate early response gene 2 protein. ... acyl-CoA-binding protein P31786. Phuc Le et al., 2005. Ddx5. probable ATP-dependent RNA helicase DDX5. Q61656. Phuc Le et al., ...
2,3-bisphosphoglycerate-dependent phosphoglycerate mutase [1] (data from MRSA252). SA_RS13375. hydroxymethylglutaryl-CoA ... beta-ketoacyl-ACP reductase [1] (data from MRSA252). SA_RS06125. 30S ribosomal protein S16 [1] (data from MRSA252). ... isocitrate dehydrogenase (NADP(+)) [1] (data from MRSA252). SA_RS08560. pyruvate kinase [1] (data from MRSA252). ...
... which interact with acetyl-CoA acetyltransferase, coenzyme A and water to synthesize hydroxymethylglutaryl-CoA synthase. In ... also producing byproducts CoA and NADP. Exiting the endoplasmic reticulum, and entering the peroxisome, (R)-mevalonate uses the ... 5a-Cholesta-8-en-3-one teams up with a 3-keto-steroid reductase to create 5a-cholest-8-en-3b-ol. Then, stepping back into the ... activating the L-type voltage-dependent calcium channels on the sarcolemma and ryanodine receptors on the sarcoplasmic ...
HMG-CoA) reductase isozyme, ergosterol biosynthesis, hydroxymethylglutaryl-CoA reductase (NADPH), mitochondrial matrix* YJR070C ... 8.895753 INESSENTIAL IDP2 Cytosolic form of NADP-dependent isocitrate dehydrogenase, glutamate biosynthesis*, isocitrate ... HMG-CoA) reductase isozyme, ergosterol biosynthesis, hydroxymethylglutaryl-CoA reductase (NADPH), mitochondrial matrix* YKL031W ... cytochrome b5 reductase, YLR284C -1.978762 INESSENTIAL ECI1 Peroxisomal d3,d2-Enoyl-CoA Isomerase, fatty acid beta-oxidation, ...
... was shown to negatively regulate hydroxymethylglutaryl CoA reductase, HMGR (the main rate-limiting enzyme of the pathway) via ... which contained a putative NADP-dependent isocitrate dehydrogenase gene (Cit.5273.1.S1_at) that was not co-expressed with any ... Several condition-dependent co-expression networks were also constructed separately based on their associated meta-data ( ... Additionally, a putative quinone reductase family protein gene that may be involved in the production of free radicals, and an ...
... of the dipeptides was assessed by measuring the substrate consumption rate of the 3-hydroxy-3-methylglutaryl CoA reductase in ... Most therapies are focused on the modulation of its biosynthesis through 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG- ... The HMG-CoA dependent oxidation of NADPH in the absence (Control) and presence of inhibitors, was measured by the absorbance ... Human hydroxymethylglutaryl-coenzyme A reductase (HMGCR) and statin sensitivity. Indian Journal of Biochemistry & Biophysics, ...
... corresponding hydroxymethylglutaryl-CoA synthases. 4. The activity of heart acetoacetyl-CoA transferase remains constant from ... acetyl-CoA carboxylase, NADP-malate dehydrogenase and NAD-malate dehydrogenase were not changed by insulin. 4. The effect of ... has been given that inactivation and activation are catalysed by an ATP-dependent kinase and a Mg(2+)-dependent phosphatase. ... activity of NADPH-cytochrome c reductase (EC 1.6.2.3) and the rates of metabolism of aniline, ethylmorphine and [2-(14)C] ...
  • 12509) anaerobic ribonucleoside-triphosphate reductase CP001857 CDS Arcpr_0011 12741. (go.jp)
  • ATP-citrate lyase/succinyl-CoA ligase [Interproscan]. (ntu.edu.sg)
  • FAD binding domain, UDP-N-acetylenolpyruvoylglucosamine reductase [Interproscan]. (ntu.edu.sg)
  • In molecular biology, the HMG-CoA reductase family is a family of enzymes which participate in the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. (wikipedia.org)
  • There are two distinct classes of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase enzymes: class I consists of eukaryotic and most archaeal enzymes EC 1.1.1.34, while class II consists of prokaryotic enzymes EC 1.1.1.88. (wikipedia.org)
  • Class I HMG-CoA reductases consist of an N-terminal membrane domain (lacking in archaeal enzymes), and a C-terminal catalytic region. (wikipedia.org)
  • Class II HMG-CoA reductases catalyse the reverse reaction of class I enzymes, namely the NAD-dependent synthesis of HMG-CoA from mevalonate and CoA. (wikipedia.org)
  • As with class I enzymes, the L-domain binds substrate, but the S-domain binds NAD (instead of NADP in class I). Bochar DA, Stauffacher CV, Rodwell VW (February 1999). (wikipedia.org)
  • As with class I enzymes, the L-domain binds substrate, but the S-domain binds NAD (instead of NADP in class I). (embl.de)
  • This gene encodes a member of the aldo/keto reductase superfamily, which consists of more than 40 known enzymes and proteins. (cancerindex.org)
  • In vertebrates, membrane-bound HMG-CoA reductase is the rate-limiting enzyme in the biosynthesis of cholesterol and other isoprenoids. (wikipedia.org)
  • In archaea, HMG-CoA reductase is a cytoplasmic enzyme involved in the biosynthesis of the isoprenoids side chains of lipids. (wikipedia.org)
  • The reduction of HMG-CoA to mevalonate is regulated by feedback inhibition by sterols and non-sterol metabolites derived from mevalonate, including cholesterol. (wikipedia.org)
  • 42329 iron %28metal%29 dependent repressor%2C DtxR family CP001857 CDS Arcpr_0049 complement(42326. (go.jp)
  • The L-domain binds the substrate, while the S-domain binds NADP. (wikipedia.org)
  • the E-value for the HMG-CoA_red domain shown below is 8.8e-76. (embl.de)
  • The pathway begins in the cytoplasm with acetyl-CoA and acetoacetyl-CoA, which interact with acetyl-CoA acetyltransferase, coenzyme A and water to synthesize hydroxymethylglutaryl-CoA synthase. (smpdb.ca)
  • In turn, this synthase teams up with coenzyme A and a hydrogen ion in the endoplasmic reticulum to create 3-hydroxy-3-methylglutaryl-CoA. (smpdb.ca)
  • Specific hydroxymethylglutaryl CoA reductases that utilize the cofactor NAD . (nih.gov)
  • Hidroximetilglutaril CoA reductasas específicas que utilizan el cofactor NAD. (bvsalud.org)
  • In molecular biology, the HMG-CoA reductase family is a family of enzymes which participate in the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. (wikipedia.org)
  • Class I HMG-CoA reductases catalyse the NADP-dependent synthesis of mevalonate from 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). (wikipedia.org)
  • The reduction of HMG-CoA to mevalonate is regulated by feedback inhibition by sterols and non-sterol metabolites derived from mevalonate, including cholesterol. (wikipedia.org)
  • Class II HMG-CoA reductases catalyse the reverse reaction of class I enzymes, namely the NAD-dependent synthesis of HMG-CoA from mevalonate and CoA. (wikipedia.org)
  • The L-domain binds the substrate, while the S-domain binds NADP. (wikipedia.org)
  • As with class I enzymes, the L-domain binds substrate, but the S-domain binds NAD (instead of NADP in class I). Bochar DA, Stauffacher CV, Rodwell VW (February 1999). (wikipedia.org)
  • The in vitro inhibitory activity of the dipeptides was assessed by measuring the substrate consumption rate of the 3-hydroxy-3-methylglutaryl CoA reductase in their presence, with the following pertinent calculations. (biomedcentral.com)