A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405).
Infections with organisms of the genus HELICOBACTER, particularly, in humans, HELICOBACTER PYLORI. The clinical manifestations are focused in the stomach, usually the gastric mucosa and antrum, and the upper duodenum. This infection plays a major role in the pathogenesis of type B gastritis and peptic ulcer disease.
A genus of gram-negative, spiral-shaped bacteria that has been isolated from the intestinal tract of mammals, including humans. It has been associated with PEPTIC ULCER.
Inflammation of the GASTRIC MUCOSA, a lesion observed in a number of unrelated disorders.
Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones.
A species of HELICOBACTER that colonizes the CECUM and COLON of several strains of MICE, and is associated with HEPATITIS and carcinogenesis.
An enzyme that catalyzes the conversion of urea and water to carbon dioxide and ammonia. EC 3.5.1.5.
A species of gram-negative, spiral-shaped bacteria found in the gastric mucosa that is associated with chronic antral gastritis. This bacterium was first discovered in samples removed at endoscopy from patients investigated for HELICOBACTER PYLORI colonization.
An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM.
Ulcer that occurs in the regions of the GASTROINTESTINAL TRACT which come into contact with GASTRIC JUICE containing PEPSIN and GASTRIC ACID. It occurs when there are defects in the MUCOSA barrier. The common forms of peptic ulcers are associated with HELICOBACTER PYLORI and the consumption of nonsteroidal anti-inflammatory drugs (NSAIDS).
A semisynthetic macrolide antibiotic derived from ERYTHROMYCIN that is active against a variety of microorganisms. It can inhibit PROTEIN SYNTHESIS in BACTERIA by reversibly binding to the 50S ribosomal subunits. This inhibits the translocation of aminoacyl transfer-RNA and prevents peptide chain elongation.
A nitroimidazole used to treat AMEBIASIS; VAGINITIS; TRICHOMONAS INFECTIONS; GIARDIASIS; ANAEROBIC BACTERIA; and TREPONEMAL INFECTIONS. It has also been proposed as a radiation sensitizer for hypoxic cells. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985, p133), this substance may reasonably be anticipated to be a carcinogen (Merck, 11th ed).
A broad-spectrum semisynthetic antibiotic similar to AMPICILLIN except that its resistance to gastric acid permits higher serum levels with oral administration.
Impaired digestion, especially after eating.
Proteins found in any species of bacterium.
Various agents with different action mechanisms used to treat or ameliorate PEPTIC ULCER or irritation of the gastrointestinal tract. This has included ANTIBIOTICS to treat HELICOBACTER INFECTIONS; HISTAMINE H2 ANTAGONISTS to reduce GASTRIC ACID secretion; and ANTACIDS for symptomatic relief.
A 4-methoxy-3,5-dimethylpyridyl, 5-methoxybenzimidazole derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits an H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS.
Tumors or cancer of the STOMACH.
Substances elaborated by bacteria that have antigenic activity.
Pathological processes involving the STOMACH.
GASTRITIS with atrophy of the GASTRIC MUCOSA, the GASTRIC PARIETAL CELLS, and the mucosal glands leading to ACHLORHYDRIA. Atrophic gastritis usually progresses from chronic gastritis.
A metallic element that has the atomic symbol Bi, atomic number 83 and atomic weight 208.98.
The region between the sharp indentation at the lower third of the STOMACH (incisura angularis) and the junction of the PYLORUS with the DUODENUM. Pyloric antral glands contain mucus-secreting cells and gastrin-secreting endocrine cells (G CELLS).
Ulceration of the GASTRIC MUCOSA due to contact with GASTRIC JUICE. It is often associated with HELICOBACTER PYLORI infection or consumption of nonsteroidal anti-inflammatory drugs (NSAIDS).
Any tests done on exhaled air.
Compounds that contain benzimidazole joined to a 2-methylpyridine via a sulfoxide linkage. Several of the compounds in this class are ANTI-ULCER AGENTS that act by inhibiting the POTASSIUM HYDROGEN ATPASE found in the PROTON PUMP of GASTRIC PARIETAL CELLS.
Substances that reduce the growth or reproduction of BACTERIA.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Endoscopic examination, therapy or surgery of the interior of the stomach.
A 2,2,2-trifluoroethoxypyridyl derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS. Lansoprazole is a racemic mixture of (R)- and (S)-isomers.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Compounds that inhibit H(+)-K(+)-EXCHANGING ATPASE. They are used as ANTI-ULCER AGENTS and sometimes in place of HISTAMINE H2 ANTAGONISTS for GASTROESOPHAGEAL REFLUX.
Therapy with two or more separate preparations given for a combined effect.
A condition in which there is a change of one adult cell type to another similar adult cell type.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A nitroimidazole antitrichomonal agent effective against Trichomonas vaginalis, Entamoeba histolytica, and Giardia lamblia infections.
A group of dominantly and independently inherited antigens associated with the ABO blood factors. They are glycolipids present in plasma and secretions that may adhere to the erythrocytes. The phenotype Le(b) is the result of the interaction of the Le gene Le(a) with the genes for the ABO blood groups.
This is one of 2 related pepsinogen systems in humans and is also known as pepsinogen. (The other is PEPSINOGEN C.) This includes isozymogens Pg1-Pg5 (pepsinogens 1-5, group I or products of PGA1-PGA5 genes). This is the main pepsinogen found in urine.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys.
A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids.
A non-imidazole blocker of those histamine receptors that mediate gastric secretion (H2 receptors). It is used to treat gastrointestinal ulcers.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Endoscopic examination, therapy or surgery of the gastrointestinal tract.
Inflammation of the DUODENUM section of the small intestine (INTESTINE, SMALL). Erosive duodenitis may cause bleeding in the UPPER GI TRACT and PEPTIC ULCER.
A nitrofuran derivative with antiprotozoal and antibacterial activity. Furazolidone acts by gradual inhibition of monoamine oxidase. (From Martindale, The Extra Pharmacopoeia, 30th ed, p514)
A species of HELICOBACTER commonly associated with STOMACH DISEASES in FERRETS.
Extranodal lymphoma of lymphoid tissue associated with mucosa that is in contact with exogenous antigens. Many of the sites of these lymphomas, such as the stomach, salivary gland, and thyroid, are normally devoid of lymphoid tissue. They acquire mucosa-associated lymphoid tissue (MALT) type as a result of an immunologically mediated disorder.
Substances that are toxic to cells; they may be involved in immunity or may be contained in venoms. These are distinguished from CYTOSTATIC AGENTS in degree of effect. Some of them are used as CYTOTOXIC ANTIBIOTICS. The mechanism of action of many of these are as ALKYLATING AGENTS or MITOSIS MODULATORS.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
A family of gastrointestinal peptide hormones that excite the secretion of GASTRIC JUICE. They may also occur in the central nervous system where they are presumed to be neurotransmitters.
A 4-(3-methoxypropoxy)-3-methylpyridinyl derivative of timoprazole that is used in the therapy of STOMACH ULCERS and ZOLLINGER-ELLISON SYNDROME. The drug inhibits H(+)-K(+)-EXCHANGING ATPASE which is found in GASTRIC PARIETAL CELLS.
Hydrochloric acid present in GASTRIC JUICE.
Mucins that are found on the surface of the gastric epithelium. They play a role in protecting the epithelial layer from mechanical and chemical damage.
Substances that counteract or neutralize acidity of the GASTROINTESTINAL TRACT.
Proenzymes secreted by chief cells, mucous neck cells, and pyloric gland cells, which are converted into pepsin in the presence of gastric acid or pepsin itself. (Dorland, 28th ed) In humans there are 2 related pepsinogen systems: PEPSINOGEN A (formerly pepsinogen I or pepsinogen) and PEPSINOGEN C (formerly pepsinogen II or progastricsin). Pepsinogen B is the name of a pepsinogen from pigs.
This is one of the 2 related pepsinogen systems in humans. It is found in prostate and seminal fluid whereas PEPSINOGEN A is not.
A naphthacene antibiotic that inhibits AMINO ACYL TRNA binding during protein synthesis.
Agents used to treat trichomonas infections.
Enzymes which reduce nitro groups (NITRO COMPOUNDS) and other nitrogenous compounds.
The functional hereditary units of BACTERIA.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065)
The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Those components of an organism that determine its capacity to cause disease but are not required for its viability per se. Two classes have been characterized: TOXINS, BIOLOGICAL and surface adhesion molecules that effect the ability of the microorganism to invade and colonize a host. (From Davis et al., Microbiology, 4th ed. p486)
Rounded or pyramidal cells of the GASTRIC GLANDS. They secrete HYDROCHLORIC ACID and produce gastric intrinsic factor, a glycoprotein that binds VITAMIN B12.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity.
Organic compounds that have the general formula R-SO-R. They are obtained by oxidation of mercaptans (analogous to the ketones). (From Hackh's Chemical Dictionary, 4th ed)
Endoscopic examination, therapy or surgery of the digestive tract.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
A genus of bacteria found in the reproductive organs, intestinal tract, and oral cavity of animals and man. Some species are pathogenic.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed)
The liquid secretion of the stomach mucosa consisting of hydrochloric acid (GASTRIC ACID); PEPSINOGENS; INTRINSIC FACTOR; GASTRIN; MUCUS; and the bicarbonate ion (BICARBONATES). (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p651)
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Constituent of 50S subunit of prokaryotic ribosomes containing about 3200 nucleotides. 23S rRNA is involved in the initiation of polypeptide synthesis.
Diseases in any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
INFLAMMATION of the LIVER in non-human animals.
A lack of HYDROCHLORIC ACID in GASTRIC JUICE despite stimulation of gastric secretion.
A trisaccharide antigen expressed on glycolipids and many cell-surface glycoproteins. In the blood the antigen is found on the surface of NEUTROPHILS; EOSINOPHILS; and MONOCYTES. In addition, CD15 antigen is a stage-specific embryonic antigen.
Distinct units in some bacterial, bacteriophage or plasmid GENOMES that are types of MOBILE GENETIC ELEMENTS. Encoded in them are a variety of fitness conferring genes, such as VIRULENCE FACTORS (in "pathogenicity islands or islets"), ANTIBIOTIC RESISTANCE genes, or genes required for SYMBIOSIS (in "symbiosis islands or islets"). They range in size from 10 - 500 kilobases, and their GC CONTENT and CODON usage differ from the rest of the genome. They typically contain an INTEGRASE gene, although in some cases this gene has been deleted resulting in "anchored genomic islands".
The genetic complement of a BACTERIA as represented in its DNA.
EPIDEMIOLOGIC STUDIES based on the detection through serological testing of characteristic change in the serum level of specific ANTIBODIES. Latent subclinical infections and carrier states can thus be detected in addition to clinically overt cases.
The relationships of groups of organisms as reflected by their genetic makeup.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Bleeding from a PEPTIC ULCER that can be located in any segment of the GASTROINTESTINAL TRACT.
A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells.
Cell-surface components or appendages of bacteria that facilitate adhesion (BACTERIAL ADHESION) to other cells or to inanimate surfaces. Most fimbriae (FIMBRIAE, BACTERIAL) of gram-negative bacteria function as adhesins, but in many cases it is a minor subunit protein at the tip of the fimbriae that is the actual adhesin. In gram-positive bacteria, a protein or polysaccharide surface layer serves as the specific adhesin. What is sometimes called polymeric adhesin (BIOFILMS) is distinct from protein adhesin.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
Retrograde flow of gastric juice (GASTRIC ACID) and/or duodenal contents (BILE ACIDS; PANCREATIC JUICE) into the distal ESOPHAGUS, commonly due to incompetence of the LOWER ESOPHAGEAL SPHINCTER.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care. (Dictionary of Health Services Management, 2d ed)
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used.
Diagnostic procedures involving immunoglobulin reactions.
PHENOTHIAZINES with an amino group at the 3-position that are green crystals or powder. They are used as biological stains.
Gastric analysis for determination of free acid or total acid.
Procedures of applying ENDOSCOPES for disease diagnosis and treatment. Endoscopy involves passing an optical instrument through a small incision in the skin i.e., percutaneous; or through a natural orifice and along natural body pathways such as the digestive tract; and/or through an incision in the wall of a tubular structure or organ, i.e. transluminal, to examine or perform surgery on the interior parts of the body.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
Pathological processes that tend eventually to become malignant. (From Dorland, 27th ed)
Diseases of rodents of the order RODENTIA. This term includes diseases of Sciuridae (squirrels), Geomyidae (gophers), Heteromyidae (pouched mice), Castoridae (beavers), Cricetidae (rats and mice), Muridae (Old World rats and mice), Erethizontidae (porcupines), and Caviidae (guinea pigs).
Drugs that selectively bind to but do not activate histamine H2 receptors, thereby blocking the actions of histamine. Their clinically most important action is the inhibition of acid secretion in the treatment of gastrointestinal ulcers. Smooth muscle may also be affected. Some drugs in this class have strong effects in the central nervous system, but these actions are not well understood.
A genus of long-legged, swift-moving felines (FELIDAE) from Africa (and formerly Asia) about the size of a small leopard.
Compounds with a BENZENE fused to IMIDAZOLES.
A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
Suspensions of attenuated or killed bacteria administered for the prevention or treatment of infectious bacterial disease.
INFLAMMATION, acute or chronic, of the ESOPHAGUS caused by BACTERIA, chemicals, or TRAUMA.
Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
The S-isomer of omeprazole.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free.
The L-isomer of Ofloxacin.
Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases.
INFLAMMATION of the ESOPHAGUS that is caused by the reflux of GASTRIC JUICE with contents of the STOMACH and DUODENUM.
Techniques used in studying bacteria.
Proteins isolated from the outer membrane of Gram-negative bacteria.
Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
A protein with a molecular weight of 40,000 isolated from bacterial flagella. At appropriate pH and salt concentration, three flagellin monomers can spontaneously reaggregate to form structures which appear identical to intact flagella.
I'm sorry for any confusion, but "Colombia" is not a medical term that can be defined in a medical context; rather, it's a country located in South America. If you have any questions related to medical terminology or health-related topics, I would be happy to help with those instead!
Animals not contaminated by or associated with any foreign organisms.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions.They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects.
A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein.
A malignant epithelial tumor with a glandular organization.
A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed)
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers.
That part of the STOMACH close to the opening from ESOPHAGUS into the stomach (cardiac orifice), the ESOPHAGOGASTRIC JUNCTION. The cardia is so named because of its closeness to the HEART. Cardia is characterized by the lack of acid-forming cells (GASTRIC PARIETAL CELLS).
A species of bacteria that resemble small tightly coiled spirals. Its organisms are known to cause abortion in sheep and fever and enteritis in man and may be associated with enteric diseases of calves, lambs, and other animals.
I'm sorry for any confusion, but the term "Bulgaria" is not a medical concept or condition that has a defined meaning within the medical field. It is actually the name of a country located in southeastern Europe, known officially as the Republic of Bulgaria.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.

Helicobacter pylori can be induced to assume the morphology of Helicobacter heilmannii. (1/401)

Cultures of Helicobacter pylori obtained from the American Type Culture Collection (strain 43504) were grown as isolated colonies or lawns on blood agar plates and in broth culture with constant shaking. Examination of bacterial growth with Gram-stained fixed preparation and differential interference contrast microscopy on wet preparations revealed that bacteria grown on blood agar plates had a morphology consistent with that normally reported for H. pylori whereas bacteria from broth cultures had the morphologic appearance of Helicobacter heilmannii. Bacteria harvested from blood agar plates assumed an H. heilmannii-like morphology when transferred to broth cultures, and bacteria from broth cultures grew with morphology typical of H. pylori when grown on blood agar plates. Analysis by PCR of bacteria isolated from blood agar plates and broth cultures indicated that a single strain of bacteria (H. pylori) was responsible for both morphologies.  (+info)

Characterization of a culturable "Gastrospirillum hominis" (Helicobacter heilmannii) strain isolated from human gastric mucosa. (2/401)

Spiral organisms were isolated from an antral gastric mucosal biopsy specimen from a dyspeptic patient with gastritis. Only corkscrew-shaped organisms resembling "Gastrospirillum hominis" ("Helicobacter heilmannii") but no Helicobacter pylori-like organisms were seen in histological sections. H. pylori was not cultured from specimens from this patient. On the basis of biochemical reactions, morphology, ultrastructure, and 16S DNA sequencing, the isolated "G. hominis" was shown to be a true Helicobacter sp. very similar to Helicobacter felis and the "Gastrospirillum" but was separate from H. pylori. "G. hominis" is a pleomorphic gram-negative cork-screw-shaped, motile rod with 3 to 8 coils and a wavelength of about 1 micrometer. In contrast to H. pylori, it has up to 14 sheathed flagellar uni- or bipolar fibrils but no periplasmic fibrils. "G. hominis" grows under microaerobic conditions at 36 and 41 degrees C on 7% lysed, defibrinated horse blood agar plates within 3 to 7 days and can be subcultured under microaerobic but not under anaerobic conditions on media similar to those used for H. pylori and H. felis. The small translucent colonies were, in contrast to those of H. felis, indistinguishable from those of H. pylori. "G. hominis" is, like H. pylori and H. felis, motile, is oxidase, catalase, nitrite, nitrate, and urease positive, and produces alkaline phosphatase and arginine arylamidase. Like H. pylori and H. felis, it is sensitive to cephalothin (30-microgram disc), resistant to nalidixic acid (30-microgram disc), and sensitive to most other antibiotics. The 16S DNA sequence clusters "G. hominis" together with "Gastrospirillum," H. felis, Helicobacter bizzozeronii, Helicobacter salmonii, Helicobacter nemestrinae, Helicobacter acinonychis, and H. pylori.  (+info)

A novel urease-negative Helicobacter species associated with colitis and typhlitis in IL-10-deficient mice. (3/401)

A spiral-shaped bacterium with bipolar, single-sheathed flagella was isolated from the intestines of IL-10 (interleukin-10)-deficient (IL-10(-/-)) mice with inflammatory bowel disease. The organism was microaerobic, grew at 37 and 42 degrees C, and was oxidase and catalase positive but urease negative. On the basis of 16S rRNA gene sequence analysis and biochemical and phenotypic criteria, the organism is classified as a novel helicobacter. Cesarean section-rederived IL-10(-/-) mice without helicobacter infection did not have histological evidence of intestinal inflammation. However, helicobacter-free IL-10(-/-), SCID/NCr, and A/JNCr mice experimentally inoculated with the novel urease-negative Helicobacter sp. developed variable degrees of inflammation in the lower intestine, and in immunocompetent mice, the experimental infection was accompanied by a corresponding elevated immunoglobulin G antibody response to the novel Helicobacter sp. antigen. These data support other recent studies which demonstrate that multiple Helicobacter spp. in both naturally and experimentally infected mice can induce inflammatory bowel disease. The mouse model of helicobacter-associated intestinal inflammation should prove valuable in understanding how specific microbial antigens influence a complex disease process.  (+info)

Recurrent "Flexispira rappini" bacteremia in an adult patient undergoing hemodialysis: case report. (4/401)

A blood culture from a 65-year-old febrile man undergoing hemodialysis revealed, 5 days after inoculation, an unusual gram-negative fusiform rod with darting motility. During another episode of fever 21 days later, this Campylobacter-like organism was again recovered from three blood cultures and subcultured under an H2-enriched microaerobic atmosphere. The organism was catalase negative and oxidase positive and hydrolyzed urea rapidly. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of whole-cell proteins was indistinguishable from that of "Flexispira rappini" LMG 8738 described by Archer et al. in 1988 (J. R. Archer, S. Romero, A. E. Ritchier, M. E. Hamacher, B. M. Steiner, J. H. Bryner, and R. F. Schell, J. Clin. Microbiol. 26:101-105, 1988). The analysis of the 16S ribosomal DNA sequence revealed a similarity of 99.3% between the two strains. The patient recovered completely after a 4-week course of meropenem therapy. This is the first reported case of a recurrent "F. rappini" bacteremia in an adult patient, which confirms that this organism may be an invasive pathogen in immunocompromised patients, like other newly described Helicobacter species.  (+info)

Septic shock due to Helicobacter fennelliae in a non-human immunodeficiency virus-infected heterosexual patient. (5/401)

Helicobacter fennelliae (formerly Campylobacter fennelliae) has been reported to cause bacteremia in homosexual men with or without human immunodeficiency virus (HIV) infection. We report here a 48-year-old, non-HIV-infected, heterosexual man with diabetes mellitus and cirrhosis of the liver who developed bacteremia and septic shock due to H. fennelliae. The patient was treated successfully initially with intravenous ampicillin-sulbactam and ceftazidime, followed by ampicillin-sulbactam only. These agents were active in vitro against the isolate by E-test results. To our knowledge, this is the first documented case of septic shock due to H. fennelliae in a non-HIV-infected, heterosexual, immunocompromised patient.  (+info)

Detection of Helicobacter DNA in bile from bile duct diseases. (6/401)

Several species of Helicobacter colonize the hepatobiliary tract of animals and cause hepatobiliary diseases. The aim of this study is to investigate Helicobacter found in the biliary tract diseases of humans. Thirty-two bile samples (15 from bile duct cancer, 6 from pancreatic head cancer, and 11 from intrahepatic duct stone) were obtained by percutaneous transhepatic biliary drainage. Polymerase chain reaction analysis using Helicobacter specific urease A gene and 16S rRNA primers, bile pH measurement, and Helicobacter culture were performed. Helicobacter DNA was detected in 37.5%, and 31.3% by PCR with ureA gene, and 16S rRNA, respectively. The bile pH was not related to the presence of Helicobacter. The cultures were not successful. In conclusion, Helicobacter can be detected in the bile of patients with bile duct diseases. The possibility of pathogenesis of biliary tract diseases in humans by these organisms will be further investigated.  (+info)

Helicobacter felis infection in dogs: effect on gastric structure and function. (7/401)

The relationship of Helicobacter felis, an organism that is observed in the stomachs of dogs, to gastric disease in dogs is unclear. The objective of this study was to determine if Helicobacter felis infection alters gastric morphology and gastric secretory function in dogs. Five specific-pathogen-free (SPF), Helicobacter-free Beagle dogs were examined before and for 26 weeks after inoculation with H. felis (ATCC 49179). Three SPF uninfected dogs served as controls. All five dogs became colonized by H. felis as determined by urease activity, histopathology, polymerase chain reaction, and transmission electron microscopic examination of serial gastric biopsies. The degree of colonization ranged from < 1 organism/400 x field to > 10 organisms/400 x field. The fundus, body, and cardia were most heavily colonized. Evaluation of gastric biopsies showed mild gastric inflammation and lymphoid follicles in both infected and uninfected dogs. There was no correlation between the number of organisms observed and the degree of gastric inflammation or number of lymphoid follicles. The gastric secretory axis, assessed by fasting and meal-stimulated plasma gastrin, mucosal gastrin and somatostatin immunoreactivity, fasting gastric pH, and pentagastrin-stimulated gastric acid secretion, was similar in both infected and uninfected dogs. Fasting gastric pH was not a reliable indicator of gastric secretory function. These findings suggest that H. felis may not be a gastric pathogen in dogs. However, the density of colonization and limited duration of infection should be considered when interpreting these findings.  (+info)

Helicobacter heilmannii associated erosive gastritis. (8/401)

The spiral bacteria, Helicobacter heilmannii (H. heilmannii), distinct from Helicobacter pylori (H. pylori), was found in the gastric mucosa of a 71-year-old man without clinical symptoms. The endoscopic examination revealed erosive gastritis. Rapid urease test from the antral specimen was positive, but both culture and immunohistological staining for H. pylori were negative. Touch smear cytology showed tightly spiral bacteria, which were consistent with H. heilmannii. At the second endoscopy after medication regimen for eradication of H. pylori, inflammation was decreased and the rapid urease test was negative. The second cytology showed no evidence of H. heilmannii. Anti-H. pylori therapy may be a useful medication for H. heilmannii.  (+info)

Helicobacter pylori (H. pylori) is a gram-negative, microaerophilic bacterium that colonizes the stomach of approximately 50% of the global population. It is closely associated with gastritis and peptic ulcer disease, and is implicated in the pathogenesis of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. H. pylori infection is usually acquired in childhood and can persist for life if not treated. The bacterium's spiral shape and flagella allow it to penetrate the mucus layer and adhere to the gastric epithelium, where it releases virulence factors that cause inflammation and tissue damage. Diagnosis of H. pylori infection can be made through various tests, including urea breath test, stool antigen test, or histological examination of a gastric biopsy. Treatment typically involves a combination of antibiotics and proton pump inhibitors to eradicate the bacteria and promote healing of the stomach lining.

Helicobacter infections are caused by the bacterium Helicobacter pylori (H. pylori), which colonizes the stomach lining and is associated with various gastrointestinal diseases. The infection can lead to chronic active gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer.

The spiral-shaped H. pylori bacteria are able to survive in the harsh acidic environment of the stomach by producing urease, an enzyme that neutralizes gastric acid in their immediate vicinity. This allows them to adhere to and colonize the epithelial lining of the stomach, where they can cause inflammation (gastritis) and disrupt the normal functioning of the stomach.

Transmission of H. pylori typically occurs through oral-oral or fecal-oral routes, and infection is more common in developing countries and in populations with lower socioeconomic status. The diagnosis of Helicobacter infections can be confirmed through various tests, including urea breath tests, stool antigen tests, or gastric biopsy with histology and culture. Treatment usually involves a combination of antibiotics and proton pump inhibitors to eradicate the bacteria and reduce stomach acidity.

"Helicobacter" is a genus of gram-negative, spiral-shaped bacteria that are commonly found in the stomach. The most well-known species is "Helicobacter pylori," which is known to cause various gastrointestinal diseases, such as gastritis, peptic ulcers, and gastric cancer. These bacteria are able to survive in the harsh acidic environment of the stomach by producing urease, an enzyme that neutralizes stomach acid. Infection with "Helicobacter pylori" is usually acquired in childhood and can persist for life if not treated.

Gastritis is a medical condition characterized by inflammation of the lining of the stomach. It can be caused by various factors, including bacterial infections (such as Helicobacter pylori), regular use of nonsteroidal anti-inflammatory drugs (NSAIDs), excessive alcohol consumption, and stress.

Gastritis can present with a range of symptoms, such as abdominal pain or discomfort, nausea, vomiting, loss of appetite, and bloating. In some cases, gastritis may not cause any noticeable symptoms. Depending on the severity and duration of inflammation, gastritis can lead to complications like stomach ulcers or even stomach cancer if left untreated.

There are two main types of gastritis: acute and chronic. Acute gastritis develops suddenly and may last for a short period, while chronic gastritis persists over time, often leading to atrophy of the stomach lining. Diagnosis typically involves endoscopy and tissue biopsy to assess the extent of inflammation and rule out other potential causes of symptoms. Treatment options depend on the underlying cause but may include antibiotics, proton pump inhibitors, or lifestyle modifications.

Gastric mucosa refers to the innermost lining of the stomach, which is in contact with the gastric lumen. It is a specialized mucous membrane that consists of epithelial cells, lamina propria, and a thin layer of smooth muscle. The surface epithelium is primarily made up of mucus-secreting cells (goblet cells) and parietal cells, which secrete hydrochloric acid and intrinsic factor, and chief cells, which produce pepsinogen.

The gastric mucosa has several important functions, including protection against self-digestion by the stomach's own digestive enzymes and hydrochloric acid. The mucus layer secreted by the epithelial cells forms a physical barrier that prevents the acidic contents of the stomach from damaging the underlying tissues. Additionally, the bicarbonate ions secreted by the surface epithelial cells help neutralize the acidity in the immediate vicinity of the mucosa.

The gastric mucosa is also responsible for the initial digestion of food through the action of hydrochloric acid and pepsin, an enzyme that breaks down proteins into smaller peptides. The intrinsic factor secreted by parietal cells plays a crucial role in the absorption of vitamin B12 in the small intestine.

The gastric mucosa is constantly exposed to potential damage from various factors, including acid, pepsin, and other digestive enzymes, as well as mechanical stress due to muscle contractions during digestion. To maintain its integrity, the gastric mucosa has a remarkable capacity for self-repair and regeneration. However, chronic exposure to noxious stimuli or certain medical conditions can lead to inflammation, erosions, ulcers, or even cancer of the gastric mucosa.

"Helicobacter hepaticus" is a gram-negative, spiral-shaped bacterium that colonizes the liver of various animals, including primates. It was initially identified in 1992 and has been associated with chronic active hepatitis and hepatic adenocarcinoma (liver cancer) in mice. While its role in human disease is not fully understood, some studies have suggested a possible link between H. hepaticus infection and liver inflammation or cancer in humans. However, more research is needed to confirm this association and establish the clinical significance of H. hepaticus in human health.

Urease is an enzyme that catalyzes the hydrolysis of urea into ammonia and carbon dioxide. It is found in various organisms, including bacteria, fungi, and plants. In medicine, urease is often associated with certain bacterial infections, such as those caused by Helicobacter pylori, which can produce large amounts of this enzyme. The presence of urease in these infections can lead to increased ammonia production, contributing to the development of gastritis and peptic ulcers.

Helicobacter heilmannii (previously known as Gastrospirillum hominis) is a gram-negative, spiral-shaped bacterium that can be found in the stomach and is associated with gastritis and peptic ulcer disease. It is one of several species of Helicobacter that can infect the stomach, along with H. pylori, which is a more common cause of these conditions. The infection by H. heilmannii is less common and its transmission routes are not well understood, but it is believed to be associated with close contact with animals, particularly dogs and cats. Its identification and diagnosis can be challenging due to difficulties in culturing the bacterium and detecting it in gastric biopsies.

In anatomical terms, the stomach is a muscular, J-shaped organ located in the upper left portion of the abdomen. It is part of the gastrointestinal tract and plays a crucial role in digestion. The stomach's primary functions include storing food, mixing it with digestive enzymes and hydrochloric acid to break down proteins, and slowly emptying the partially digested food into the small intestine for further absorption of nutrients.

The stomach is divided into several regions, including the cardia (the area nearest the esophagus), the fundus (the upper portion on the left side), the body (the main central part), and the pylorus (the narrowed region leading to the small intestine). The inner lining of the stomach, called the mucosa, is protected by a layer of mucus that prevents the digestive juices from damaging the stomach tissue itself.

In medical contexts, various conditions can affect the stomach, such as gastritis (inflammation of the stomach lining), peptic ulcers (sores in the stomach or duodenum), gastroesophageal reflux disease (GERD), and stomach cancer. Symptoms related to the stomach may include abdominal pain, bloating, nausea, vomiting, heartburn, and difficulty swallowing.

A peptic ulcer is a sore or erosion in the lining of your stomach and the first part of your small intestine (duodenum). The most common causes of peptic ulcers are bacterial infection and long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen, or naproxen.

The symptoms of a peptic ulcer include abdominal pain, often in the upper middle part of your abdomen, which can be dull, sharp, or burning and may come and go for several days or weeks. Other symptoms can include bloating, burping, heartburn, nausea, vomiting, loss of appetite, and weight loss. Severe ulcers can cause bleeding in the digestive tract, which can lead to anemia, black stools, or vomit that looks like coffee grounds.

If left untreated, peptic ulcers can result in serious complications such as perforation (a hole through the wall of the stomach or duodenum), obstruction (blockage of the digestive tract), and bleeding. Treatment for peptic ulcers typically involves medications to reduce acid production, neutralize stomach acid, and kill the bacteria causing the infection. In severe cases, surgery may be required.

Clarithromycin is a antibiotic medication used to treat various types of bacterial infections, including respiratory, skin, and soft tissue infections. It is a member of the macrolide antibiotic family, which works by inhibiting bacterial protein synthesis. Clarithromycin is available by prescription and is often used in combination with other medications to treat conditions such as Helicobacter pylori infection and Mycobacterium avium complex (MAC) infection.

The medical definition of clarithromycin is:

"A antibiotic medication used to treat various types of bacterial infections, belonging to the macrolide antibiotic family. It works by inhibiting bacterial protein synthesis and is available by prescription."

Metronidazole is an antibiotic and antiprotozoal medication. It is primarily used to treat infections caused by anaerobic bacteria and certain parasites. Metronidazole works by interfering with the DNA of these organisms, which inhibits their ability to grow and multiply.

It is available in various forms, including tablets, capsules, creams, and gels, and is often used to treat conditions such as bacterial vaginosis, pelvic inflammatory disease, amebiasis, giardiasis, and pseudomembranous colitis.

Like all antibiotics, metronidazole should be taken only under the direction of a healthcare provider, as misuse can lead to antibiotic resistance and other complications.

Amoxicillin is a type of antibiotic known as a penicillin. It works by interfering with the ability of bacteria to form cell walls, which is necessary for their growth and survival. By disrupting this process, amoxicillin can kill bacteria and help to clear up infections.

Amoxicillin is used to treat a variety of bacterial infections, including respiratory tract infections, ear infections, skin infections, and urinary tract infections. It is available as a tablet, capsule, chewable tablet, or liquid suspension, and is typically taken two to three times a day.

Like all antibiotics, amoxicillin should be used only under the direction of a healthcare provider, and it is important to take the full course of treatment as prescribed, even if symptoms improve before the medication is finished. Misuse of antibiotics can lead to the development of drug-resistant bacteria, which can make infections more difficult to treat in the future.

Dyspepsia is a medical term that refers to discomfort or pain in the upper abdomen, often accompanied by symptoms such as bloating, nausea, belching, and early satiety (feeling full quickly after starting to eat). It is also commonly known as indigestion. Dyspepsia can have many possible causes, including gastroesophageal reflux disease (GERD), peptic ulcers, gastritis, and functional dyspepsia (a condition in which there is no obvious structural or biochemical explanation for the symptoms). Treatment for dyspepsia depends on the underlying cause.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Anti-ulcer agents are a class of medications that are used to treat and prevent ulcers in the gastrointestinal tract. These medications work by reducing the production of stomach acid, neutralizing stomach acid, or protecting the lining of the stomach and duodenum from damage caused by stomach acid.

There are several types of anti-ulcer agents, including:

1. Proton pump inhibitors (PPIs): These medications block the action of proton pumps in the stomach, which are responsible for producing stomach acid. PPIs include drugs such as omeprazole, lansoprazole, and pantoprazole.
2. H-2 receptor antagonists: These medications block the action of histamine on the H-2 receptors in the stomach, reducing the production of stomach acid. Examples include ranitidine, famotidine, and cimetidine.
3. Antacids: These medications neutralize stomach acid and provide quick relief from symptoms such as heartburn and indigestion. Common antacids include calcium carbonate, magnesium hydroxide, and aluminum hydroxide.
4. Protective agents: These medications form a barrier between the stomach lining and stomach acid, protecting the lining from damage. Examples include sucralfate and misoprostol.

Anti-ulcer agents are used to treat conditions such as gastroesophageal reflux disease (GERD), peptic ulcers, and Zollinger-Ellison syndrome. It is important to take these medications as directed by a healthcare provider, as they can have side effects and interactions with other medications.

Omeprazole is defined as a proton pump inhibitor (PPI) used in the treatment of gastroesophageal reflux disease (GERD), gastric ulcers, and other conditions where reducing stomach acid is desired. It works by blocking the action of the proton pumps in the stomach, which are responsible for producing stomach acid. By inhibiting these pumps, omeprazole reduces the amount of acid produced in the stomach, providing relief from symptoms such as heartburn and pain caused by excess stomach acid.

It is available in various forms, including tablets, capsules, and oral suspension, and is typically taken once or twice a day, depending on the condition being treated. As with any medication, omeprazole should be used under the guidance of a healthcare professional, and its potential side effects and interactions with other medications should be carefully considered before use.

Stomach neoplasms refer to abnormal growths in the stomach that can be benign or malignant. They include a wide range of conditions such as:

1. Gastric adenomas: These are benign tumors that develop from glandular cells in the stomach lining.
2. Gastrointestinal stromal tumors (GISTs): These are rare tumors that can be found in the stomach and other parts of the digestive tract. They originate from the stem cells in the wall of the digestive tract.
3. Leiomyomas: These are benign tumors that develop from smooth muscle cells in the stomach wall.
4. Lipomas: These are benign tumors that develop from fat cells in the stomach wall.
5. Neuroendocrine tumors (NETs): These are tumors that develop from the neuroendocrine cells in the stomach lining. They can be benign or malignant.
6. Gastric carcinomas: These are malignant tumors that develop from the glandular cells in the stomach lining. They are the most common type of stomach neoplasm and include adenocarcinomas, signet ring cell carcinomas, and others.
7. Lymphomas: These are malignant tumors that develop from the immune cells in the stomach wall.

Stomach neoplasms can cause various symptoms such as abdominal pain, nausea, vomiting, weight loss, and difficulty swallowing. The diagnosis of stomach neoplasms usually involves a combination of imaging tests, endoscopy, and biopsy. Treatment options depend on the type and stage of the neoplasm and may include surgery, chemotherapy, radiation therapy, or targeted therapy.

Bacterial antigens are substances found on the surface or produced by bacteria that can stimulate an immune response in a host organism. These antigens can be proteins, polysaccharides, teichoic acids, lipopolysaccharides, or other molecules that are recognized as foreign by the host's immune system.

When a bacterial antigen is encountered by the host's immune system, it triggers a series of responses aimed at eliminating the bacteria and preventing infection. The host's immune system recognizes the antigen as foreign through the use of specialized receptors called pattern recognition receptors (PRRs), which are found on various immune cells such as macrophages, dendritic cells, and neutrophils.

Once a bacterial antigen is recognized by the host's immune system, it can stimulate both the innate and adaptive immune responses. The innate immune response involves the activation of inflammatory pathways, the recruitment of immune cells to the site of infection, and the production of antimicrobial peptides.

The adaptive immune response, on the other hand, involves the activation of T cells and B cells, which are specific to the bacterial antigen. These cells can recognize and remember the antigen, allowing for a more rapid and effective response upon subsequent exposures.

Bacterial antigens are important in the development of vaccines, as they can be used to stimulate an immune response without causing disease. By identifying specific bacterial antigens that are associated with virulence or pathogenicity, researchers can develop vaccines that target these antigens and provide protection against infection.

Stomach diseases refer to a range of conditions that affect the stomach, a muscular sac located in the upper part of the abdomen and is responsible for storing and digesting food. These diseases can cause various symptoms such as abdominal pain, nausea, vomiting, heartburn, indigestion, loss of appetite, and bloating. Some common stomach diseases include:

1. Gastritis: Inflammation of the stomach lining that can cause pain, irritation, and ulcers.
2. Gastroesophageal reflux disease (GERD): A condition where stomach acid flows back into the esophagus, causing heartburn and damage to the esophageal lining.
3. Peptic ulcers: Open sores that develop on the lining of the stomach or duodenum, often caused by bacterial infections or long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs).
4. Stomach cancer: Abnormal growth of cancerous cells in the stomach, which can spread to other parts of the body if left untreated.
5. Gastroparesis: A condition where the stomach muscles are weakened or paralyzed, leading to difficulty digesting food and emptying the stomach.
6. Functional dyspepsia: A chronic disorder characterized by symptoms such as pain, bloating, and fullness in the upper abdomen, without any identifiable cause.
7. Eosinophilic esophagitis: A condition where eosinophils, a type of white blood cell, accumulate in the esophagus, causing inflammation and difficulty swallowing.
8. Stomal stenosis: Narrowing of the opening between the stomach and small intestine, often caused by scar tissue or surgical complications.
9. Hiatal hernia: A condition where a portion of the stomach protrudes through the diaphragm into the chest cavity, causing symptoms such as heartburn and difficulty swallowing.

These are just a few examples of stomach diseases, and there are many other conditions that can affect the stomach. Proper diagnosis and treatment are essential for managing these conditions and preventing complications.

Atrophic gastritis is a condition characterized by the inflammation and atrophy (wasting away) of the stomach lining, specifically the mucous membrane called the gastric mucosa. This process involves the loss of glandular cells in the stomach, which can result in decreased acid production and potential vitamin B12 deficiency due to reduced intrinsic factor production. Atrophic gastritis can be caused by various factors, including autoimmune disorders, chronic bacterial infection (usually with Helicobacter pylori), and the use of certain medications such as proton pump inhibitors. It can increase the risk of developing stomach cancer, so regular monitoring is often recommended.

Bismuth is a heavy, brittle, white metallic element (symbol: Bi; atomic number: 83) that is found in various minerals and is used in several industrial, medical, and household products. In medicine, bismuth compounds are commonly used as antidiarrheal and anti-ulcer agents due to their antibacterial properties. They can be found in medications like Pepto-Bismol and Kaopectate. It's important to note that bismuth itself is not used medically, but its compounds have medical applications.

The pyloric antrum is the distal part of the stomach, which is the last portion that precedes the pylorus and the beginning of the duodenum. It is a thickened, muscular area responsible for grinding and mixing food with gastric juices during digestion. The pyloric antrum also helps regulate the passage of chyme (partially digested food) into the small intestine through the pyloric sphincter, which controls the opening and closing of the pylorus. This region is crucial in the gastrointestinal tract's motor functions and overall digestive process.

A stomach ulcer, also known as a gastric ulcer, is a sore that forms in the lining of the stomach. It's caused by a breakdown in the mucous layer that protects the stomach from digestive juices, allowing acid to come into contact with the stomach lining and cause an ulcer. The most common causes are bacterial infection (usually by Helicobacter pylori) and long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs). Stomach ulcers may cause symptoms such as abdominal pain, bloating, heartburn, and nausea. If left untreated, they can lead to more serious complications like internal bleeding, perforation, or obstruction.

A breath test is a medical or forensic procedure used to analyze a sample of exhaled breath in order to detect and measure the presence of various substances, most commonly alcohol. The test is typically conducted using a device called a breathalyzer, which measures the amount of alcohol in the breath and converts it into a reading of blood alcohol concentration (BAC).

In addition to alcohol, breath tests can also be used to detect other substances such as drugs or volatile organic compounds (VOCs) that may indicate certain medical conditions. However, these types of breath tests are less common and may not be as reliable or accurate as other diagnostic tests.

Breath testing is commonly used by law enforcement officers to determine whether a driver is impaired by alcohol and to establish probable cause for arrest. It is also used in some healthcare settings to monitor patients who are being treated for alcohol abuse or dependence.

2-Pyridinylmethylsulfinylbenzimidazoles is a class of chemical compounds that have both a pyridinylmethylsulfinyl group and a benzimidazole ring in their structure. Pyridinylmethylsulfinyl refers to a functional group consisting of a sulfinyl group (-S(=O)-) attached to a methyl group (-CH2-) that is, in turn, attached to a pyridine ring. Benzimidazoles are heterocyclic compounds containing a fused benzene and imidazole ring.

These types of compounds have been studied for their potential biological activity, including anti-inflammatory, antiviral, and antitumor properties. However, it's important to note that medical definitions typically refer to specific substances or classes of substances that have established clinical use or are under investigation for therapeutic purposes. As such, 2-Pyridinylmethylsulfinylbenzimidazoles do not have a recognized medical definition in this sense.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Gastroscopy is a medical procedure that involves the insertion of a gastroscope, which is a thin, flexible tube with a camera and light on the end, through the mouth and into the digestive tract. The gastroscope allows the doctor to visually examine the lining of the esophagus, stomach, and duodenum (the first part of the small intestine) for any abnormalities such as inflammation, ulcers, or tumors.

The procedure is usually performed under sedation to minimize discomfort, and it typically takes only a few minutes to complete. Gastroscopy can help diagnose various conditions, including gastroesophageal reflux disease (GERD), gastritis, stomach ulcers, and Barrett's esophagus. It can also be used to take tissue samples for biopsy or to treat certain conditions, such as bleeding or the removal of polyps.

Lansoprazole is a medication that belongs to a class of drugs called proton pump inhibitors (PPIs). It works by reducing the amount of acid produced in the stomach. The medical definition of Lansoprazole is:

A substituted benzimidazole that is a selective gastric proton pump inhibitor, which suppresses gastric acid secretion by specific inhibition of the H+/K+ ATPase enzyme system at the secretory surface of the gastric parietal cell. It is used as an effective therapy for various gastrointestinal disorders, including gastric and duodenal ulcers, erosive esophagitis, and gastroesophageal reflux disease (GERD). Lansoprazole is available in the form of capsules or oral granules for delayed-release oral administration.

Here's a brief overview of its mechanism of action:

* Lansoprazole is absorbed into the bloodstream and transported to the parietal cells in the stomach, where it is converted into its active form.
* The active form of lansoprazole binds to and inhibits the H+/K+ ATPase enzyme system, which is responsible for pumping hydrogen ions (protons) from the cytoplasm of the parietal cell into the lumen of the stomach, where they combine with chloride ions to form hydrochloric acid.
* By inhibiting this proton pump, lansoprazole reduces the amount of acid produced in the stomach, which helps to relieve symptoms and promote healing of gastrointestinal disorders.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Proton pump inhibitors (PPIs) are a class of medications that work to reduce gastric acid production by blocking the action of proton pumps in the parietal cells of the stomach. These drugs are commonly used to treat gastroesophageal reflux disease (GERD), peptic ulcers, and other conditions where excessive stomach acid is a problem.

PPIs include several different medications such as omeprazole, lansoprazole, rabeprazole, pantoprazole, and esomeprazole. They are usually taken orally, but some PPIs are also available in intravenous (IV) form for hospital use.

By inhibiting the action of proton pumps, PPIs reduce the amount of acid produced in the stomach, which can help to relieve symptoms such as heartburn, chest pain, and difficulty swallowing. They are generally considered safe and effective when used as directed, but long-term use may increase the risk of certain side effects, including bone fractures, vitamin B12 deficiency, and Clostridium difficile infection.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Metaplasia is a term used in pathology to describe the replacement of one differentiated cell type with another differentiated cell type within a tissue or organ. It is an adaptive response of epithelial cells to chronic irritation, inflammation, or injury and can be reversible if the damaging stimulus is removed. Metaplastic changes are often associated with an increased risk of cancer development in the affected area.

For example, in the case of gastroesophageal reflux disease (GERD), chronic exposure to stomach acid can lead to metaplasia of the esophageal squamous epithelium into columnar epithelium, a condition known as Barrett's esophagus. This metaplastic change is associated with an increased risk of developing esophageal adenocarcinoma.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Tinidazole is an antiprotozoal and antibacterial medication used to treat various infections caused by parasites or bacteria. According to the Medical Dictionary, it is defined as:

"A synthetic nitroimidazole antimicrobial agent, similar to metronidazole, that is active against a wide range of anaerobic bacteria and protozoa, both pathogenic and nonpathogenic. It is used in the treatment of various clinical conditions, including bacterial vaginosis, amebiasis, giardiasis, trichomoniasis, and pseudomembranous colitis."

Tinidazole works by interfering with the DNA of the microorganisms, which leads to their death. It is available in oral tablet form and is typically prescribed for a duration of 2-5 days, depending on the type and severity of the infection being treated. Common side effects may include nausea, vomiting, diarrhea, stomach pain, headache, and changes in taste sensation.

The Lewis blood-group system is one of the human blood group systems, which is based on the presence or absence of two antigens: Lea and Leb. These antigens are carbohydrate structures that can be found on the surface of red blood cells (RBCs) as well as other cells and in various body fluids.

The Lewis system is unique because its antigens are not normally present at birth, but instead develop during early childhood or later in life due to the action of certain enzymes in the digestive tract. The production of Lea and Leb antigens depends on the activity of two genes, FUT3 (also known as Lewis gene) and FUT2 (also known as Secretor gene).

There are four main phenotypes or blood types in the Lewis system:

1. Le(a+b-): This is the most common phenotype, where individuals have both Lea and Leb antigens on their RBCs.
2. Le(a-b+): In this phenotype, individuals lack the Lea antigen but have the Leb antigen on their RBCs.
3. Le(a-b-): This is a rare phenotype where neither Lea nor Leb antigens are present on the RBCs.
4. Le(a+b+): In this phenotype, individuals have both Lea and Leb antigens on their RBCs due to the simultaneous expression of FUT3 and FUT2 genes.

The Lewis blood-group system is not typically associated with transfusion reactions or hemolytic diseases, unlike other blood group systems such as ABO and Rh. However, the presence or absence of Lewis antigens can still have implications for certain medical conditions and tests, including:

* Infectious diseases: Some bacteria and viruses can use the Lewis antigens as receptors to attach to and infect host cells. For example, Helicobacter pylori, which causes gastritis and peptic ulcers, binds to Lea antigens in the stomach.
* Autoimmune disorders: In some cases, autoantibodies against Lewis antigens have been found in patients with autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus (SLE).
* Pregnancy: The Lewis antigens can be expressed on the surface of placental cells, and changes in their expression have been linked to pregnancy complications such as preeclampsia and fetal growth restriction.
* Blood typing: Although not a primary factor in blood transfusion compatibility, the Lewis blood-group system is still considered when determining the best match for patients who require frequent transfusions or organ transplants.

Pepsinogen A is the inactive precursor form of the enzyme pepsin, which is produced in the stomach chief cells. Once exposed to acidic environment in the stomach, pepsinogen A is converted into its active form, pepsin. Pepsin plays a crucial role in digestion by breaking down proteins into smaller peptides. An elevated level of pepsinogen A in the blood may indicate damage to the stomach lining, such as that seen in gastritis or gastric cancer.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Gerbillinae is a subfamily of rodents that includes gerbils, jirds, and sand rats. These small mammals are primarily found in arid regions of Africa and Asia. They are characterized by their long hind legs, which they use for hopping, and their long, thin tails. Some species have adapted to desert environments by developing specialized kidneys that allow them to survive on minimal water intake.

Urea is not a medical condition but it is a medically relevant substance. Here's the definition:

Urea is a colorless, odorless solid that is the primary nitrogen-containing compound in the urine of mammals. It is a normal metabolic end product that is excreted by the kidneys and is also used as a fertilizer and in various industrial applications. Chemically, urea is a carbamide, consisting of two amino groups (NH2) joined by a carbon atom and having a hydrogen atom and a hydroxyl group (OH) attached to the carbon atom. Urea is produced in the liver as an end product of protein metabolism and is then eliminated from the body by the kidneys through urination. Abnormal levels of urea in the blood, known as uremia, can indicate impaired kidney function or other medical conditions.

Ranitidine is a histamine-2 (H2) blocker medication that works by reducing the amount of acid your stomach produces. It is commonly used to treat and prevent ulcers in the stomach and intestines, and to manage conditions where the stomach produces too much acid, such as Zollinger-Ellison syndrome.

Ranitidine is also used to treat gastroesophageal reflux disease (GERD) and other conditions in which acid backs up from the stomach into the esophagus, causing heartburn. Additionally, ranitidine can be used to prevent and treat upper gastrointestinal bleeding caused by stress or injury in critically ill patients.

The medication is available in both prescription and over-the-counter forms, and it comes in various forms, including tablets, capsules, and liquid solutions. As with any medication, ranitidine should be taken as directed by a healthcare professional, and its potential side effects and interactions with other medications should be carefully monitored.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Gastrointestinal endoscopy is a medical procedure that allows direct visualization of the inner lining of the digestive tract, which includes the esophagus, stomach, small intestine, large intestine (colon), and sometimes the upper part of the small intestine (duodenum). This procedure is performed using an endoscope, a long, thin, flexible tube with a light and camera at its tip. The endoscope is inserted through the mouth for upper endoscopy or through the rectum for lower endoscopy (colonoscopy), and the images captured by the camera are transmitted to a monitor for the physician to view.

Gastrointestinal endoscopy can help diagnose various conditions, such as inflammation, ulcers, tumors, polyps, or bleeding in the digestive tract. It can also be used for therapeutic purposes, such as removing polyps, taking tissue samples (biopsies), treating bleeding, and performing other interventions to manage certain digestive diseases.

There are different types of gastrointestinal endoscopy procedures, including:

1. Upper Endoscopy (Esophagogastroduodenoscopy or EGD): This procedure examines the esophagus, stomach, and duodenum.
2. Colonoscopy: This procedure examines the colon and rectum.
3. Sigmoidoscopy: A limited examination of the lower part of the colon (sigmoid colon) using a shorter endoscope.
4. Enteroscopy: An examination of the small intestine, which can be performed using various techniques, such as push enteroscopy, single-balloon enteroscopy, or double-balloon enteroscopy.
5. Capsule Endoscopy: A procedure that involves swallowing a small capsule containing a camera, which captures images of the digestive tract as it passes through.

Gastrointestinal endoscopy is generally considered safe when performed by experienced medical professionals. However, like any medical procedure, there are potential risks and complications, such as bleeding, infection, perforation, or adverse reactions to sedatives used during the procedure. Patients should discuss these risks with their healthcare provider before undergoing gastrointestinal endoscopy.

Duodenitis is a medical condition characterized by inflammation of the duodenum, which is the first part of the small intestine that receives chyme (partially digested food) from the stomach. The inflammation can cause symptoms such as abdominal pain, nausea, vomiting, and loss of appetite.

Duodenitis can be caused by various factors, including bacterial infections (such as Helicobacter pylori), regular use of nonsteroidal anti-inflammatory drugs (NSAIDs), excessive alcohol consumption, and autoimmune disorders like Crohn's disease. In some cases, the cause may remain unidentified, leading to a diagnosis of "non-specific duodenitis."

Treatment for duodenitis typically involves addressing the underlying cause, such as eradicating H. pylori infection or discontinuing NSAID use. Acid-suppressing medications and antacids may also be prescribed to alleviate symptoms and promote healing of the duodenal lining. In severe cases, endoscopic procedures or surgery might be necessary to manage complications like bleeding, perforation, or obstruction.

Furazolidone is defined as an antimicrobial agent with nitrofuran structure. It is primarily used in the treatment of intestinal amebiasis, traveller's diarrhea, and other types of bacterial diarrhea. Furazolidone works by inhibiting certain enzymes necessary for the survival of bacteria, thereby killing or stopping the growth of the microorganisms. It is also used as a preservative in some food products.

It's important to note that Furazolidone has been associated with rare but serious side effects such as lung and liver toxicity, so its use is generally restricted to short-term therapy and under close medical supervision.

Helicobacter mustelae is a gram-negative, spiral-shaped bacterium that colonizes the stomach of ferrets and some other mustelids. It is closely related to Helicobacter pylori, a bacterium known to cause gastritis, peptic ulcers, and gastric cancer in humans.

H. mustelae has been observed to cause similar gastrointestinal diseases in ferrets, making it an important model organism for studying H. pylori infection and related pathologies. Like H. pylori, H. mustelae produces urease, which helps it neutralize the acidic environment of the stomach and facilitates its survival and colonization.

While there is no direct evidence suggesting that H. mustelae can infect humans, researchers use this bacterium to study the pathogenesis and immune responses associated with Helicobacter infections, contributing to a better understanding of gastric diseases caused by these bacteria.

B-cell marginal zone lymphoma (MZL) is a type of indolent (slow-growing) non-Hodgkin lymphoma (NHL). It arises from B-lymphocytes, a type of white blood cell found in the lymphatic system. MZLs typically involve the marginal zone of lymphoid follicles, which are structures found in lymph nodes and other lymphatic tissues.

There are three subtypes of MZL: extranodal MZL (also known as mucosa-associated lymphoid tissue or MALT lymphoma), nodal MZL, and splenic MZL. Extranodal MZL is the most common form and can occur at various extranodal sites, such as the stomach, lungs, skin, eyes, and salivary glands. Nodal MZL involves the lymph nodes without evidence of extranodal disease, while splenic MZL primarily affects the spleen.

MZLs are typically low-grade malignancies, but they can transform into more aggressive forms over time. Treatment options depend on the stage and location of the disease, as well as the patient's overall health. Common treatments include watchful waiting, radiation therapy, chemotherapy, immunotherapy, targeted therapy, or a combination of these approaches.

Cytotoxins are substances that are toxic to cells. They can cause damage and death to cells by disrupting their membranes, interfering with their metabolism, or triggering programmed cell death (apoptosis). Cytotoxins can be produced by various organisms such as bacteria, fungi, plants, and animals, and they can also be synthesized artificially.

In medicine, cytotoxic drugs are used to treat cancer because they selectively target and kill rapidly dividing cells, including cancer cells. Examples of cytotoxic drugs include chemotherapy agents such as doxorubicin, cyclophosphamide, and methotrexate. However, these drugs can also damage normal cells, leading to side effects such as nausea, hair loss, and immune suppression.

It's important to note that cytotoxins are not the same as toxins, which are poisonous substances produced by living organisms that can cause harm to other organisms. While all cytotoxins are toxic to cells, not all toxins are cytotoxic. Some toxins may have systemic effects on organs or tissues rather than directly killing cells.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Gastrins are a group of hormones that are produced by G cells in the stomach lining. These hormones play an essential role in regulating gastric acid secretion and motor functions of the gastrointestinal tract. The most well-known gastrin is known as "gastrin-17," which is released into the bloodstream and stimulates the release of hydrochloric acid from parietal cells in the stomach lining.

Gastrins are stored in secretory granules within G cells, and their release is triggered by several factors, including the presence of food in the stomach, gastrin-releasing peptide (GRP), and vagus nerve stimulation. Once released, gastrins bind to specific receptors on parietal cells, leading to an increase in intracellular calcium levels and the activation of enzymes that promote hydrochloric acid secretion.

Abnormalities in gastrin production can lead to several gastrointestinal disorders, including gastrinomas (tumors that produce excessive amounts of gastrin), which can cause severe gastric acid hypersecretion and ulcers. Conversely, a deficiency in gastrin production can result in hypochlorhydria (low stomach acid levels) and impaired digestion.

Rabeprazole is a medication that belongs to a class of drugs called proton pump inhibitors (PPIs). The medical definition of Rabeprazole is:

A substituted benzimidazole that acts as a prodrug, being selectively converted to the active form in the acidic environment of gastric parietal cells. It suppresses gastric acid secretion by inhibiting the H+/K+ ATPase enzyme system at the secretory surface of the gastric parietal cell. Rabeprazole is used in the treatment of gastroesophageal reflux disease (GERD), peptic ulcers, and Zollinger-Ellison syndrome. It is available by prescription in various forms, including tablets and sodium salt for oral administration.

In simpler terms, Rabeprazole works by reducing the amount of acid produced in the stomach, which helps to prevent and heal damage to the esophagus and stomach caused by excessive acid production.

Gastric acid, also known as stomach acid, is a digestive fluid produced in the stomach. It's primarily composed of hydrochloric acid (HCl), potassium chloride (KCl), and sodium chloride (NaCl). The pH of gastric acid is typically between 1.5 and 3.5, making it a strong acid that helps to break down food by denaturing proteins and activating digestive enzymes.

The production of gastric acid is regulated by the enteric nervous system and several hormones. The primary function of gastric acid is to initiate protein digestion, activate pepsinogen into the active enzyme pepsin, and kill most ingested microorganisms. However, an excess or deficiency in gastric acid secretion can lead to various gastrointestinal disorders such as gastritis, ulcers, and gastroesophageal reflux disease (GERD).

Gastric mucins refer to the mucin proteins that are produced and secreted by the mucus-secreting cells in the stomach lining, also known as gastric mucosa. These mucins are part of the gastric mucus layer that coats and protects the stomach from damage caused by digestive acids and enzymes, as well as from physical and chemical injuries.

Gastric mucins have a complex structure and are composed of large glycoprotein molecules that contain both protein and carbohydrate components. They form a gel-like substance that provides a physical barrier between the stomach lining and the gastric juices, preventing acid and enzymes from damaging the underlying tissues.

There are several types of gastric mucins, including MUC5AC and MUC6, which have different structures and functions. MUC5AC is the predominant mucin in the stomach and is produced by surface mucous cells, while MUC6 is produced by deeper glandular cells.

Abnormalities in gastric mucin production or composition can contribute to various gastrointestinal disorders, including gastritis, gastric ulcers, and gastric cancer.

Antacids are a type of medication that is used to neutralize stomach acid and provide rapid relief from symptoms such as heartburn, indigestion, and stomach discomfort. They work by chemically reacting with the stomach acid to reduce its acidity. Antacids may contain one or more active ingredients, including aluminum hydroxide, calcium carbonate, magnesium hydroxide, and sodium bicarbonate.

Antacids are available over-the-counter in various forms, such as tablets, chewable tablets, liquids, and powders. They can provide quick relief from acid reflux and related symptoms; however, they may not be effective for treating the underlying cause of these symptoms. Therefore, if you experience frequent or severe symptoms, it is recommended to consult a healthcare professional for further evaluation and treatment.

Pepsinogens are inactive precursor forms of the enzyme pepsin, which is produced in the stomach. They are composed of two types: Pepsinogen I (or gastric intrinsic factor) and Pepsinogen II. When exposed to acid in the stomach, these pepsinogens get converted into their active form, pepsin, which helps digest proteins in food. Measurement of pepsinogens in blood can be used as a diagnostic marker for certain stomach conditions, such as atrophic gastritis and gastric cancer.

Pepsinogen C is not typically referred to as a medical term. However, pepsinogens are proenzymes, or inactive forms, of the enzyme pepsin, which plays a crucial role in digesting proteins in the stomach. Pepsinogen C is one of the three types of pepsinogens (A, C, and F) found in the gastric mucosa.

Pepsinogen C is produced mainly by the chief cells in the fundic region of the stomach. Its primary function is to protect the gastric mucosa from self-digestion by remaining in an inactive state until it is converted into pepsin upon exposure to hydrochloric acid in the stomach.

While pepsinogen C has been studied in relation to gastric diseases, such as atrophic gastritis and gastric cancer, it is not commonly used as a clinical marker or diagnostic tool compared to pepsinogen I and pepsinogen II.

Tetracycline is a broad-spectrum antibiotic, which is used to treat various bacterial infections. It works by preventing the growth and multiplication of bacteria. It is a part of the tetracycline class of antibiotics, which also includes doxycycline, minocycline, and others.

Tetracycline is effective against a wide range of gram-positive and gram-negative bacteria, as well as some atypical organisms such as rickettsia, chlamydia, mycoplasma, and spirochetes. It is commonly used to treat respiratory infections, skin infections, urinary tract infections, sexually transmitted diseases, and other bacterial infections.

Tetracycline is available in various forms, including tablets, capsules, and liquid solutions. It should be taken orally with a full glass of water, and it is recommended to take it on an empty stomach, at least one hour before or two hours after meals. The drug can cause tooth discoloration in children under the age of 8, so it is generally not recommended for use in this population.

Like all antibiotics, tetracycline should be used only to treat bacterial infections and not viral infections, such as the common cold or flu. Overuse or misuse of antibiotics can lead to antibiotic resistance, which makes it harder to treat infections in the future.

Antitrichomonatal agents are a group of medications specifically used to treat infections caused by the protozoan parasite, Trichomonas vaginalis. The most common antitrichomonal agent is metronidazole, which works by disrupting the parasite's ability to reproduce and survive within the human body. Other antitrichomonal agents include tinidazole and secnidazole, which also belong to the nitroimidazole class of antibiotics. These medications are available in various forms, such as tablets, capsules, or topical creams, and are typically prescribed by healthcare professionals for the treatment of trichomoniasis, a common sexually transmitted infection (STI) that can affect both men and women. It is important to note that these medications should only be used under the guidance of a healthcare provider, as they may have potential side effects and drug interactions.

Nitroreductases are a group of enzymes that can reduce nitro groups (-NO2) to nitroso groups (-NHOH) or amino groups (-NH2) in various organic compounds. These enzymes are widely distributed in nature and found in many different types of organisms, including bacteria, fungi, plants, and animals.

In medicine, nitroreductases have been studied for their potential role in the activation of certain drugs or prodrugs. For example, some anticancer agents such as CB1954 (also known as 5-(aziridin-1-yl)-2,4-dinitrobenzamide) are relatively inert until they are reduced by nitroreductases to more reactive metabolites that can interact with DNA and other cellular components. This property has been exploited in the development of targeted cancer therapies that selectively deliver prodrugs to tumor cells, where they can be activated by endogenous nitroreductases to kill the cancer cells while minimizing toxicity to normal tissues.

Nitroreductases have also been implicated in the development of bacterial resistance to certain antibiotics, such as metronidazole and nitrofurantoin. These drugs are activated by nitroreductases in bacteria, but overexpression or mutation of the enzyme can lead to reduced drug activation and increased resistance.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Penicillins are a group of antibiotics derived from the Penicillium fungus. They are widely used to treat various bacterial infections due to their bactericidal activity, which means they kill bacteria by interfering with the synthesis of their cell walls. The first penicillin, benzylpenicillin (also known as penicillin G), was discovered in 1928 by Sir Alexander Fleming. Since then, numerous semi-synthetic penicillins have been developed to expand the spectrum of activity and stability against bacterial enzymes that can inactivate these drugs.

Penicillins are classified into several groups based on their chemical structure and spectrum of activity:

1. Natural Penicillins (e.g., benzylpenicillin, phenoxymethylpenicillin): These have a narrow spectrum of activity, mainly targeting Gram-positive bacteria such as streptococci and staphylococci. However, they are susceptible to degradation by beta-lactamase enzymes produced by some bacteria.
2. Penicillinase-resistant Penicillins (e.g., methicillin, oxacillin, nafcillin): These penicillins resist degradation by certain bacterial beta-lactamases and are primarily used to treat infections caused by staphylococci, including methicillin-susceptible Staphylococcus aureus (MSSA).
3. Aminopenicillins (e.g., ampicillin, amoxicillin): These penicillins have an extended spectrum of activity compared to natural penicillins, including some Gram-negative bacteria such as Escherichia coli and Haemophilus influenzae. However, they are still susceptible to degradation by many beta-lactamases.
4. Antipseudomonal Penicillins (e.g., carbenicillin, ticarcillin): These penicillins have activity against Pseudomonas aeruginosa and other Gram-negative bacteria with increased resistance to other antibiotics. They are often combined with beta-lactamase inhibitors such as clavulanate or tazobactam to protect them from degradation.
5. Extended-spectrum Penicillins (e.g., piperacillin): These penicillins have a broad spectrum of activity, including many Gram-positive and Gram-negative bacteria. They are often combined with beta-lactamase inhibitors to protect them from degradation.

Penicillins are generally well-tolerated antibiotics; however, they can cause allergic reactions in some individuals, ranging from mild skin rashes to life-threatening anaphylaxis. Cross-reactivity between different penicillin classes and other beta-lactam antibiotics (e.g., cephalosporins) is possible but varies depending on the specific drugs involved.

Virulence, in the context of medicine and microbiology, refers to the degree or severity of damage or harm that a pathogen (like a bacterium, virus, fungus, or parasite) can cause to its host. It is often associated with the ability of the pathogen to invade and damage host tissues, evade or suppress the host's immune response, replicate within the host, and spread between hosts.

Virulence factors are the specific components or mechanisms that contribute to a pathogen's virulence, such as toxins, enzymes, adhesins, and capsules. These factors enable the pathogen to establish an infection, cause tissue damage, and facilitate its transmission between hosts. The overall virulence of a pathogen can be influenced by various factors, including host susceptibility, environmental conditions, and the specific strain or species of the pathogen.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Virulence factors are characteristics or components of a microorganism, such as bacteria, viruses, fungi, or parasites, that contribute to its ability to cause damage or disease in a host organism. These factors can include various structures, enzymes, or toxins that allow the pathogen to evade the host's immune system, attach to and invade host tissues, obtain nutrients from the host, or damage host cells directly.

Examples of virulence factors in bacteria include:

1. Endotoxins: lipopolysaccharides found in the outer membrane of Gram-negative bacteria that can trigger a strong immune response and inflammation.
2. Exotoxins: proteins secreted by some bacteria that have toxic effects on host cells, such as botulinum toxin produced by Clostridium botulinum or diphtheria toxin produced by Corynebacterium diphtheriae.
3. Adhesins: structures that help the bacterium attach to host tissues, such as fimbriae or pili in Escherichia coli.
4. Capsules: thick layers of polysaccharides or proteins that surround some bacteria and protect them from the host's immune system, like those found in Streptococcus pneumoniae or Klebsiella pneumoniae.
5. Invasins: proteins that enable bacteria to invade and enter host cells, such as internalins in Listeria monocytogenes.
6. Enzymes: proteins that help bacteria obtain nutrients from the host by breaking down various molecules, like hemolysins that lyse red blood cells to release iron or hyaluronidases that degrade connective tissue.

Understanding virulence factors is crucial for developing effective strategies to prevent and treat infectious diseases caused by these microorganisms.

Parietal cells, also known as oxyntic cells, are a type of cell found in the gastric glands of the stomach lining. They play a crucial role in digestion by releasing hydrochloric acid and intrinsic factor into the stomach lumen. Hydrochloric acid is essential for breaking down food particles and creating an acidic environment that kills most bacteria, while intrinsic factor is necessary for the absorption of vitamin B12 in the small intestine. Parietal cells are stimulated by histamine, acetylcholine, and gastrin to release their secretory products.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

Bacterial adhesion is the initial and crucial step in the process of bacterial colonization, where bacteria attach themselves to a surface or tissue. This process involves specific interactions between bacterial adhesins (proteins, fimbriae, or pili) and host receptors (glycoproteins, glycolipids, or extracellular matrix components). The attachment can be either reversible or irreversible, depending on the strength of interaction. Bacterial adhesion is a significant factor in initiating biofilm formation, which can lead to various infectious diseases and medical device-associated infections.

Sulfoxides are organic compounds characterized by the functional group consisting of a sulfur atom bonded to two oxygen atoms and a carbon atom. The general structure is R-S(=O)O-R', where R and R' represent alkyl or aryl groups. They are often formed by the oxidation of sulfides, which contain a sulfur atom bonded to two carbon atoms. Sulfoxides have a trigonal pyramidal geometry at the sulfur atom due to the presence of two electron-withdrawing oxygen atoms. They exhibit properties of both polar and nonpolar compounds, making them useful as solvents and intermediates in organic synthesis.

Endoscopy of the digestive system, also known as gastrointestinal (GI) endoscopy, is a medical procedure that allows healthcare professionals to visually examine the inside lining of the digestive tract using a flexible tube with a light and camera attached to it, called an endoscope. This procedure can help diagnose and treat various conditions affecting the digestive system, including gastroesophageal reflux disease (GERD), ulcers, inflammatory bowel disease (IBD), and cancer.

There are several types of endoscopy procedures that focus on different parts of the digestive tract:

1. Esophagogastroduodenoscopy (EGD): This procedure examines the esophagus, stomach, and duodenum (the first part of the small intestine). It is often used to investigate symptoms such as difficulty swallowing, abdominal pain, or bleeding in the upper GI tract.
2. Colonoscopy: This procedure explores the large intestine (colon) and rectum. It is commonly performed to screen for colon cancer, as well as to diagnose and treat conditions like inflammatory bowel disease, diverticulosis, or polyps.
3. Sigmoidoscopy: Similar to a colonoscopy, this procedure examines the lower part of the colon (sigmoid colon) and rectum. It is often used as a screening tool for colon cancer and to investigate symptoms like rectal bleeding or changes in bowel habits.
4. Upper GI endoscopy: This procedure focuses on the esophagus, stomach, and duodenum, using a thin, flexible tube with a light and camera attached to it. It is used to diagnose and treat conditions such as GERD, ulcers, and difficulty swallowing.
5. Capsule endoscopy: This procedure involves swallowing a small capsule containing a camera that captures images of the digestive tract as it passes through. It can help diagnose conditions in the small intestine that may be difficult to reach with traditional endoscopes.

Endoscopy is typically performed under sedation or anesthesia to ensure patient comfort during the procedure. The images captured by the endoscope are displayed on a monitor, allowing the healthcare provider to assess the condition of the digestive tract and make informed treatment decisions.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

'Campylobacter' is a genus of gram-negative, spiral-shaped bacteria that are commonly found in the intestinal tracts of animals, including birds and mammals. These bacteria are a leading cause of bacterial foodborne illness worldwide, with Campylobacter jejuni being the most frequently identified species associated with human infection.

Campylobacter infection, also known as campylobacteriosis, typically causes symptoms such as diarrhea (often bloody), abdominal cramps, fever, and vomiting. The infection is usually acquired through the consumption of contaminated food or water, particularly undercooked poultry, raw milk, and contaminated produce. It can also be transmitted through contact with infected animals or their feces.

While most cases of campylobacteriosis are self-limiting and resolve within a week without specific treatment, severe or prolonged infections may require antibiotic therapy. In rare cases, Campylobacter infection can lead to serious complications such as bacteremia (bacterial bloodstream infection), meningitis, or Guillain-Barré syndrome, a neurological disorder that can cause muscle weakness and paralysis.

Preventive measures include proper food handling and cooking techniques, thorough handwashing, and avoiding cross-contamination between raw and cooked foods.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Organometallic compounds are a type of chemical compound that contain at least one metal-carbon bond. This means that the metal is directly attached to carbon atom(s) from an organic molecule. These compounds can be synthesized through various methods, and they have found widespread use in industrial and medicinal applications, including catalysis, polymerization, and pharmaceuticals.

It's worth noting that while organometallic compounds contain metal-carbon bonds, not all compounds with metal-carbon bonds are considered organometallic. For example, in classical inorganic chemistry, simple salts of metal carbonyls (M(CO)n) are not typically classified as organometallic, but rather as metal carbonyl complexes. The distinction between these classes of compounds can sometimes be subtle and is a matter of ongoing debate among chemists.

Gastric juice is a digestive fluid that is produced in the stomach. It is composed of several enzymes, including pepsin, which helps to break down proteins, and gastric amylase, which begins the digestion of carbohydrates. Gastric juice also contains hydrochloric acid, which creates a low pH environment in the stomach that is necessary for the activation of pepsin and the digestion of food. Additionally, gastric juice contains mucus, which helps to protect the lining of the stomach from the damaging effects of the hydrochloric acid. The production of gastric juice is controlled by hormones and the autonomic nervous system.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

23S Ribosomal RNA (rRNA) is a type of rRNA that is a component of the large ribosomal subunit in both prokaryotic and eukaryotic cells. In prokaryotes, the large ribosomal subunit contains 50S, which consists of 23S rRNA, 5S rRNA, and around 33 proteins. The 23S rRNA plays a crucial role in the decoding of mRNA during protein synthesis and also participates in the formation of the peptidyl transferase center, where peptide bonds are formed between amino acids.

The 23S rRNA is a long RNA molecule that contains both coding and non-coding regions. It has a complex secondary structure, which includes several domains and subdomains, as well as numerous stem-loop structures. These structures are important for the proper functioning of the ribosome during protein synthesis.

In addition to its role in protein synthesis, 23S rRNA has been used as a target for antibiotics that inhibit bacterial growth. For example, certain antibiotics bind to specific regions of the 23S rRNA and interfere with the function of the ribosome, thereby preventing bacterial protein synthesis and growth. However, because eukaryotic cells do not have a 23S rRNA equivalent, these antibiotics are generally not toxic to human cells.

Gastrointestinal diseases refer to a group of conditions that affect the gastrointestinal (GI) tract, which includes the organs from the mouth to the anus, responsible for food digestion, absorption, and elimination of waste. These diseases can affect any part of the GI tract, causing various symptoms such as abdominal pain, bloating, diarrhea, constipation, nausea, vomiting, and weight loss.

Common gastrointestinal diseases include:

1. Gastroesophageal reflux disease (GERD) - a condition where stomach acid flows back into the esophagus, causing heartburn and other symptoms.
2. Peptic ulcers - sores that develop in the lining of the stomach or duodenum, often caused by bacterial infection or long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs).
3. Inflammatory bowel disease (IBD) - a group of chronic inflammatory conditions of the intestine, including Crohn's disease and ulcerative colitis.
4. Irritable bowel syndrome (IBS) - a functional gastrointestinal disorder characterized by abdominal pain, bloating, and altered bowel habits.
5. Celiac disease - an autoimmune disorder where the ingestion of gluten leads to damage in the small intestine.
6. Diverticular disease - a condition that affects the colon, causing diverticula (small pouches) to form and potentially become inflamed or infected.
7. Constipation - a common gastrointestinal symptom characterized by infrequent bowel movements, hard stools, and difficulty passing stools.
8. Diarrhea - a common gastrointestinal symptom characterized by loose, watery stools and frequent bowel movements.
9. Food intolerances and allergies - adverse reactions to specific foods or food components that can cause various gastrointestinal symptoms.
10. Gastrointestinal infections - caused by bacteria, viruses, parasites, or fungi that can lead to a range of symptoms, including diarrhea, vomiting, and abdominal pain.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

I'm sorry for any confusion, but "Animal Hepatitis" is not a medical term used to describe a specific disease. Hepatitis refers to inflammation of the liver, and it can be caused by various factors, including viruses, alcohol, drugs, and certain medical conditions.

However, there are several viral hepatitis types that can infect animals, such as Hepatitis A, B, and C, which primarily affect humans. But there are also other hepatitis viruses that are species-specific and primarily infect animals, such as:

1. Canine Hepatitis (Adenovirus Type 1): This is a viral infection that affects dogs and causes liver damage, respiratory signs, and occasionally death.
2. Feline Infectious Peritonitis (FIP) Virus: While not strictly a hepatitis virus, this feline coronavirus can cause severe inflammation of the liver and other organs in cats.
3. Equine Infectious Anemia Virus (EIAV): This retrovirus affects horses and causes cyclic fever, anemia, and occasionally liver disease.
4. Avian Hepatitis E Virus: A recently discovered virus that infects birds and can cause hepatitis and other systemic signs in chickens and other avian species.

If you're looking for information on a specific animal hepatitis virus or a different medical term, please provide more context so I can give you a more accurate answer.

Achlorhydria is a medical condition characterized by the absence or near-absence of hydrochloric acid in the stomach. Hydrochloric acid is a digestive fluid that helps to break down food, particularly proteins, and also creates an acidic environment that prevents harmful bacteria from growing in the stomach.

Achlorhydria can be caused by various factors, including certain medications, autoimmune disorders, aging, or surgical removal of the stomach. Symptoms of achlorhydria may include indigestion, bloating, abdominal pain, and malabsorption of nutrients. If left untreated, it can lead to complications such as anemia, vitamin B12 deficiency, and increased risk of gastrointestinal infections.

It is important to note that achlorhydria can be diagnosed through various tests, including a gastric acid analysis or a pH test. Treatment for achlorhydria may involve supplementing with hydrochloric acid or other digestive enzymes, modifying the diet, and addressing any underlying conditions.

CD15 is a type of antigen that is found on the surface of certain types of white blood cells called neutrophils and monocytes. It is also expressed on some types of cancer cells, including myeloid leukemia cells and some lymphomas. CD15 antigens are part of a group of molecules known as carbohydrate antigens because they contain sugar-like substances called carbohydrates.

CD15 antigens play a role in the immune system's response to infection and disease. They can be recognized by certain types of immune cells, such as natural killer (NK) cells and cytotoxic T cells, which can then target and destroy cells that express CD15 antigens. In cancer, the presence of CD15 antigens on the surface of cancer cells can make them more visible to the immune system, potentially triggering an immune response against the cancer.

CD15 antigens are also used as a marker in laboratory tests to help identify and classify different types of white blood cells and cancer cells. For example, CD15 staining is often used in the diagnosis of acute myeloid leukemia (AML) to distinguish it from other types of leukemia.

"Genomic Islands" are horizontally acquired DNA segments in bacterial and archaeal genomes that exhibit distinct features, such as different nucleotide composition (e.g., GC content) and codon usage compared to the rest of the genome. They often contain genes associated with mobile genetic elements, such as transposons, integrases, and phages, and are enriched for functions related to adaptive traits like antibiotic resistance, heavy metal tolerance, and virulence factors. These islands can be transferred between different strains or species through various mechanisms of horizontal gene transfer (HGT), including conjugation, transformation, and transduction, contributing significantly to bacterial evolution and diversity.

A bacterial genome is the complete set of genetic material, including both DNA and RNA, found within a single bacterium. It contains all the hereditary information necessary for the bacterium to grow, reproduce, and survive in its environment. The bacterial genome typically includes circular chromosomes, as well as plasmids, which are smaller, circular DNA molecules that can carry additional genes. These genes encode various functional elements such as enzymes, structural proteins, and regulatory sequences that determine the bacterium's characteristics and behavior.

Bacterial genomes vary widely in size, ranging from around 130 kilobases (kb) in Mycoplasma genitalium to over 14 megabases (Mb) in Sorangium cellulosum. The complete sequencing and analysis of bacterial genomes have provided valuable insights into the biology, evolution, and pathogenicity of bacteria, enabling researchers to better understand their roles in various diseases and potential applications in biotechnology.

Seroepidemiologic studies are a type of epidemiological study that measures the presence and levels of antibodies in a population's blood serum to investigate the prevalence, distribution, and transmission of infectious diseases. These studies help to identify patterns of infection and immunity within a population, which can inform public health policies and interventions.

Seroepidemiologic studies typically involve collecting blood samples from a representative sample of individuals in a population and testing them for the presence of antibodies against specific pathogens. The results are then analyzed to estimate the prevalence of infection and immunity within the population, as well as any factors associated with increased or decreased risk of infection.

These studies can provide valuable insights into the spread of infectious diseases, including emerging and re-emerging infections, and help to monitor the effectiveness of vaccination programs. Additionally, seroepidemiologic studies can also be used to investigate the transmission dynamics of infectious agents, such as identifying sources of infection or tracking the spread of antibiotic resistance.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Peptic ulcer hemorrhage is a medical condition characterized by bleeding in the gastrointestinal tract due to a peptic ulcer. Peptic ulcers are open sores that develop on the lining of the stomach, lower esophagus, or small intestine. They are usually caused by infection with the bacterium Helicobacter pylori or long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs).

When a peptic ulcer bleeds, it can cause symptoms such as vomiting blood or passing black, tarry stools. In severe cases, the bleeding can lead to shock, which is a life-threatening condition characterized by a rapid heartbeat, low blood pressure, and confusion. Peptic ulcer hemorrhage is a serious medical emergency that requires immediate treatment. Treatment may include medications to reduce stomach acid, antibiotics to eliminate H. pylori infection, and endoscopic procedures to stop the bleeding. In some cases, surgery may be necessary to repair the ulcer or remove damaged tissue.

Interleukin-8 (IL-8) is a type of cytokine, which is a small signaling protein involved in immune response and inflammation. IL-8 is also known as neutrophil chemotactic factor or NCF because it attracts neutrophils, a type of white blood cell, to the site of infection or injury.

IL-8 is produced by various cells including macrophages, epithelial cells, and endothelial cells in response to bacterial or inflammatory stimuli. It acts by binding to specific receptors called CXCR1 and CXCR2 on the surface of neutrophils, which triggers a series of intracellular signaling events leading to neutrophil activation, migration, and degranulation.

IL-8 plays an important role in the recruitment of neutrophils to the site of infection or tissue damage, where they can phagocytose and destroy invading microorganisms. However, excessive or prolonged production of IL-8 has been implicated in various inflammatory diseases such as chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, and cancer.

Bacterial adhesins are proteins or structures on the surface of bacterial cells that allow them to attach to other cells or surfaces. This ability to adhere to host tissues is an important first step in the process of bacterial infection and colonization. Adhesins can recognize and bind to specific receptors on host cells, such as proteins or sugars, enabling the bacteria to establish a close relationship with the host and evade immune responses.

There are several types of bacterial adhesins, including fimbriae, pili, and non-fimbrial adhesins. Fimbriae and pili are thin, hair-like structures that extend from the bacterial surface and can bind to a variety of host cell receptors. Non-fimbrial adhesins are proteins that are directly embedded in the bacterial cell wall and can also mediate attachment to host cells.

Bacterial adhesins play a crucial role in the pathogenesis of many bacterial infections, including urinary tract infections, respiratory tract infections, and gastrointestinal infections. Understanding the mechanisms of bacterial adhesion is important for developing new strategies to prevent and treat bacterial infections.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Gastroesophageal reflux (GER) is the retrograde movement of stomach contents into the esophagus, which can cause discomfort and symptoms. It occurs when the lower esophageal sphincter (a ring of muscle between the esophagus and stomach) relaxes inappropriately, allowing the acidic or non-acidic gastric contents to flow back into the esophagus.

Gastroesophageal reflux becomes gastroesophageal reflux disease (GERD) when it is more severe, persistent, and/or results in complications such as esophagitis, strictures, or Barrett's esophagus. Common symptoms of GERD include heartburn, regurgitation, chest pain, difficulty swallowing, and chronic cough or hoarseness.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

There are many diseases that can affect cats, and the specific medical definitions for these conditions can be quite detailed and complex. However, here are some common categories of feline diseases and examples of each:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites. Examples include:
* Feline panleukopenia virus (FPV), also known as feline parvovirus, which can cause severe gastrointestinal symptoms and death in kittens.
* Feline calicivirus (FCV), which can cause upper respiratory symptoms such as sneezing and nasal discharge.
* Feline leukemia virus (FeLV), which can suppress the immune system and lead to a variety of secondary infections and diseases.
* Bacterial infections, such as those caused by Pasteurella multocida or Bartonella henselae, which can cause abscesses or other symptoms.
2. Neoplastic diseases: These are cancerous conditions that can affect various organs and tissues in cats. Examples include:
* Lymphoma, which is a common type of cancer in cats that can affect the lymph nodes, spleen, liver, and other organs.
* Fibrosarcoma, which is a type of soft tissue cancer that can arise from fibrous connective tissue.
* Squamous cell carcinoma, which is a type of skin cancer that can be caused by exposure to sunlight or tobacco smoke.
3. Degenerative diseases: These are conditions that result from the normal wear and tear of aging or other factors. Examples include:
* Osteoarthritis, which is a degenerative joint disease that can cause pain and stiffness in older cats.
* Dental disease, which is a common condition in cats that can lead to tooth loss, gum inflammation, and other problems.
* Heart disease, such as hypertrophic cardiomyopathy (HCM), which is a thickening of the heart muscle that can lead to congestive heart failure.
4. Hereditary diseases: These are conditions that are inherited from a cat's parents and are present at birth or develop early in life. Examples include:
* Polycystic kidney disease (PKD), which is a genetic disorder that causes cysts to form in the kidneys and can lead to kidney failure.
* Hypertrophic cardiomyopathy (HCM), which can be inherited as an autosomal dominant trait in some cats.
* Progressive retinal atrophy (PRA), which is a group of genetic disorders that cause degeneration of the retina and can lead to blindness.

Serologic tests are laboratory tests that detect the presence or absence of antibodies or antigens in a patient's serum (the clear liquid that separates from clotted blood). These tests are commonly used to diagnose infectious diseases, as well as autoimmune disorders and other medical conditions.

In serologic testing for infectious diseases, a sample of the patient's blood is collected and allowed to clot. The serum is then separated from the clot and tested for the presence of antibodies that the body has produced in response to an infection. The test may be used to identify the specific type of infection or to determine whether the infection is active or has resolved.

Serologic tests can also be used to diagnose autoimmune disorders, such as rheumatoid arthritis and lupus, by detecting the presence of antibodies that are directed against the body's own tissues. These tests can help doctors confirm a diagnosis and monitor the progression of the disease.

It is important to note that serologic tests are not always 100% accurate and may produce false positive or false negative results. Therefore, they should be interpreted in conjunction with other clinical findings and laboratory test results.

'Azure stains' is a term used in pathology to describe a histological staining technique that uses a type of dye called methyl blue, which turns the stained structures a blue-purple color. This technique is often used to stain acid mucins, which are found in various types of tissues and can be indicative of certain medical conditions.

In particular, azure stains are sometimes used to help diagnose certain types of cancer, such as mucoepidermoid carcinoma, a type of salivary gland tumor that produces acid mucins. The staining technique can help pathologists identify the presence and distribution of these mucins within the tumor cells, which can aid in making an accurate diagnosis and determining the best course of treatment.

It's worth noting that there are several different types of histological stains that use various dyes to highlight different structures or features within tissues. Azure stains are just one example of these techniques, and they are typically used in conjunction with other staining methods to provide a comprehensive picture of the tissue being examined.

Gastric acidity determination is a medical test used to measure the amount of acid in the stomach. This test is often performed to diagnose or monitor conditions such as gastritis, gastroesophageal reflux disease (GERD), and Zollinger-Ellison syndrome. The test involves measuring the pH level of the stomach contents using a thin, flexible tube called a catheter that is passed through the nose and down into the stomach. In some cases, a small sample of stomach fluid may also be collected for further testing.

The normal range for gastric acidity is typically considered to be a pH level below 4. A higher pH level may indicate that the stomach is producing too little acid, while a lower pH level may suggest that it is producing too much. Based on the results of the test, healthcare providers can develop an appropriate treatment plan for the underlying condition causing abnormal gastric acidity.

Endoscopy is a medical procedure that involves the use of an endoscope, which is a flexible tube with a light and camera at the end, to examine the interior of a body cavity or organ. The endoscope is inserted through a natural opening in the body, such as the mouth or anus, or through a small incision. The images captured by the camera are transmitted to a monitor, allowing the physician to visualize the internal structures and detect any abnormalities, such as inflammation, ulcers, or tumors. Endoscopy can also be used for diagnostic purposes, such as taking tissue samples for biopsy, or for therapeutic purposes, such as removing polyps or performing minimally invasive surgeries.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

A precancerous condition, also known as a premalignant condition, is a state of abnormal cellular growth and development that has a higher-than-normal potential to progress into cancer. These conditions are characterized by the presence of certain anomalies in the cells, such as dysplasia (abnormal changes in cell shape or size), which can indicate an increased risk for malignant transformation.

It is important to note that not all precancerous conditions will eventually develop into cancer, and some may even regress on their own. However, individuals with precancerous conditions are often at a higher risk of developing cancer compared to the general population. Regular monitoring and appropriate medical interventions, if necessary, can help manage this risk and potentially prevent or detect cancer at an early stage when it is more treatable.

Examples of precancerous conditions include:

1. Dysplasia in the cervix (cervical intraepithelial neoplasia or CIN)
2. Atypical ductal hyperplasia or lobular hyperplasia in the breast
3. Actinic keratosis on the skin
4. Leukoplakia in the mouth
5. Barrett's esophagus in the digestive tract

Regular medical check-ups, screenings, and lifestyle modifications are crucial for individuals with precancerous conditions to monitor their health and reduce the risk of cancer development.

Rodent-borne diseases are infectious diseases transmitted to humans (and other animals) by rodents, their parasites or by contact with rodent urine, feces, or saliva. These diseases can be caused by viruses, bacteria, fungi, or parasites. Some examples of rodent-borne diseases include Hantavirus Pulmonary Syndrome, Leptospirosis, Salmonellosis, Rat-bite fever, and Plague. It's important to note that rodents can also cause allergic reactions in some people through their dander, urine, or saliva. Proper sanitation, rodent control measures, and protective equipment when handling rodents can help prevent the spread of these diseases.

Histamine H2 antagonists, also known as H2 blockers, are a class of medications that work by blocking the action of histamine on the H2 receptors in the stomach. Histamine is a chemical that is released by the body during an allergic reaction and can also be released by certain cells in the stomach in response to food or other stimuli. When histamine binds to the H2 receptors in the stomach, it triggers the release of acid. By blocking the action of histamine on these receptors, H2 antagonists reduce the amount of acid produced by the stomach, which can help to relieve symptoms such as heartburn, indigestion, and stomach ulcers. Examples of H2 antagonists include ranitidine (Zantac), famotidine (Pepcid), and cimetidine (Tagamet).

"Acinonyx" is a genus name that refers to a single species of big cat, the cheetah. The correct medical definition of "Acinonyx" is:

* Acinonyx jubatus: a large, slender wild cat that is known for its incredible speed and unique adaptations for running. It is the fastest land animal, capable of reaching speeds up to 60-70 miles per hour. The cheetah's body is built for speed, with long legs, a flexible spine, and a non-retractable claw that provides traction while running.

The cheetah's habitat ranges from the savannas of Africa to the deserts of Iran. It primarily hunts medium-sized ungulates, such as gazelles and wildebeest. The cheetah's population has been declining due to habitat loss, human-wildlife conflict, and illegal wildlife trade. Conservation efforts are underway to protect this iconic species and its habitat.

Benzimidazoles are a class of heterocyclic compounds containing a benzene fused to a imidazole ring. They have a wide range of pharmacological activities and are used in the treatment of various diseases. Some of the benzimidazoles are used as antiparasitics, such as albendazole and mebendazole, which are effective against a variety of worm infestations. Other benzimidazoles have antifungal properties, such as thiabendazole and fuberidazole, and are used to treat fungal infections. Additionally, some benzimidazoles have been found to have anti-cancer properties and are being investigated for their potential use in cancer therapy.

I'm sorry for any confusion, but "Nickel" is not a medical term. It is a chemical element with the symbol Ni and atomic number 28. Nickel is a hard, silvery-white lustrous metal with a slight golden tinge. It is one of four elements that are ferromagnetic and is used as a common component in various alloys due to its properties such as resistance to corrosion and heat.

However, in a medical context, nickel may refer to:

* Nickel allergy: A type of allergic contact dermatitis caused by an immune system response to the presence of nickel in jewelry, clothing fasteners, or other items that come into contact with the skin. Symptoms can include redness, itching, and rash at the site of exposure.
* Nickel carbonyl: A highly toxic chemical compound (Ni(CO)4) that can cause respiratory and neurological problems if inhaled. It is produced during some industrial processes involving nickel and carbon monoxide and poses a health risk to workers if proper safety measures are not taken.

If you have any concerns about exposure to nickel or symptoms related to nickel allergy, it's best to consult with a healthcare professional for further evaluation and treatment.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Bacterial vaccines are types of vaccines that are created using bacteria or parts of bacteria as the immunogen, which is the substance that triggers an immune response in the body. The purpose of a bacterial vaccine is to stimulate the immune system to develop protection against specific bacterial infections.

There are several types of bacterial vaccines, including:

1. Inactivated or killed whole-cell vaccines: These vaccines contain entire bacteria that have been killed or inactivated through various methods, such as heat or chemicals. The bacteria can no longer cause disease, but they still retain the ability to stimulate an immune response.
2. Subunit, protein, or polysaccharide vaccines: These vaccines use specific components of the bacterium, such as proteins or polysaccharides, that are known to trigger an immune response. By using only these components, the vaccine can avoid using the entire bacterium, which may reduce the risk of adverse reactions.
3. Live attenuated vaccines: These vaccines contain live bacteria that have been weakened or attenuated so that they cannot cause disease but still retain the ability to stimulate an immune response. This type of vaccine can provide long-lasting immunity, but it may not be suitable for people with weakened immune systems.

Bacterial vaccines are essential tools in preventing and controlling bacterial infections, reducing the burden of diseases such as tuberculosis, pneumococcal disease, meningococcal disease, and Haemophilus influenzae type b (Hib) disease. They work by exposing the immune system to a harmless form of the bacteria or its components, which triggers the production of antibodies and memory cells that can recognize and fight off future infections with that same bacterium.

It's important to note that while vaccines are generally safe and effective, they may cause mild side effects such as pain, redness, or swelling at the injection site, fever, or fatigue. Serious side effects are rare but can occur, so it's essential to consult with a healthcare provider before receiving any vaccine.

Esophagitis is a medical condition characterized by inflammation and irritation of the esophageal lining, which is the muscular tube that connects the throat to the stomach. This inflammation can cause symptoms such as difficulty swallowing, chest pain, heartburn, and acid reflux.

Esophagitis can be caused by various factors, including gastroesophageal reflux disease (GERD), infection, allergies, medications, and chronic vomiting. Prolonged exposure to stomach acid can also cause esophagitis, leading to a condition called reflux esophagitis.

If left untreated, esophagitis can lead to complications such as strictures, ulcers, and Barrett's esophagus, which is a precancerous condition that increases the risk of developing esophageal cancer. Treatment for esophagitis typically involves addressing the underlying cause, managing symptoms, and protecting the esophageal lining to promote healing.

Vacuoles are membrane-bound organelles found in the cells of most eukaryotic organisms. They are essentially fluid-filled sacs that store various substances, such as enzymes, waste products, and nutrients. In plants, vacuoles often contain water, ions, and various organic compounds, while in fungi, they may store lipids or pigments. Vacuoles can also play a role in maintaining the turgor pressure of cells, which is critical for cell shape and function.

In animal cells, vacuoles are typically smaller and less numerous than in plant cells. Animal cells have lysosomes, which are membrane-bound organelles that contain digestive enzymes and break down waste materials, cellular debris, and foreign substances. Lysosomes can be considered a type of vacuole, but they are more specialized in their function.

Overall, vacuoles are essential for maintaining the health and functioning of cells by providing a means to store and dispose of various substances.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Esomeprazole is a medication that belongs to a class of drugs called proton pump inhibitors (PPIs). It works by reducing the amount of acid produced in the stomach. Esomeprazole is used to treat gastroesophageal reflux disease (GERD) and other conditions in which the stomach produces too much acid. It is also used to promote healing of erosive esophagitis, a condition in which the esophagus becomes damaged by stomach acid.

Esomeprazole is available in delayed-release capsule and suspension forms, and it is typically taken once a day. It may be prescribed or taken over-the-counter. Common side effects of esomeprazole include headache, diarrhea, nausea, and stomach pain.

It's important to note that long-term use of PPIs like esomeprazole has been associated with an increased risk of certain health problems, such as bone fractures, vitamin B12 deficiency, and Clostridium difficile infection. As with any medication, it is important to follow your healthcare provider's instructions carefully when taking esomeprazole.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

"Specific Pathogen-Free (SPF)" is a term used to describe animals or organisms that are raised and maintained in a controlled environment, free from specific pathogens (disease-causing agents) that could interfere with research outcomes or pose a risk to human or animal health. The "specific" part of the term refers to the fact that the exclusion of pathogens is targeted to those that are relevant to the particular organism or research being conducted.

To maintain an SPF status, animals are typically housed in specialized facilities with strict biosecurity measures, such as air filtration systems, quarantine procedures, and rigorous sanitation protocols. They are usually bred and raised in isolation from other animals, and their health status is closely monitored to ensure that they remain free from specific pathogens.

It's important to note that SPF does not necessarily mean "germ-free" or "sterile," as some microorganisms may still be present in the environment or on the animals themselves, even in an SPF facility. Instead, it means that the animals are free from specific pathogens that have been identified and targeted for exclusion.

In summary, Specific Pathogen-Free Organisms refer to animals or organisms that are raised and maintained in a controlled environment, free from specific disease-causing agents that are relevant to the research being conducted or human/animal health.

Levofloxacin is an antibiotic medication that belongs to the fluoroquinolone class. It works by interfering with the bacterial DNA replication, transcription, and repair processes, leading to bacterial cell death. Levofloxacin is used to treat a variety of infections caused by susceptible bacteria, including respiratory, skin, urinary tract, and gastrointestinal infections. It is available in various forms, such as tablets, oral solution, and injection, for different routes of administration.

The medical definition of Levofloxacin can be stated as:

Levofloxacin is a synthetic antibacterial drug with the chemical name (-)-(S)-9-fluoro-2,3-dihydro-3-methoxy-10-(4-methyl-1-piperazinyl)-9-oxoanthracene-1-carboxylic acid l-alanyl-l-proline methylester monohydrate. It is the levo isomer of ofloxacin and is used to treat a wide range of bacterial infections by inhibiting bacterial DNA gyrase, thereby preventing DNA replication and transcription. Levofloxacin is available as tablets, oral solution, and injection for oral and parenteral administration.

Bacterial toxins are poisonous substances produced and released by bacteria. They can cause damage to the host organism's cells and tissues, leading to illness or disease. Bacterial toxins can be classified into two main types: exotoxins and endotoxins.

Exotoxins are proteins secreted by bacterial cells that can cause harm to the host. They often target specific cellular components or pathways, leading to tissue damage and inflammation. Some examples of exotoxins include botulinum toxin produced by Clostridium botulinum, which causes botulism; diphtheria toxin produced by Corynebacterium diphtheriae, which causes diphtheria; and tetanus toxin produced by Clostridium tetani, which causes tetanus.

Endotoxins, on the other hand, are components of the bacterial cell wall that are released when the bacteria die or divide. They consist of lipopolysaccharides (LPS) and can cause a generalized inflammatory response in the host. Endotoxins can be found in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa.

Bacterial toxins can cause a wide range of symptoms depending on the type of toxin, the dose, and the site of infection. They can lead to serious illnesses or even death if left untreated. Vaccines and antibiotics are often used to prevent or treat bacterial infections and reduce the risk of severe complications from bacterial toxins.

Peptic esophagitis is a medical condition that refers to inflammation and damage of the lining of the esophagus caused by stomach acid backing up into the esophagus. This is also known as gastroesophageal reflux disease (GERD). The term "peptic" indicates that digestive enzymes or stomach acids are involved in the cause of the condition.

Peptic esophagitis can cause symptoms such as heartburn, chest pain, difficulty swallowing, and painful swallowing. If left untreated, it can lead to complications like strictures, ulcers, and Barrett's esophagus, which is a precancerous condition. Treatment typically involves lifestyle changes, medications to reduce acid production, and sometimes surgery.

Bacteriological techniques refer to the various methods and procedures used in the laboratory for the cultivation, identification, and study of bacteria. These techniques are essential in fields such as medicine, biotechnology, and research. Here are some common bacteriological techniques:

1. **Sterilization**: This is a process that eliminates or kills all forms of life, including bacteria, viruses, fungi, and spores. Common sterilization methods include autoclaving (using steam under pressure), dry heat (in an oven), chemical sterilants, and radiation.

2. **Aseptic Technique**: This refers to practices used to prevent contamination of sterile materials or environments with microorganisms. It includes the use of sterile equipment, gloves, and lab coats, as well as techniques such as flaming, alcohol swabbing, and using aseptic transfer devices.

3. **Media Preparation**: This involves the preparation of nutrient-rich substances that support bacterial growth. There are various types of media, including solid (agar), liquid (broth), and semi-solid (e.g., stab agar). The choice of medium depends on the type of bacteria being cultured and the purpose of the investigation.

4. **Inoculation**: This is the process of introducing a bacterial culture into a medium. It can be done using a loop, swab, or needle. The inoculum should be taken from a pure culture to avoid contamination.

5. **Incubation**: After inoculation, the bacteria are allowed to grow under controlled conditions of temperature, humidity, and atmospheric composition. This process is called incubation.

6. **Staining and Microscopy**: Bacteria are too small to be seen with the naked eye. Therefore, they need to be stained and observed under a microscope. Gram staining is a common method used to differentiate between two major groups of bacteria based on their cell wall composition.

7. **Biochemical Tests**: These are tests used to identify specific bacterial species based on their biochemical characteristics, such as their ability to ferment certain sugars, produce particular enzymes, or resist certain antibiotics.

8. **Molecular Techniques**: Advanced techniques like PCR and DNA sequencing can provide more precise identification of bacteria. They can also be used for genetic analysis and epidemiological studies.

Remember, handling microorganisms requires careful attention to biosafety procedures to prevent accidental infection or environmental contamination.

Bacterial outer membrane proteins (OMPs) are a type of protein found in the outer membrane of gram-negative bacteria. The outer membrane is a unique characteristic of gram-negative bacteria, and it serves as a barrier that helps protect the bacterium from hostile environments. OMPs play a crucial role in maintaining the structural integrity and selective permeability of the outer membrane. They are involved in various functions such as nutrient uptake, transport, adhesion, and virulence factor secretion.

OMPs are typically composed of beta-barrel structures that span the bacterial outer membrane. These proteins can be classified into several groups based on their size, function, and structure. Some of the well-known OMP families include porins, autotransporters, and two-partner secretion systems.

Porins are the most abundant type of OMPs and form water-filled channels that allow the passive diffusion of small molecules, ions, and nutrients across the outer membrane. Autotransporters are a diverse group of OMPs that play a role in bacterial pathogenesis by secreting virulence factors or acting as adhesins. Two-partner secretion systems involve the cooperation between two proteins to transport effector molecules across the outer membrane.

Understanding the structure and function of bacterial OMPs is essential for developing new antibiotics and therapies that target gram-negative bacteria, which are often resistant to conventional treatments.

Anti-infective agents are a class of medications that are used to treat infections caused by various microorganisms such as bacteria, viruses, fungi, and parasites. These agents work by either killing the microorganism or inhibiting its growth, thereby helping to control the infection and alleviate symptoms.

There are several types of anti-infective agents, including:

1. Antibiotics: These are medications that are used to treat bacterial infections. They work by either killing bacteria (bactericidal) or inhibiting their growth (bacteriostatic).
2. Antivirals: These are medications that are used to treat viral infections. They work by interfering with the replication of the virus, preventing it from spreading and causing further damage.
3. Antifungals: These are medications that are used to treat fungal infections. They work by disrupting the cell membrane of the fungus, killing it or inhibiting its growth.
4. Antiparasitics: These are medications that are used to treat parasitic infections. They work by either killing the parasite or inhibiting its growth and reproduction.

It is important to note that anti-infective agents are not effective against all types of infections, and it is essential to use them appropriately to avoid the development of drug-resistant strains of microorganisms.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

Flagellin is a protein that makes up the structural filament of the flagellum, which is a whip-like structure found on many bacteria that enables them to move. It is also known as a potent stimulator of the innate immune response and can be recognized by Toll-like receptor 5 (TLR5) in the host's immune system, triggering an inflammatory response. Flagellin is highly conserved among different bacterial species, making it a potential target for broad-spectrum vaccines and immunotherapies against bacterial infections.

I apologize for any confusion, but "Colombia" is not a medical term. It is the name of a country located in South America, known officially as the Republic of Colombia. If you are looking for medical information related to Colombia or its healthcare system, I would be happy to try to help you with that.

A germ-free life refers to an existence in which an individual is not exposed to or colonized by any harmful microorganisms, such as bacteria, viruses, fungi, or parasites. This condition is also known as "sterile" or "aseptic." In a medical context, achieving a germ-free state is often the goal in certain controlled environments, such as operating rooms, laboratories, and intensive care units, where the risk of infection must be minimized. However, it is not possible to maintain a completely germ-free life outside of these settings, as microorganisms are ubiquitous in the environment and are an essential part of the human microbiome. Instead, maintaining good hygiene practices and a healthy immune system is crucial for preventing illness and promoting overall health.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Non-steroidal anti-inflammatory agents (NSAIDs) are a class of medications that reduce pain, inflammation, and fever. They work by inhibiting the activity of cyclooxygenase (COX) enzymes, which are involved in the production of prostaglandins, chemicals that contribute to inflammation and cause blood vessels to dilate and become more permeable, leading to symptoms such as pain, redness, warmth, and swelling.

NSAIDs are commonly used to treat a variety of conditions, including arthritis, muscle strains and sprains, menstrual cramps, headaches, and fever. Some examples of NSAIDs include aspirin, ibuprofen, naproxen, and celecoxib.

While NSAIDs are generally safe and effective when used as directed, they can have side effects, particularly when taken in large doses or for long periods of time. Common side effects include stomach ulcers, gastrointestinal bleeding, and increased risk of heart attack and stroke. It is important to follow the recommended dosage and consult with a healthcare provider if you have any concerns about using NSAIDs.

Chaperonin 60, also known as CPN60 or HSP60 (heat shock protein 60), is a type of molecular chaperone found in the mitochondria of eukaryotic cells. Molecular chaperones are proteins that assist in the proper folding and assembly of other proteins. Chaperonin 60 is a member of the HSP (heat shock protein) family, which are proteins that are upregulated in response to stressful conditions such as heat shock or oxidative stress.

Chaperonin 60 forms a large complex with a barrel-shaped structure that provides a protected environment for unfolded or misfolded proteins to fold properly. The protein substrate is bound inside the central cavity of the chaperonin complex, and then undergoes a series of conformational changes that facilitate its folding. Chaperonin 60 has been shown to play important roles in mitochondrial protein import, folding, and assembly, as well as in the regulation of apoptosis (programmed cell death).

Defects in chaperonin 60 have been linked to a variety of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

Adenocarcinoma is a type of cancer that arises from glandular epithelial cells. These cells line the inside of many internal organs, including the breasts, prostate, colon, and lungs. Adenocarcinomas can occur in any of these organs, as well as in other locations where glands are present.

The term "adenocarcinoma" is used to describe a cancer that has features of glandular tissue, such as mucus-secreting cells or cells that produce hormones. These cancers often form glandular structures within the tumor mass and may produce mucus or other substances.

Adenocarcinomas are typically slow-growing and tend to spread (metastasize) to other parts of the body through the lymphatic system or bloodstream. They can be treated with surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these treatments. The prognosis for adenocarcinoma depends on several factors, including the location and stage of the cancer, as well as the patient's overall health and age.

Flagella are long, thin, whip-like structures that some types of cells use to move themselves around. They are made up of a protein called tubulin and are surrounded by a membrane. In bacteria, flagella rotate like a propeller to push the cell through its environment. In eukaryotic cells (cells with a true nucleus), such as sperm cells or certain types of algae, flagella move in a wave-like motion to achieve locomotion. The ability to produce flagella is called flagellation.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

The duodenum is the first part of the small intestine, immediately following the stomach. It is a C-shaped structure that is about 10-12 inches long and is responsible for continuing the digestion process that begins in the stomach. The duodenum receives partially digested food from the stomach through the pyloric valve and mixes it with digestive enzymes and bile produced by the pancreas and liver, respectively. These enzymes help break down proteins, fats, and carbohydrates into smaller molecules, allowing for efficient absorption in the remaining sections of the small intestine.

The cardia is a term used in anatomical context to refer to the upper part of the stomach that surrounds and opens into the lower end of the esophagus. It is responsible for controlling the passage of food from the esophagus into the stomach and is also known as the cardiac orifice or cardiac sphincter. Any medical condition that affects this area, such as gastroesophageal reflux disease (GERD), can lead to symptoms like heartburn, difficulty swallowing, and chest pain.

'Campylobacter jejuni' is a gram-negative, spiral-shaped bacterium that is a common cause of foodborne illness worldwide. It is often found in the intestines of warm-blooded animals, including birds and mammals, and can be transmitted to humans through contaminated food or water.

The bacteria are capable of causing an infection known as campylobacteriosis, which is characterized by symptoms such as diarrhea, abdominal cramps, fever, and vomiting. In severe cases, the infection can spread to the bloodstream and cause serious complications, particularly in individuals with weakened immune systems.

'Campylobacter jejuni' is one of the most common causes of foodborne illness in the United States, with an estimated 1.3 million cases occurring each year. It is often found in undercooked poultry and raw or unpasteurized milk products, as well as in contaminated water supplies. Proper cooking and pasteurization can help reduce the risk of infection, as can good hygiene practices such as washing hands thoroughly after handling raw meat and vegetables.

I apologize, but "Bulgaria" is not a medical term or condition. It is a country located in southeastern Europe, known for its rich history, diverse culture, and natural beauty. If you have any questions related to the field of medicine or health, I would be happy to try to help answer them for you.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

... bizzozeronii, Helicobacter felis, Helicobacter salomonis, Helicobacter suis, and Helicobacter heilmannii s.s. It ... Helicobacter heilmannii sensu lato (i.e. H. heilmanni s.l.) is a grouping of non-H. pylori Helicobacter species that take as ... as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively". Int. J. Syst. Bacteriol. 39 (4): 397-405 ... 2008). "Helicobacter Flagella, Motility and Chemotaxis". Helicobacter pylori: Molecular Genetics and Cellular Biology (Yamaoka ...
"Helicobacter pametensis" at the Encyclopedia of Life LPSN Type strain of Helicobacter pametensis at BacDive - the Bacterial ... "Phylogeny of Helicobacter Isolates from Bird and Swine Feces and Description of Helicobacter pametensis sp. nov". International ... Helicobacter pametensis is a bacterium in the Helicobacteraceae family, Campylobacterales order. It was first isolated from ... 2005). "Comparison of Helicobacter spp. in cheetahs (Acinonyx jubatus) with and without gastritis". Journal of Clinical ...
"Helicobacter muridarum" at the Encyclopedia of Life Type strain of Helicobacter muridarum at BacDive - the Bacterial Diversity ... "Coinfection with Enterohepatic Helicobacter Species Can Ameliorate or Promote Helicobacter pylori-Induced Gastric Pathology in ... Helicobacter muridarum is a bacterium in the Helicobacteraceae family, Campylobacterales order. It is microaerophilic and ... Humana P.,U.S. ISBN 1-59745-152-5. Chaouche-Drider, Nadia (April 2009). "A Commensal Helicobacter sp. of the Rodent Intestinal ...
... is a bacterium in the Helicobacteraceae family, Campylobacterales order. Its type strain is NCTC 12739T. It ... Flagella are single and bipolar, as well as sheathed, a characteristic of genus Helicobacter, and connected to a basal plate at ... October 1996). "Helicobacter canis isolated from a dog liver with multifocal necrotizing hepatitis". Journal of Clinical ... bacterio.cict.fr entry Type strain of Helicobacter canis at BacDive - the Bacterial Diversity Metadatabase v t e (Articles with ...
... is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far ... Helicobacter suis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus ... Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter ... Ménard A, Smet A (September 2019). "Review: Other Helicobacter species". Helicobacter. 24 (Suppl 1): e12645. doi:10.1111/hel. ...
"Helicobacter trogontum" at the Encyclopedia of Life LPSN Type strain of Helicobacter trogontum at BacDive - the Bacterial ... Helicobacter trogontum is a bacterium in the Helicobacteraceae family, Campylobacterales order. It was first isolated from rat ... 1998). "Ultrastructure of Helicobacter trogontum in culture and in the gastrointestinal tract of gnotobiotic mice". J Med ... "Hepatic changes in mice chronically infected with Helicobacter trogontum." Brazilian journal of medical and biological research ...
"Helicobacter canadensis" at the Encyclopedia of Life LPSN Type strain of Helicobacter canadensis at BacDive - the Bacterial ... 2000). "Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen". Journal of ... 2005). "Comparison of Helicobacter spp. in cheetahs (Acinonyx jubatus) with and without gastritis". Journal of Clinical ... Helicobacter canadensis is a bacterium in the Helicobacteraceae family, Campylobacterales order, first isolated from humans ...
... (H. suis) is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori is by far ... Helicobacter salomonis, Helicobacter felis, and Helicobacter heilmannii s.s. Because of their disease associations, these four ... Other non-H. pylori Helicobacter species that are known to be associated with these gastrointestinal diseases are Helicobacter ... Ménard A, Smet A (September 2019). "Review: Other Helicobacter species". Helicobacter. 24 (Suppl 1): e12645. doi:10.1111/hel. ...
"Helicobacter acinonychis" at the Encyclopedia of Life LPSN Type strain of Helicobacter acinonychis at BacDive - the Bacterial ... January 2004). "Helicobacter acinonychis: genetic and rodent infection studies of a Helicobacter pylori-like gastric pathogen ... Eaton, K. A.; Dewhirst, F. E.; Radin, M. J.; Fox, J. G.; Paster, B. J.; Krakowka, S.; Morgan, D. R. (1993). "Helicobacter ... Helicobacter acinonychis is a bacterium in the Helicobacteraceae family, Campylobacterales order. It was first isolated from ...
"Helicobacter brantae" at the Encyclopedia of Life LPSN Type strain of Helicobacter brantae at BacDive - the Bacterial Diversity ... and Helicobacter brantae sp. nov., Isolated from Feces of Resident Canada Geese in the Greater Boston Area". Applied and ... Fox, J. G.; Taylor, N. S.; Howe, S.; Tidd, M.; Xu, S.; Paster, B. J.; Dewhirst, F. E. (2006). "Helicobacter anseris sp. nov. ... 2005). "Comparison of Helicobacter spp. in cheetahs (Acinonyx jubatus) with and without gastritis". Journal of Clinical ...
"Helicobacter anseris" at the Encyclopedia of Life LPSN Type strain of Helicobacter anseris at BacDive - the Bacterial Diversity ... and Helicobacter brantae sp. nov., Isolated from Feces of Resident Canada Geese in the Greater Boston Area". Applied and ... Fox, J. G.; Taylor, N. S.; Howe, S.; Tidd, M.; Xu, S.; Paster, B. J.; Dewhirst, F. E. (2006). "Helicobacter anseris sp. nov. ... 2005). "Comparison of Helicobacter spp. in cheetahs (Acinonyx jubatus) with and without gastritis". Journal of Clinical ...
"Helicobacter hepaticus" at the Encyclopedia of Life Type strain of Helicobacter hepaticus at BacDive - the Bacterial Diversity ... December 2009). "Detection of Helicobacter hepaticus in human bile samples of patients with biliary disease". Helicobacter. 14 ... Helicobacter hepaticus is a bacterium in the Helicobacteraceae family, Campylobacterales order. It has a spiral shape and ... Fox, J G; Ge, Z; Whary, M T; Erdman, S E; Horwitz, B H (2010). "Helicobacter hepaticus infection in mice: models for ...
Solnick, Jay V. (2003). "Clinical Significance of Helicobacter Species Other than Helicobacter pylori". Clinical Infectious ... Helicobacter pullorum is a bacterium in the Helicobacteraceae family, Campylobacterales order. It was isolated from the liver, ... It is a nongastric urease-negative Helicobacter species colonizing the lower bowel. Stanley, J.; Linton, D.; Burnens, A. P.; ... Broad Institute entry Type strain of Helicobacter pullorum at BacDive - the Bacterial Diversity Metadatabase v t e (Articles ...
"Gastric and enterohepatic helicobacters other than Helicobacter pylori". Helicobacter. 19 (Suppl 1): 59-67. doi:10.1111/hel. ... Like many other species in the Helicobacter genus (see Helicobacter heilmannii sensu lato), H. cinaedi infects not only animals ... Flahou B, Rimbara E, Mori S, Haesebrouck F, Shibayama K (September 2015). "The Other Helicobacters". Helicobacter. 20 (Suppl 1 ... Ménard A, Smet A (September 2019). "Review: Other Helicobacter species". Helicobacter. 24 (Suppl 1): e12645. doi:10.1111/hel. ...
... (H. salomonis) is a species within the Helicobacter genus of Gram-negative bacteria. Helicobacter pylori ... Helicobacter suis, Helicobacter felis, and Helicobacter heilmannii s.s. Because of their disease associations, these four ... "The inflammatory response in the mouse stomach to Helicobacter bizzozeronii, Helicobacter salomonis and two Helicobacter felis ... "Helicobacter salomonis" at the Encyclopedia of Life LPSN Type strain of Helicobacter salomonis at BacDive - the Bacterial ...
Chichlowski M, Sharp JM, Vanderford DA, Myles MH, Hale LP (December 2008). "Helicobacter typhlonius and Helicobacter rodentium ... "Helicobacter rodentium" at the Encyclopedia of Life v t e (Articles with short description, Short description matches Wikidata ... Helicobacter rodentium is a bacterium in the Helicobacteraceae family, Campylobacterales order. It is a spiral-shaped bacterium ... Shen, Z.; Fox, J. G.; Dewhirst, F. E.; Paster, B. J.; Foltz, C. J.; Yan, L.; Shames, B.; Perry, L. (1997). "Helicobacter ...
February 1995). "Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, ... "Helicobacter bilis" at the Encyclopedia of Life Type strain of Helicobacter bilis at BacDive - the Bacterial Diversity ... Hanninen, M.-L. (2005). "Extension of the species Helicobacter bilis to include the reference strains of Helicobacter sp. ... which has been called Helicobacter sp. flexispira taxon 8 (provisionally Helicobacter rappini) [Dewhirst et al. 2000]. H. ...
Helicobacter suis, and Helicobacter heilmannii s.s. Because of their disease associations, these four Helicobacter species plus ... Helicobacter pylori (H. pylori) is by far the best known Helicobacter species, primarily because humans infected with it may ... "Helicobacter felis" at the Encyclopedia of Life Type strain of Helicobacter felis at BacDive - the Bacterial Diversity ... Helicobacter felis is a bacterial species in the Helicobacteraceae family, Campylobacterales order, Helicobacter genus. This ...
... is one of 35 known species of Helicobacter. It was previously named Helicobacter sp. strain MIT 97-6910 ... H. typhlonius has a small number of close relatives, including Helicobacter muridarum, Helicobacter trogontum, and Helicobacter ... Helicobacter typhlonius is a Gram-negative bacterium and opportunistic pathogen found in the genus Helicobacter. Only 35 known ... Chichlowski M, Sharp JM, Vanderford DA, Myles MH, Hale LP (December 2008). "Helicobacter typhlonius and Helicobacter rodentium ...
... has four to six flagella at the same location; all gastric and enterohepatic Helicobacter species are ... European Helicobacter Pylori Study Group (EHPSG)) (February 2002). "Current concepts in the management of Helicobacter pylori ... European Helicobacter Pylori Study Group (EHPSG)) (January 1997). "Current European concepts in the management of Helicobacter ... as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov. respectively". International Journal of Systematic ...
... is a cutaneous condition caused by Helicobacter cinaedi.: 280 H. cinaedi can cause cellulitis and ... Shimizu S, Shimizu H (July 2016). "Cutaneous manifestations of Helicobacter cinaedi: a review". Br J Dermatol. 175 (1): 62-8. ... ISBN 0-7216-2921-0. Kiehlbauch JA, Tauxe RV, Baker CN, Wachsmuth IK (1994). "Helicobacter cinaedi-associated bacteremia and ...
Prior to the discovery of H. cetorum, there have not been any other Helicobacter species reported in dolphins. Helicobacter ... "Helicobacter cetorum sp. nov., a Urease-Positive Helicobacter Species Isolated from Dolphins and Whales". Journal of Clinical ... Helicobacter cetorum is able to grow under microaerophilic conditions at 37-42 °C, but not at 25 °C, and similar to H. pylori, ... Helicobacter cetorum strains have been isolated in both dolphins and whales, and their genomes are 1.83 Mb and 1.95 Mb, ...
"Helicobacter cholecystus" at the Encyclopedia of Life LPSN Type strain of Helicobacter cholecystus at BacDive - the Bacterial ... 1996). "Isolation of a novel Helicobacter species, Helicobacter cholecystus sp. nov., from the gallbladders of Syrian hamsters ... Helicobacter cholecystus is a bacterium first isolated from gallbladders of golden hamster with cholangiofibrosis and ...
... is a standard name for all treatment protocols for peptic ulcers and gastritis in the ... Helicobacter pylori Eradication (All articles with unsourced statements, Articles with unsourced statements from November 2022 ... Ren, Q; Yan, X; Zhou, Y; Li, WX (7 February 2016). "Periodontal therapy as adjunctive treatment for gastric Helicobacter pylori ... Gatta, L; Vakil, N; Vaira, D; Scarpignato, C (7 August 2013). "Global eradication rates for Helicobacter pylori infection: ...
Helicobacter felis, and Helicobacter salomonis. Because of their disease associations, these four Helicobacter species plus H. ... Helicobacter heilmannii s.s. (H. heilmannii s.s.) is a species within the Helicobacter genus of Gram negative bacteria. ... Helicobacter pylori (H. pylori) is by far the best known Helicobacter species primarily because humans infected with it may ... Helicobacter heilmannii s.s. is used to designate a specific species within the Helicobacter heilmannii group; "s.s" is ...
... refers to a group of bacterial species within the Helicobacter genus. The Helicobacter genus ... Within the Helicobacter genus, H. heilmannii s. l. is a group of Helicobacter species that are distinguished from H. pylori by ... The current taxonomy of Helicobacter bacteria is a bit complex and incomplete, with new species currently being considered as ... H. heilmanni s.s., in contrast, is Helicobacter heilmannii isolates whose species have been clearly defined, typically by ...
Unge, Peter (2002). "Helicobacter pylori treatment in the past and in the 21st century". In Barry Marshall (ed.). Helicobacter ... Mozorov, Igor A., "Helicobacter pylori was discovered in Russia in 1974", in Helicobacter Pioneers, pp. 105-118. Freedberg, A. ... Fukuda, Yoshihiro et al., "Kasai, Kobayashi and Koch's postulates in the history of Helicobacter pylori", in Helicobacter ... Helicobacter pioneers: firsthand accounts from the scientists who discovered helicobacters, 1892-1982. Oxford: Blackwell. pp. ...
Plebani M, Basso D, Navaglia F, DiMario F (1998). "Helicobacter pylori genotypes influence serum pepsinogen C levels". ... Helicobacter. 2 (4): 172-5. doi:10.1111/j.1523-5378.1997.tb00082.x. PMID 9421118. S2CID 23419977. Strausberg RL, Feingold EA, ...
S2CID 9880135.[non-primary source needed] Ahmed, Niyaz (2010). "Replicative genomics can help Helicobacter fraternity usher in ... Receiving Editor Helicobacter - Editorial Board Member Ahmed has been awarded with the following notable awards: Shanti Swarup ... Mycobacterium tuberculosis and Helicobacter pylori, in the context of evolution of adaptation mechanisms, and acquisition and ... ". "Helicobacter". doi:10.1111/(ISSN)1523-5378. S2CID 232566449. Official website (All articles with dead external links, ...
Helicobacter. 27 (5): e12917. doi:10.1111/hel.12917. PMC 9542424. PMID 35899973. Ansari MJ, Salama AD, Chitnis T, Smith RN, ... where PD-1 expression protects the gastrin expressing G-cells from the immune system during Helicobacter pylori-provoked ... "Constitutive programmed death ligand 1 expression protects gastric G-cells from Helicobacter pylori-induced inflammation". ...
Helicobacter bizzozeronii, Helicobacter felis, Helicobacter salomonis, Helicobacter suis, and Helicobacter heilmannii s.s. It ... Helicobacter heilmannii sensu lato (i.e. H. heilmanni s.l.) is a grouping of non-H. pylori Helicobacter species that take as ... as Helicobacter pylori comb. nov. and Helicobacter mustelae comb. nov., respectively". Int. J. Syst. Bacteriol. 39 (4): 397-405 ... 2008). "Helicobacter Flagella, Motility and Chemotaxis". Helicobacter pylori: Molecular Genetics and Cellular Biology (Yamaoka ...
Potasman, I, Yitzhak A. Helicobacter pylori serostatus in backpackers following travel to tropical countries. Am J Trop Med Hyg ... Helicobacter pylori is a small, curved, microaerophilic, gram-negative, rod-shaped bacterium. ... P, Wadstrom T, Giesecke J. Helicobacter pylori infection and foreign travel. J Infect Dis. 1995;172(4):1135-6. ... AGA clinical practice update on the management of refractory Helicobacter pylori infection: expert review. Gastroenterology. ...
To download a certificate of analysis for Helicobacter sp. (49315), enter the lot number exactly as it appears on your product ... To download a certificate of origin for Helicobacter sp. (49315), enter the lot number exactly as it appears on your product ... The certificate of analysis for that lot of Helicobacter sp. (49315) is not currently available online. Complete this form to ... The certificate of origin for that lot of Helicobacter sp. (49315) is not currently available online. Complete this form to ...
LBXHP1 - Helicobacter pylori (HP1). Variable Name: LBXHP1. SAS Label: Helicobacter pylori (HP1). English Text: Helicobacter ... Helicobacter pylori (HP1) (HP_01_R) RDC Only Data File: HP_01_R.xpt First Published: April 2013. Last Revised: NA Due to ... Helicobacter pylori has been shown to be the causative agent in chronic-active gastritis, and evidence has almost completely ... is intended for the detection and qualitative determination of IgG antibodies to Helicobacter pylori in human serum. This assay ...
... and 1989 from adults and children were screened for Helicobacter pylori by Western blot analysis. Results showed that H. pylori ... The cohort effect and Helicobacter pylori J Infect Dis. 1993 Jul;168(1):219-21. doi: 10.1093/infdis/168.1.219. ... A total of 631 serum samples collected in 1969, 1979, and 1989 from adults and children were screened for Helicobacter pylori ...
... Cancer Epidemiol Biomarkers Prev. 2014 Feb;23(2): ...
Helicobacter Pylori Infections (American Academy of Pediatrics) Also in Spanish * Stool Test: H. Pylori Antigen (Nemours ... Helicobacter pylori (H. pylori) is a type of bacteria that causes infection in the stomach. It is the main cause of peptic ... Helicobacter Pylori (H. Pylori) Tests (National Library of Medicine) Also in Spanish ... Helicobacter pylori (H. pylori) and Cancer (National Cancer Institute) Also in Spanish ...
Keywords: Helicobacter pylori, Viable but nonculturable state, Foodborne pathogen, Food, Water, Animal reservoirs, Culture ... Helicobacter pylori (H. pylori) is an organism that is widespread in the human population and is sometimes responsible for some ... Core tip: To date, the transmission routes and reservoirs of Helicobacter pylori (H. pylori) are topics of debate. ... Quaglia NC, Dambrosio A. Helicobacter pylori: A foodborne pathogen? World J Gastroenterol 2018; 24(31): 3472-3487 [PMID: ...
Helicobacter pylori antigen testing is FDA approved for use as a noninvasive diagnostic test of H pylori infection and as a ... encoded search term (Helicobacter Pylori Antigen Test) and Helicobacter Pylori Antigen Test What to Read Next on Medscape ... Helicobacter pylori and nonmalignant diseases. Helicobacter. 2011 Sep. 16 Suppl 1:33-7. [QxMD MEDLINE Link]. ... Stool antigen test for the diagnosis of Helicobacter pylori infection: a systematic review. Helicobacter. 2004 Aug. 9(4):347-68 ...
Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. The 5th Chinese Helicobacter treatment ...
Helicobacter pylori (H pylori) is a type of bacteria that infects the stomach. It is very common, affecting about two thirds of ... Helicobacter pylori and other gastric Helicobacter species. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and ... Helicobacter pylori (H pylori) is a type of bacteria that infects the stomach. It is very common, affecting about two thirds of ...
Keywords: Helicobacter pylori, Ancient DNA, Evolution, Iceman, Ancient gut contents, Coprolites Core tip: The molecular ... The bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately 50% of all humans. With its universal ... Helicobacter pylori in ancient human remains Frank Maixner, Kaisa Thorell, Lena Granehäll, Bodo Linz, Yoshan Moodley, Thomas ... Maixner F, Thorell K, Granehäll L, Linz B, Moodley Y, Rattei T, Engstrand L, Zink A. Helicobacter pylori in ancient human ...
Serum neutralizing antibody response to the vacuolating cytotoxin of Helicobacter pylori.. T L Cover, P Cao, U K Murthy, M S ... Approximately 50% of Helicobacter pylori isolates produce a cytotoxin in vitro that induces vacuolation of eukaryotic cells. To ...
Helicobacter pylori is a Gram-negative bacterium that causes chronic inflammations in the stomach area and is involved in ... Hom (Helicobacter outer membrane) family of OMPs in H. pylori consists of four members (HomA, B, C and D). In the H. pylori ... Parsonnet, J. et al. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325(16), 1127-1131 (1991 ... Kang, J. et al. The geographic origin of Helicobacter pylori influences the association of the homB gene with gastric cancer. J ...
Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. The 5th Chinese Helicobacter treatment ...
Helicobacter pylori, Helicobacter heilmannii *Taxonomy: *Campylobacterales (order); Helicobacteraceae (family); Helicobacter ( ... Helicobacter heilmannii gastritis (J Clin Pathol 2001;54:774): *H. heilmannii organisms are twice as long and considerably ... Helicobacter pylori gastritis is the most frequent and treatable form of gastritis, affecting more than half the worlds ... ICD-10: B96.81 - Helicobacter pylori (H. pylori) as the cause of diseases classified elsewhere ...
Helicobacter Pylori. Helicobacter pylori (H. pylori) is a spiral-shaped bacterium found in the stomach, which (along with acid ...
If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Centers RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.. ...
Helicobacter et organismes associés. Ce fut l'occasion de mettre à jour les connaissances sur la complexité ... En septembre 2001, plus de 700 participants de 54 pays ont assisté au onzième congrès sur Campylobacter, Helicobacter et ... Le 11e séminaire international sur Campylobacter, Helicobacter et organismes associés, 2001. Euro Surveill. 2003;8(11):pii=433 ...
Helicobacter pylori,/i, in patients who have failed at least one course of PPI-based triple therapy.METHODS: The present study ... Rescue Therapy Using a Rifabutin-Based Regimen is Effective for Cure of Helicobacter pylori Infection. Sander Veldhuyzen van ... in the eradication of Helicobacter pylori in patients who have failed at least one course of PPI-based triple therapy.METHODS: ...
... recovery and follow-up care for Helicobacter pylori infection. ... Learn about Helicobacter pylori infection, find a doctor, ... Helicobacter pylori and other gastric Helicobacter species. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and ... Helicobacter pylori (H pylori) is a type of bacteria that infects the stomach. It is very common, affecting about two thirds of ...
... In: Scientific Reports, Vol. 9, 873 [PDF, 1MB] ... Because of its association with severe gastric pathologies, including gastric cancer, Helicobacter pylori has been subject of ...
Helicobacter pylori (Hp) is a gram-negative bacillus that causes one of the most common human infections worldwide. ... encoded search term (Helicobacter pylori Treatment Guidelines) and Helicobacter pylori Treatment Guidelines What to Read Next ... Helicobacter pylori Treatment Guidelines Updated: Oct 18, 2022 * Author: Debbie F Cheng, MD; Chief Editor: BS Anand, MD more... ... Helicobacter pylori is a chronic bacterial infection with significant global impact. Although the mechanism of transmission is ...
You need to be signed in to access email alerts. If you have an account log in with your user name and password. If you dont have an account you can just enter your email address in the email box below ...
Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med. 1991;325(16):1127-1131.. View this article via: ... Mutated Rnf43 aggravates Helicobacter Pylori-induced gastric pathology. Cancers (Basel). 2019;11(3):372. View this article via ... R-spondin/YAP axis promotes gastric oxyntic gland regeneration and Helicobacter pylori-associated metaplasia in mice. Anne- ... In the context of chronic Helicobacter pylori infection, such changes are linked to increased cancer risk and are termed ...
... Eradication rates with triple therapy unaffected by ... is effective for eradication of Helicobacter pylori, with eradication rates unaffected by resistance to clarithromycin or ...
  • Effect of Helicobacter pylori eradication on chronic gastritis during omeprazole therapy. (medscape.com)
  • Changing patterns of Helicobacter pylori gastritis in long-standing acid suppression. (medscape.com)
  • Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. (medscape.com)
  • Kyoto global consensus report on Helicobacter pylori gastritis. (medscape.com)
  • Helicobacter pylori evolution during progression from chronic atrophic gastritis to gastric cancer and its impact on gastric stem cells. (medscape.com)
  • Helicobacter pylori has been shown to be the causative agent in chronic-active gastritis, and evidence has almost completely satisfied Koch's postulates for this organisms' pathogenicity in primary duodenal ulcers. (cdc.gov)
  • A potential non-cardiovascular disease that predisposes to AF may be chronic gastritis caused by chronic Helicobacter pylori infection," write A.S. Montenero, MD, from Policlinico Multimedica, Sesto San Giovanni in Milan, Italy, and colleagues. (medscape.com)
  • Helicobacter pylori is a bacterium that colonises the human stomach and is the cause of type B gastritis. (bmj.com)
  • Urease test, microbiologic tests, histologic and serologic tests for the evaluation of Helicobacter pylori infections in persons with peptic ulcer and gastritis. (scialert.net)
  • Close correlation of intestinal metaplasia and corpus gastritis in patients infected with Helicobacter pylori . (scialert.net)
  • Interobserver agreement in the assessment of gastritis reversibility after Helicobacter pylori eradication. (scialert.net)
  • Cytology examination showed GHLO infection rate of antrum and body 63.15% and 77.19% respectively, however there was no correlation between presence and degree of Helicobacter colonization and nonspecific chronic gastritis. (vin.com)
  • Helicobacter pylori is associated with chronic gastritis, gastric or duodenal ulcers, and gastric cancer. (uni-regensburg.de)
  • Helicobacter pylori infection is associated with gastritis, peptic ulcer disease and gastric carcinoma. (jidc.org)
  • Ramis IB, Vianna JS, Halicki PCB, Lara C, Tadiotto TF, da Silva Maciel JB, Gonçalves CV, von Groll A, Dellagostin OA, da Silva PEA (2015) Relationship of interleukin-1B gene promoter region polymorphism with Helicobacter pylori infection and gastritis. (jidc.org)
  • Basic and clinical knowledge about Helicobacter pylori infections has been improved in the past. (mdpi.com)
  • Helicobacter pylori ( H. pylori ) infection is one of the most common bacterial infections, affecting approximately 50% of the global population [ 1 ]. (biomedcentral.com)
  • Helicobacter pylori (Hp) infection is one of the most frequently encountered bacterial infections worldwide. (edu.au)
  • The complete genome sequence of the gastric pathogen Helicobacter pylori. (medscape.com)
  • One important factor that promotes the colonization of the upper digestive system of the human pathogen Helicobacter pylori is its helical cell shape. (uni-marburg.de)
  • Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. (pasteur.fr)
  • Chronic active inflammation associated with an increased incidence of hepatocellular neoplasia has been described in mice with Helicobacter hepaticus infection. (nih.gov)
  • Chronic active hepatitis with oval cell hyperplasia and hepatocytomegaly are characteristic of infection with Helicobacter hepaticus. (nih.gov)
  • This program announcement, Helicobacter Pylori Pathogenesis, is related to the priority areas of immunization and infectious diseases and diabetes and chronic disabling conditions. (nih.gov)
  • Helicobacter hepaticus infection is associated with chronic hepatitis and the development of liver tumours in mice. (open.ac.uk)
  • Helicobacter pylori (H. pylori) infection induces a chronic inflammatory response, which promotes gastric carcinogenesis. (nih.gov)
  • Helicobacter pylori colonization is inversely associated with childhood asthma. (medscape.com)
  • Helicobacter pylori is the dominant species of the human gastric microbiome, and colonization causes a persistent inflammatory response. (nature.com)
  • Colonization of Helicobacter pylori in the oral cavity - an endless controversy? (uni-regensburg.de)
  • A collaborative work headed by LRIG (IRCM) has uncovered a protein that is essential for an antibiotic resistance propagation pathway in the bacterium Helicobacter pylori . (cea.fr)
  • The bacterium Helicobacter pylori infects the internal lining of the stomach. (cea.fr)
  • Identified by German scientists in 1875 in the human stomach, the bacterium Helicobacter pylori is a germ that has been present in the human stomach for many centuries. (gurze.com)
  • However, according to some recent studies and revelations in scientific journals, the Helicobacter pylori bacterium is, in fact, not a bad germ. (gurze.com)
  • According to some research carried out on mice by a nutritional immunology department, the Helicobacter pylori bacterium has a dual effect on the body. (gurze.com)
  • Despite the dreaded diseases that this bacterium can cause, Helicobacter pylori could protect and balance the body. (gurze.com)
  • Helicobacter is a genus of Gram-negative bacteria possessing a characteristic helical shape. (wikipedia.org)
  • Helicobacter have a characteristic helical shape. (sciencelearn.org.nz)
  • Annual change of primary resistance to clarithromycin among Helicobacter pylori isolates from 1996 through 2008 in Japan. (medscape.com)
  • The aim of this paper is to report on two cases of manic episode after starting triple therapy to eradicate Helicobacter pylori (clarithromycin, amoxicillin and omeprazole) and to review the literature on pathophysiological mechanisms underlying this syndrome. (isciii.es)
  • He had recently started treatment for Helicobacter Pylori (HP), taking 1 g of clarithromycin, 1 g of amoxicillin, and 20 mg of omeprazole daily. (isciii.es)
  • H. heilmanni s.l.) is a grouping of non-H. pylori Helicobacter species that take as part of their definition a similarity to H. pylori in being associated with the development of stomach inflammation, stomach ulcers, duodenum ulcers, stomach cancers that are not lymphomas, and extranodal marginal B cell lymphoma of the stomach in humans and animals. (wikipedia.org)
  • The H. heilmani species identified to date in the stomachs of humans with the cited upper gastrointestinal tract diseases are: Helicobacter bizzozeronii, Helicobacter felis, Helicobacter salomonis, Helicobacter suis, and Helicobacter heilmannii s.s. (wikipedia.org)
  • Of these proteins, seven are found in all species of the family, while the remaining four are not found in any Helicobacter strains and are unique to Wollinella. (wikipedia.org)
  • Incidence of Helicobacter pylori strains activating neutrophils in patients with peptic ulcer disease. (bmj.com)
  • Gastric carriage of Helicobacter pylori, particularly cytotoxin-associated gene-A-positive (CagA+) strains, is known to be a risk factor for peptic ulcer disease and gastric cancer and may have a similar etiologic relationship with pancreatic cancer. (researchwithrutgers.com)
  • Hypotheses on the pathogenesis and natural history of Helicobacter pylori -induced inflammation. (scialert.net)
  • Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. (nature.com)
  • Pharmacological considerations and step-by-step proposal for the treatment of Helicobacter pylori infection in the year 2018. (medscape.com)
  • Many diseases of varying degrees of severity affect some patients who have been infected with the germ of the Helicobacter pylori bacteria. (gurze.com)
  • 1989). "Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. (wikipedia.org)
  • nov. and Helicobacter mustelae comb. (wikipedia.org)
  • Helicobacter mustelae (Fox et al. (atcc.org)
  • Fallone CA. Epidemiology of the antibiotic resistance of Helicobacter pylori in Canada. (medscape.com)
  • Epidemiology and diagnosis of Helicobacter pylori infection. (scialert.net)
  • The epidemiology and transmission of Helicobacter pylori infection in children. (scialert.net)
  • The purpose of this communication is to update the veterinary public health community as to what poultry-related interventions were presented at the recent biennial International Workshop on Campylobacter , Helicobacter and Related Organisms (CHRO), which was held in Niigata, Japan, September 2-5, 2009. (cdc.gov)
  • Rescue therapy with a proton pump inhibitor plus amoxicillin and rifabutin for Helicobacter pylori infection: a systematic review and meta-analysis. (medscape.com)
  • The report describes epidemiological assessment of Helicobacter pylori, key technological advancements in Helicobacter pylori diagnostic testing, and market outlook and Porter's Five Forces. (bccresearch.com)
  • Sensitivity and specificity of various diagnostic tests in the detection of Helicobacter pylori. (scialert.net)
  • As reported in JAMA1 this week, 1 year after treatment for Helicobacter pylori infection, recurrence occurred in 11.5% of the participants who had tested negative for H. pylori (using the UBT diagnostic procedure) after treatment. (who.int)
  • A peptide of a type I toxin-antitoxin system induces Helicobacter pylori morphological transformation from spiral shape to coccoids. (pasteur.fr)
  • Inhibition of 15-hydroxyprostaglandin dehydrogenase by Helicobacter pylori in human gastric carcinogenesis. (nih.gov)
  • Fast Five Quiz: Helicobacter pylori - Medscape - Jan 20, 2022. (medscape.com)
  • Helicobacter pylori ( H pylori ) is a type of bacteria that infects the stomach. (medlineplus.gov)
  • Helicobacter pylori (H. pylori) are a type of bacteria . (kidshealth.org)
  • Helicobacter pylori is a type of bacteria that is a major cause of stomach (gastric) and upper small intestine (duodenal) ulcers. (wellspan.org)
  • Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. (medscape.com)
  • Randomized controlled trial comparing 7-day triple, 10-day sequential, and 7-day concomitant therapies for Helicobacter pylori infection. (medscape.com)
  • Review evidence-based first-line and salvage therapies for Helicobacter Pylori infection. (guthrie.org)
  • Drug therapies used to fight the ulcer-causing bacteria Helicobacter Pylori may help treat Crohn's disease . (diagnose-me.com)
  • The decline of Helicobacter pylori ( H. pylori ) eradication rates with standard triple therapy resulted in a search for novel therapies for first-line therapy of H. pylori infection. (hindawi.com)
  • Helicobacter pylori May Be Associated With Increased Risk of Atrial Fibrillation - Medscape - Jun 17, 2005. (medscape.com)
  • Probiotics modulate gastrointestinal microbiota after Helicobacter pylori eradication: A multicenter randomized double-blind placebo-controlled trial. (nih.gov)
  • Helicobacter pylori (H. pylori) infection, the major cause of peptic ulcer disease, is a bacterial infection that can lead to inflammation and ulcers in the lining of the stomach and the upper part of the small intestine [ 1 ]. (hindawi.com)
  • Protection against Helicobacter pylori infection in BALB/c mice by oral administration of multi-epitope vaccine of CTB-UreI-UreB. (semanticscholar.org)
  • Thus, by inoculating mice with the Helicobacter Pylori strain of bacteria, it would appear that fasting blood sugar levels have decreased and that the peptide hormone, which regulates the appetite, has also increased and, as a result, the weight has decreased significantly. (gurze.com)
  • The genus Helicobacter contains about 35 species. (wikipedia.org)
  • Helicobacter species are able to thrive in the very acidic mammalian stomach by producing large quantities of the enzyme urease, which locally raises the pH from about 2 to a more biocompatible range of 6 to 7. (wikipedia.org)
  • Helicobacter pylori and other gastric Helicobacter species. (nih.gov)
  • 3) Kandulski A, Selgrad M, Malfertheiner P. Helicobacter pylori infection: a clinical overview. (medscape.com)
  • AGA clinical practice update on the management of refractory Helicobacter pylori infection: expert review. (medscape.com)
  • ACG clinical guideline: treatment of Helicobacter pylori infection. (cdc.gov)
  • We report two cases of clinical manic psychotic symptoms arising in the context of treatment with triple therapy for Helicobacter pylori eradication. (isciii.es)
  • Lehours P. Actual diagnosis of Helicobacter pylori infection. (medscape.com)
  • 2004. Comparative study between rapid urease test, imprint and histopathological study for Helicobacter pylori diagnosis. (scialert.net)
  • Infection by Helicobacter pylori is the major cause of duodenal ulcer. (scialert.net)
  • Cite this: Helicobacter pylori: Friend and Foe? (medscape.com)
  • Improved expression and purification of the Helicobacter pylori adhesin BabA through the incorporation of a hexa-lysine tag. (medscape.com)
  • We examined the role of Helicobacter pylori infection as a cause of recurrent abdominal pain [‎RAP]‎ among Iranian children in a population-based case-control study to determine the association between H. pylori infection and RAP among schoolchildren. (who.int)
  • To investigate the current prevalence of Helicobacter pylori infection in childhood, the risk factors for infection, and the effect of infection on growth in preadolescent schoolchildren. (bmj.com)
  • The Wampole Laboratories (Wampole) H. pylori IgG Enzyme-Linked Immunosorbent Assays (ELISA) is intended for the detection and qualitative determination of IgG antibodies to Helicobacter pylori in human serum. (cdc.gov)
  • Gastric cancer is strongly associated with Helicobacter pylori ( H. pylori ). (nih.gov)
  • Papastergiou V, Georgopoulos SD, Karatapanis S. Treatment of Helicobacter pylori infection: meeting the challenge of antimicrobial resistance. (medscape.com)
  • To evaluate whether vitamin B6 can alleviate the adverse reactions caused by the quadruple anti- Helicobacter pylori treatment regimen containing minocycline and metronidazole. (biomedcentral.com)
  • Besides, in "Sixth National Guidelines for the Treatment of Helicobacter pylori Infection 2022" , experts propose that semi-synthetic tetracycline can be used in eradication treatment instead of tetracycline. (biomedcentral.com)
  • Recent reports have suggested an increased prevalence of Helicobacter pylori infection in patients with rosacea, with some evidence of dermatological improvement in patients treated with antibiotics for this infection. (who.int)
  • Rapid increase in the prevalence of metronidazole-resistant Helicobacter pylori in the Netherlands. (cdc.gov)

No images available that match "helicobacter"