A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279)
Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus.
A tricylic dibenzodiazepine, classified as an atypical antipsychotic agent. It binds several types of central nervous system receptors, and displays a unique pharmacological profile. Clozapine is a serotonin antagonist, with strong binding to 5-HT 2A/2C receptor subtype. It also displays strong affinity to several dopaminergic receptors, but shows only weak antagonism at the dopamine D2 receptor, a receptor commonly thought to modulate neuroleptic activity. Agranulocytosis is a major adverse effect associated with administration of this agent.
A condition characterized by inactivity, decreased responsiveness to stimuli, and a tendency to maintain an immobile posture. The limbs tend to remain in whatever position they are placed (waxy flexibility). Catalepsy may be associated with PSYCHOTIC DISORDERS (e.g., SCHIZOPHRENIA, CATATONIC), nervous system drug toxicity, and other conditions.
Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME.
A selective blocker of DOPAMINE D2 RECEPTORS and SEROTONIN 5-HT2 RECEPTORS that acts as an atypical antipsychotic agent. It has been shown to improve both positive and negative symptoms in the treatment of SCHIZOPHRENIA.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES.
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use.
A group of two-ring heterocyclic compounds consisting of a benzene ring fused to a diazepine ring.
Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells.
A phenothiazine derivative with histamine H1-blocking, antimuscarinic, and sedative properties. It is used as an antiallergic, in pruritus, for motion sickness and sedation, and also in animals.
A traditional grouping of drugs said to have a soothing or calming effect on mood, thought, or behavior. Included here are the ANTI-ANXIETY AGENTS (minor tranquilizers), ANTIMANIC AGENTS, and the ANTIPSYCHOTIC AGENTS (major tranquilizers). These drugs act by different mechanisms and are used for different therapeutic purposes.
A feeling of restlessness associated with increased motor activity. This may occur as a manifestation of nervous system drug toxicity or other conditions.
A dopamine D2-receptor antagonist. It has been used therapeutically as an antidepressant, antipsychotic, and as a digestive aid. (From Merck Index, 11th ed)
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
A diphenylbutylpiperidine that is effective as an antipsychotic agent and as an alternative to HALOPERIDOL for the suppression of vocal and motor tics in patients with Tourette syndrome. Although the precise mechanism of action is unknown, blockade of postsynaptic dopamine receptors has been postulated. (From AMA Drug Evaluations Annual, 1994, p403)
A phenothiazine used in the treatment of PSYCHOSES. Its properties and uses are generally similar to those of CHLORPROMAZINE.
A class of cell surface receptors recognized by its pharmacological profile. Sigma receptors were originally considered to be opioid receptors because they bind certain synthetic opioids. However they also interact with a variety of other psychoactive drugs, and their endogenous ligand is not known (although they can react to certain endogenous steroids). Sigma receptors are found in the immune, endocrine, and nervous systems, and in some peripheral tissues.
A phenothiazine antipsychotic used in the management of PHYCOSES, including SCHIZOPHRENIA.
A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior.
Drugs that bind to and activate dopamine receptors.
The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup.
A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust.
A butyrophenone with general properties similar to those of HALOPERIDOL. It is used in the treatment of PSYCHOSES including MANIA and SCHIZOPHRENIA. (From Martindale, The Extra Pharmacopoeia, 30th ed, p621)
Organized services to provide immediate psychiatric care to patients with acute psychological disturbances.
Dibenzothiazepines are a class of heterocyclic chemical compounds that contain a dibenzothiazepine ring structure, which have been used in the development of various pharmaceutical drugs, particularly as tranquilizers, muscle relaxants, and anticonvulsants, but their use has declined due to side effects and the development of newer drugs.
Relatively invariant mode of behavior elicited or determined by a particular situation; may be verbal, postural, or expressive.
A subtype of dopamine D2 receptors that are highly expressed in the LIMBIC SYSTEM of the brain.
An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients.
A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
An opioid analgesic with actions and uses similar to MORPHINE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1095)
A spiro butyrophenone analog similar to HALOPERIDOL and other related compounds. It has been recommended in the treatment of SCHIZOPHRENIA.
The first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)
A thioxanthene with therapeutic actions similar to the phenothiazine antipsychotics. It is an antagonist at D1 and D2 dopamine receptors.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A selective and potent serotonin-2 antagonist that is effective in the treatment of a variety of syndromes related to anxiety and depression. The drug also improves the subjective quality of sleep and decreases portal pressure.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
An antipsychotic agent that is specific for dopamine D2 receptors. It has been shown to be effective in the treatment of schizophrenia.
Compounds containing phenyl-1-butanone.
A benzocycloheptapyridoisoquinolinol that has been used as an antipsychotic, especially in schizophrenia.
Homovanillic acid (HVA) is a major metabolite of dopamine, formed in the body through the catabolic breakdown of this neurotransmitter by the enzyme catechol-O-methyltransferase and then further metabolized in the liver before excretion in urine.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A complex involuntary response to an unexpected strong stimulus usually auditory in nature.
Drugs used in the treatment of movement disorders. Most of these act centrally on dopaminergic or cholinergic systems. Among the most important clinically are those used for the treatment of Parkinson disease (ANTIPARKINSON AGENTS) and those for the tardive dyskinesias.
The physical activity of a human or an animal as a behavioral phenomenon.
A dopamine D2/D3 receptor agonist.
Diseases of the BASAL GANGLIA including the PUTAMEN; GLOBUS PALLIDUS; claustrum; AMYGDALA; and CAUDATE NUCLEUS. DYSKINESIAS (most notably involuntary movements and alterations of the rate of movement) represent the primary clinical manifestations of these disorders. Common etiologies include CEREBROVASCULAR DISORDERS; NEURODEGENERATIVE DISEASES; and CRANIOCEREBRAL TRAUMA.
Specific sites or molecular structures on cell membranes or in cells with which phencyclidine reacts or to which it binds to elicit the specific response of the cell to phencyclidine. Studies have demonstrated the presence of multiple receptor sites for PCP. These are the PCP/sigma site, which binds both PCP and psychotomimetic opiates but not certain antipsychotics, and the PCP site, which selectively binds PCP analogs.
A water-soluble benzodiazepine derivative effective in the treatment of anxiety. It has also muscle relaxant and anticonvulsant actions.
Pyrrolidines are saturated, heterocyclic organic compounds containing a five-membered ring with four carbon atoms and one nitrogen atom (NRCH2CH2), commonly found as structural components in various alkaloids and used in the synthesis of pharmaceuticals and other organic materials.
Dibenzothiepins are a class of tricyclic heterocyclic compounds sharing a common structure of two benzene rings fused to a thiepin ring, which have been used in the development of various pharmaceutical drugs, particularly as antipsychotic agents, but are not widely used in current clinical practice due to their adverse effects profile.
Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS.
A disorder characterized by CONFUSION; inattentiveness; disorientation; ILLUSIONS; HALLUCINATIONS; agitation; and in some instances autonomic nervous system overactivity. It may result from toxic/metabolic conditions or structural brain lesions. (From Adams et al., Principles of Neurology, 6th ed, pp411-2)
Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS.
An anxiolytic benzodiazepine derivative with anticonvulsant, sedative, and amnesic properties. It has also been used in the symptomatic treatment of alcohol withdrawal.
A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE.
The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic.
A deaminated metabolite of LEVODOPA.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.
A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion.

S-16924 [(R)-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]- pyrrolidin-3yl]-1-(4-fluorophenyl)-ethanone], a novel, potential antipsychotic with marked serotonin1A agonist properties: III. Anxiolytic actions in comparison with clozapine and haloperidol. (1/1058)

S-16924 is a potential antipsychotic that displays agonist and antagonist properties at serotonin (5-HT)1A and 5-HT2A/2C receptors, respectively. In a pigeon conflict procedure, the benzodiazepine clorazepate (CLZ) increased punished responses, an action mimicked by S-16924, whereas the atypical antipsychotic clozapine and the neuroleptic haloperidol were inactive. Similarly, in a Vogel conflict paradigm in rats, CLZ increased punished responses, an action shared by S-16924 but not by clozapine or haloperidol. This action of S-16924 was abolished by the 5-HT1A antagonist WAY-100,635. Ultrasonic vocalizations in rats were inhibited by CLZ, S-16924, clozapine, and haloperidol. However, although WAY-100,635 abolished the action of S-16924, it did not affect clozapine and haloperidol. In a rat elevated plus-maze, CLZ, but not S-16924, clozapine, and haloperidol, increased open-arm entries. Like CLZ, S-16924 increased social interaction in rats, whereas clozapine and haloperidol were inactive. WAY-100,635 abolished this action of S-16924. CLZ, S-16924, clozapine, and haloperidol decreased aggressive interactions in isolated mice, but this effect of S-16924 was not blocked by WAY-100, 635. All drugs inhibited motor behavior, but the separation to anxiolytic doses was more pronounced for S-16924 than for CLZ. Finally, in freely moving rats, CLZ and S-16924, but not clozapine and haloperidol, decreased dialysis levels of 5-HT in the nucleus accumbens: this action of S-16924 was blocked by WAY-100,165. In conclusion, in contrast to haloperidol and clozapine, S-16924 possessed a broad-based profile of anxiolytic activity at doses lower than those provoking motor disruption. Its principal mechanism of action was activation of 5-HT1A (auto)receptors.  (+info)

Ergoline derivative LEK-8829-induced turning behavior in rats with unilateral striatal ibotenic acid lesions: interaction with bromocriptine. (2/1058)

LEK-8829 [9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8- aminomethylergoline bimaleinate] is an antagonist of dopamine D2 receptors and serotonin (5-HT)2 and 5-HT1A receptors in intact animals and a D1 receptor agonist in dopamine-depleted animals. In the present study, we used rats with unilateral striatal lesions with ibotenic acid (IA) to investigate the dopamine receptor activities of LEK-8829 in a model with innervated dopamine receptors. The IA-lesioned rats circled ipsilaterally when challenged with apomorphine, the mixed agonist on D1/D2 receptors. LEK-8829 induced a dose-dependent contralateral turning that was blocked by D1 receptor antagonist SCH-23390. The treatment with D1 receptor agonist SKF-82958 induced ipsilateral turning, whereas the treatment with D2 receptor antagonist haloperidol induced contralateral posture. The combined treatment with SKF-82958 and haloperidol resulted in a weak contralateral turning, indicating the possible receptor mechanism of contralateral turning induced by LEK-8829. Bromocriptine induced a weak ipsilateral turning that was blocked by haloperidol. The ipsilateral turning induced by bromocriptine was significantly potentiated by the coadministration of a low dose but not by a high dose of LEK-8829. The potentiation of turning was blocked either by SCH-23390 or by haloperidol. The potentiation of ipsilateral turning suggests the costimulation of D2 and D1 receptors by bromocriptine and LEK-8829, respectively, whereas the lack of potentiation by the highest dose of LEK-8829 may be explained by the opposing activity of LEK-8829 and bromocriptine at D2 receptors. We propose that the D2 and 5HT2 receptor-blocking and D1 receptor-stimulating profile of LEK-8829 is promising for the treatment of negative symptoms of schizophrenia.  (+info)

Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. (3/1058)

Sydnocarb (3-(beta-phenylisopropyl)-N-phenylcarbamoylsydnonimine) is a psychostimulant in clinical practice in Russia as a primary and adjunct therapy for a host of psychiatric disorders, including schizophrenia and depression. It has been described as a stimulant with an addiction liability and toxicity less than that of amphetamines. The present study undertook to evaluate the psychomotor stimulant effects of sydnocarb in comparison to those of methamphetamine. Sydnocarb increased locomotor activity of mice with reduced potency (approximately 10-fold) and efficacy compared with methamphetamine. Sydnocarb blocked the locomotor depressant effects of haloperidol at doses that were inactive when given alone. The locomotor stimulant effects of both methamphetamine and sydnocarb were dose-dependently blocked by the dopamine D1 and D2 antagonists SCH 39166 and spiperone, respectively; blockade generally occurred at doses of the antagonists that did not depress locomotor activity when given alone. In mice trained to discriminate methamphetamine from saline, sydnocarb fully substituted for methamphetamine with a 9-fold lower potency. When substituted for methamphetamine under self-administration experiments in rats, 10-fold higher concentrations of sydnocarb maintained responding by its i.v. presentation. Sydnocarb engendered stereotypy in high doses with approximately a 2-fold lower potency than methamphetamine. However, sydnocarb was much less efficacious than methamphetamine in inducing stereotyped behavior. Both sydnocarb and methamphetamine increased dialysate levels of dopamine in mouse striatum; however, the potency and efficacy of sydnocarb was less than methamphetamine. The convulsive effects of cocaine were significantly enhanced by the coadministration of nontoxic doses of methamphetamine but not of sydnocarb. Taken together, the present findings indicate that sydnocarb has psychomotor stimulant effects that are shared by methamphetamine while demonstrating a reduced behavioral toxicity.  (+info)

Effect of psychotropic drugs on caudate spindle in cats. (4/1058)

To ascertain whether neuroleptics act on the caudate nucleus itself, the effects of these compounds as well as other centrally acting drugs were examined in relation to caudate spindle and EEG arousal responses (sciatic nerve stimulation) in gallamine-immobilized cats. Haloperidol and chlorpromazine enhanced the caudate spindle at a dose which had no effect on the EEG arousal response. On the other hand, clozapine and a higher dose of chlorpromazine enhanced the caudate spindle, but depressed the arousal response. High frequency stimulation of the sciatic nerve suppressed the caudate spindle. Pentobarbital, biperiden and diazepam, while depressing the arousal response, caused an enhancement of the caudate spindle. Imipramine at a low dose had no effect on either response, whereas at a high dose this drug enhanced the caudate spindle with concomitant depression of the arousal response. From these results, it may be concluded that the enhancing action on the caudate spindle induced by haloperidol and a low dose of chlorpromazine is due to an increase in susceptibility of the caudate nucleus itself. In addition, it is suggested that depression of the activating system is involved in an appearance of the caudate spindle.  (+info)

Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. (5/1058)

Research has shown that there are important neurochemical differences between the mesocortical and mesostriatal dopamine systems. The work reported in this paper has sought to compare the regulation of dopamine release in the medial prefrontal cortex and the anterior caudate-putamen. In vivo microdialysis was used to recover dialysate fluid for subsequent assay for dopamine concentrations. The responses to D2 antagonist (haloperidol) administration, which has been shown to increase impulse-dependent dopamine release, were compared. Results demonstrated a diminished effect of systemic haloperidol administration on dopamine efflux in the prefrontal cortex. The responses to systemic administration of a nonimpulse-dependent, transporter-mediated, dopamine releaser (d-amphetamine) were also contrasted. Results again demonstrated a diminished pharmacological effect in the cortex. The potential interaction of stimulation of these two types of dopamine release was examined by coadministration of these compounds. Haloperidol pretreatment dramatically potentiated the dopamine-releasing effect of amphetamine administration. This effect was observed in both the cortex and the striatum. Subsequent work demonstrated that this effect of haloperidol was mediated by D2-like receptors in the prefrontal cortex. These results are discussed in relation to other neurochemical and neuroanatomical studies demonstrating sparse densities of dopamine transporter sites and dopamine D2 receptors in the cortex compared with the striatum. They demonstrate a functional correlate to the recently reported, largely extrasynaptic localization of dopamine transporter sites in the prefrontal cortex. Furthermore, they demonstrate the existence of cortical D2-like autoreceptors that may normally be "silent" under basal conditions.  (+info)

Molecular and ligand-binding characterization of the sigma-receptor in the Jurkat human T lymphocyte cell line. (6/1058)

The sigma binding site present in the Jurkat human T lymphocyte cell line was investigated. Jurkat cell membranes were found to have a single saturable binding site for [3H]haloperidol, a sigma ligand (dissociation constant, 3.9 +/- 0.3 nM). The binding of [3H]haloperidol was inhibited by several sigma ligands. Northern analysis and reverse transcription-polymerase chain reaction provided evidence for the expression of the recently cloned type 1 sigma-receptor (sigma-R1) in Jurkat cells. The sigma-R1 cDNA cloned from these cells was functional in heterologous expression systems. When expressed in mammalian cells, the cDNA-induced binding was saturable with dissociation constants of 1.9 +/- 0.3 nM for [3H]haloperidol and 12 +/- 2 nM for (+)-pentazocine. The binding of [3H]progesterone, a putative endogenous ligand to sigma-R1, to the Jurkat cell sigma-receptor could be directly demonstrated by using heterologously expressed sigma-R1 cDNA. The binding of [3H]progesterone was saturable, with a dissociation constant of 88 +/- 7 nM. Progesterone and haloperidol interacted with the receptor competitively. Reverse transcription-polymerase chain reaction also produced evidence for the existence of an alternatively spliced sigma-R1 variant in Jurkat cells. This splice variant was found to be nonfunctional in ligand binding assays. This constitutes the first report on the molecular characterization of the sigma-receptor in immune cells.  (+info)

Synergistic interactions between ampakines and antipsychotic drugs. (7/1058)

Tests were made for interactions between antipsychotic drugs and compounds that enhance synaptic currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptors ("ampakines"). Typical and atypical antipsychotic drugs decreased methamphetamine-induced hyperactivity in rats; the effects of near or even subthreshold doses of the antipsychotics were greatly enhanced by the ampakines. Interactions between the ampakine CX516 and low doses of different antipsychotics were generally additive and often synergistic. The ampakine did not exacerbate neuroleptic-induced catalepsy, indicating that the interaction between the different pharmacological classes was selective. These results suggest that positive modulators of cortical glutamatergic systems may be useful adjuncts in treating schizophrenia.  (+info)

Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Evidence for a third drug-binding site. (8/1058)

P-glycoprotein is a plasma membrane protein of mammalian cells that confers multidrug resistance by acting as a broad-specificity, ATP-dependent efflux transporter of diverse lipophilic neutral or cationic compounds. Previously, we identified two positively cooperative drug-binding sites of P-glycoprotein involved in transport [Shapiro, A. B. & Ling, V. (1997) Eur. J. Biochem. 250, 130-137]. The H site is selective for Hoechst 33342 and colchicine. The R site is selective for rhodamine 123 and anthracyclines. Substrate binding to one site stimulates transport by the other. In this paper, we show that prazosin and progesterone stimulate the transport of both Hoechst 33342 and rhodamine 123. Rhodamine 123 and prazosin (or progesterone) in combination stimulate Hoechst 33342 transport in an additive manner. In contrast, Hoechst 33342 and either prazosin or progesterone interfere with each other, so that the stimulatory effect of the combination on rhodamine 123 transport is less than that of each individually. Non-P-glycoprotein-specific effects of prazosin on membrane fluidity and permeability were excluded. These results indicate the existence of a third drug-binding site on P-glycoprotein with a positive allosteric effect on drug transport by the H and R sites. This allosteric site appears to be one of the sites of photoaffinity labeling of P-glycoprotein by [125I]iodoarylazidoprazosin [Safa, A. R., Agresti, M., Bryk, D. & Tamai, I. (1994) Biochemistry 33, 256-265] and is likely not to be capable of drug transport.  (+info)

Haloperidol is an antipsychotic medication, which is primarily used to treat schizophrenia and symptoms of psychosis, such as delusions, hallucinations, paranoia, or disordered thought. It may also be used to manage Tourette's disorder, tics, agitation, aggression, and hyperactivity in children with developmental disorders.

Haloperidol works by blocking the action of dopamine, a neurotransmitter in the brain, which helps to regulate mood and behavior. It is available in various forms, including tablets, liquid, and injectable solutions. The medication can cause side effects such as drowsiness, restlessness, muscle stiffness, and uncontrolled movements. In rare cases, it may also lead to more serious neurological side effects.

As with any medication, haloperidol should be taken under the supervision of a healthcare provider, who will consider the individual's medical history, current medications, and other factors before prescribing it.

Antipsychotic agents are a class of medications used to manage and treat psychosis, which includes symptoms such as delusions, hallucinations, paranoia, disordered thought processes, and agitated behavior. These drugs work by blocking the action of dopamine, a neurotransmitter in the brain that is believed to play a role in the development of psychotic symptoms. Antipsychotics can be broadly divided into two categories: first-generation antipsychotics (also known as typical antipsychotics) and second-generation antipsychotics (also known as atypical antipsychotics).

First-generation antipsychotics, such as chlorpromazine, haloperidol, and fluphenazine, were developed in the 1950s and have been widely used for several decades. They are generally effective in reducing positive symptoms of psychosis (such as hallucinations and delusions) but can cause significant side effects, including extrapyramidal symptoms (EPS), such as rigidity, tremors, and involuntary movements, as well as weight gain, sedation, and orthostatic hypotension.

Second-generation antipsychotics, such as clozapine, risperidone, olanzapine, quetiapine, and aripiprazole, were developed more recently and are considered to have a more favorable side effect profile than first-generation antipsychotics. They are generally effective in reducing both positive and negative symptoms of psychosis (such as apathy, anhedonia, and social withdrawal) and cause fewer EPS. However, they can still cause significant weight gain, metabolic disturbances, and sedation.

Antipsychotic agents are used to treat various psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder with psychotic features, delusional disorder, and other conditions that involve psychosis or agitation. They can be administered orally, intramuscularly, or via long-acting injectable formulations. The choice of antipsychotic agent depends on the individual patient's needs, preferences, and response to treatment, as well as the potential for side effects. Regular monitoring of patients taking antipsychotics is essential to ensure their safety and effectiveness.

Clozapine is an atypical antipsychotic medication that is primarily used to treat schizophrenia in patients who have not responded to other antipsychotic treatments. It is also used off-label for the treatment of severe aggression, suicidal ideation, and self-injurious behavior in individuals with developmental disorders.

Clozapine works by blocking dopamine receptors in the brain, particularly the D4 receptor, which is thought to be involved in the development of schizophrenia. It also has a strong affinity for serotonin receptors, which contributes to its unique therapeutic profile.

Clozapine is considered a medication of last resort due to its potential side effects, which can include agranulocytosis (a severe decrease in white blood cell count), myocarditis (inflammation of the heart muscle), seizures, orthostatic hypotension (low blood pressure upon standing), and weight gain. Because of these risks, patients taking clozapine must undergo regular monitoring of their blood counts and other vital signs.

Despite its potential side effects, clozapine is often effective in treating treatment-resistant schizophrenia and has been shown to reduce the risk of suicide in some patients. It is available in tablet and orally disintegrating tablet formulations.

Catalepsy is a medical condition characterized by a trance-like state, with reduced sensitivity to pain and external stimuli, muscular rigidity, and fixed postures. In this state, the person's body may maintain any position in which it is placed for a long time, and there is often a decreased responsiveness to social cues or communication attempts.

Catalepsy can be a symptom of various medical conditions, including neurological disorders such as epilepsy, Parkinson's disease, or brain injuries. It can also occur in the context of mental health disorders, such as severe depression, catatonic schizophrenia, or dissociative identity disorder.

In some cases, catalepsy may be induced intentionally through hypnosis or other forms of altered consciousness practices. However, when it occurs spontaneously or as a symptom of an underlying medical condition, it can be a serious concern and requires medical evaluation and treatment.

Dopamine antagonists are a class of drugs that block the action of dopamine, a neurotransmitter in the brain associated with various functions including movement, motivation, and emotion. These drugs work by binding to dopamine receptors and preventing dopamine from attaching to them, which can help to reduce the symptoms of certain medical conditions such as schizophrenia, bipolar disorder, and gastroesophageal reflux disease (GERD).

There are several types of dopamine antagonists, including:

1. Typical antipsychotics: These drugs are primarily used to treat psychosis, including schizophrenia and delusional disorders. Examples include haloperidol, chlorpromazine, and fluphenazine.
2. Atypical antipsychotics: These drugs are also used to treat psychosis but have fewer side effects than typical antipsychotics. They may also be used to treat bipolar disorder and depression. Examples include risperidone, olanzapine, and quetiapine.
3. Antiemetics: These drugs are used to treat nausea and vomiting. Examples include metoclopramide and prochlorperazine.
4. Dopamine agonists: While not technically dopamine antagonists, these drugs work by stimulating dopamine receptors and can be used to treat conditions such as Parkinson's disease. However, they can also have the opposite effect and block dopamine receptors in high doses, making them functionally similar to dopamine antagonists.

Common side effects of dopamine antagonists include sedation, weight gain, and movement disorders such as tardive dyskinesia. It's important to use these drugs under the close supervision of a healthcare provider to monitor for side effects and adjust the dosage as needed.

Risperidone is an atypical antipsychotic medication that is primarily used to treat certain mental/mood disorders (such as schizophrenia, bipolar disorder, and irritability associated with autistic disorder). It works by helping to restore the balance of certain natural substances in the brain. Risperidone belongs to a class of drugs called benzisoxazole derivatives.

This medication can decrease aggression and schizophrenic symptoms such as hallucinations, delusional thinking, and hostility. It may also help to improve your mood, thoughts, and behavior. Some forms of risperidone are also used for the treatment of irritability in children and adolescents with autistic disorder (a developmental disorder that affects communication and behavior).

It's important to note that this is a general medical definition, and the use of risperidone should always be under the supervision of a healthcare professional, as it can have potential side effects and risks.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

Apomorphine is a non-selective dopamine receptor agonist, which means that it activates dopamine receptors in the brain. It has a high affinity for D1 and D2 dopamine receptors and is used medically to treat Parkinson's disease, particularly in cases of severe or intractable motor fluctuations.

Apomorphine can be administered subcutaneously (under the skin) as a solution or as a sublingual (under the tongue) film. It works by stimulating dopamine receptors in the brain, which helps to reduce the symptoms of Parkinson's disease such as stiffness, tremors, and difficulty with movement.

In addition to its use in Parkinson's disease, apomorphine has also been investigated for its potential therapeutic benefits in other neurological disorders, including alcohol use disorder and drug addiction. However, more research is needed to establish its safety and efficacy in these conditions.

Benzodiazepines are a class of psychoactive drugs that have been widely used for their sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties. They act by enhancing the inhibitory effects of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system.

Benzodiazepines are commonly prescribed for the treatment of anxiety disorders, insomnia, seizures, and muscle spasms. They can also be used as premedication before medical procedures to produce sedation, amnesia, and anxiolysis. Some examples of benzodiazepines include diazepam (Valium), alprazolam (Xanax), clonazepam (Klonopin), lorazepam (Ativan), and temazepam (Restoril).

While benzodiazepines are effective in treating various medical conditions, they can also cause physical dependence and withdrawal symptoms. Long-term use of benzodiazepines can lead to tolerance, meaning that higher doses are needed to achieve the same effect. Abrupt discontinuation of benzodiazepines can result in severe withdrawal symptoms, including seizures, hallucinations, and anxiety. Therefore, it is important to taper off benzodiazepines gradually under medical supervision.

Benzodiazepines are classified as Schedule IV controlled substances in the United States due to their potential for abuse and dependence. It is essential to use them only as directed by a healthcare provider and to be aware of their potential risks and benefits.

Dopamine receptors are a type of G protein-coupled receptor that bind to and respond to the neurotransmitter dopamine. There are five subtypes of dopamine receptors (D1-D5), which are classified into two families based on their structure and function: D1-like (D1 and D5) and D2-like (D2, D3, and D4).

Dopamine receptors play a crucial role in various physiological processes, including movement, motivation, reward, cognition, emotion, and neuroendocrine regulation. They are widely distributed throughout the central nervous system, with high concentrations found in the basal ganglia, limbic system, and cortex.

Dysfunction of dopamine receptors has been implicated in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), drug addiction, and depression. Therefore, drugs targeting dopamine receptors have been developed for the treatment of these conditions.

Promethazine is an antihistamine and phenothiazine derivative, which is commonly used for its sedative, anti-emetic (prevents vomiting), and anti-allergic properties. It works by blocking the action of histamine, a substance in the body that causes allergic symptoms, and by blocking the action of dopamine, a neurotransmitter in the brain that helps transmit signals.

Promethazine is used to treat various conditions such as allergies, motion sickness, nausea and vomiting, and as a sedative before and after surgery or medical procedures. It may also be used for its calming effects in children with certain behavioral disorders.

Like all medications, promethazine can have side effects, including drowsiness, dry mouth, blurred vision, and dizziness. More serious side effects may include seizures, irregular heartbeat, and difficulty breathing. It is important to follow the instructions of a healthcare provider when taking promethazine and to report any unusual symptoms or side effects promptly.

Tranquilizing agents, also known as major tranquilizers or antipsychotic drugs, are a class of medications used primarily to manage psychosis, including schizophrenia, and other mental health disorders. These agents work by blocking dopamine receptors in the brain, which helps reduce the symptoms of psychosis such as hallucinations, delusions, and disordered thinking.

Tranquilizing agents can be further divided into two categories: first-generation antipsychotics (FGAs) and second-generation antipsychotics (SGAs). FGAs, also known as typical antipsychotics, were developed earlier and have a higher risk of side effects such as extrapyramidal symptoms (EPS), which include involuntary movements, stiffness, and tremors. SGAs, also known as atypical antipsychotics, were developed more recently and have a lower risk of EPS but may have other side effects such as weight gain and metabolic issues.

It's important to note that tranquilizing agents should only be prescribed and monitored by a qualified healthcare professional, as they can have significant risks and benefits.

Psychomotor agitation is a state of increased physical activity and purposeless or semi-purposeful voluntary movements, usually associated with restlessness, irritability, and cognitive impairment. It can be a manifestation of various medical and neurological conditions such as delirium, dementia, bipolar disorder, schizophrenia, and substance withdrawal. Psychomotor agitation may also increase the risk of aggressive behavior and physical harm to oneself or others. Appropriate evaluation and management are necessary to address the underlying cause and alleviate symptoms.

Sulpiride is an antipsychotic drug that belongs to the chemical class of benzamides. It primarily acts as a selective dopamine D2 and D3 receptor antagonist. Sulpiride is used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. In addition, it has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract.

The medical definition of Sulpiride is as follows:

Sulpiride (INN, BAN), also known as Sultopride (USAN) or SP, is a selective dopamine D2 and D3 receptor antagonist used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. It has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract. Sulpiride is available under various brand names worldwide, including Dogmatil, Sulpitac, and Espirid."

Please note that this definition includes information about the drug's therapeutic uses, which are essential aspects of understanding a medication in its entirety.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

Pimozide is an antipsychotic medication that is primarily used to treat chronic tics and Tourette's disorder. It works by blocking the action of dopamine, a neurotransmitter in the brain that is involved in regulating movement and mood. By blocking dopamine receptors, pimozide helps to reduce the severity and frequency of tics and other symptoms associated with these conditions.

Pimozide may also be used off-label for the treatment of other conditions, such as severe behavioral problems in children with developmental disabilities. It is important to note that pimozide can have serious side effects, including cardiac arrhythmias and neurological symptoms, and should only be prescribed by a healthcare professional who is experienced in managing its use.

As with all medications, it's essential to follow the dosage instructions carefully and to report any unusual or concerning symptoms to your healthcare provider promptly.

Fluphenazine is an antipsychotic medication that belongs to the class of phenothiazines. It works by blocking the action of dopamine, a neurotransmitter in the brain, which helps to reduce the symptoms of psychosis such as delusions, hallucinations, and disordered thought.

Fluphenazine is available in several forms, including oral tablets, orally disintegrating tablets, and injectable solutions. It may be used for the treatment of schizophrenia, psychotic disorders, and other conditions associated with elevated levels of dopamine in the brain.

Like all antipsychotic medications, fluphenazine can cause side effects, including extrapyramidal symptoms (EPS), such as stiffness, tremors, and spasms of the face and neck muscles, as well as other systemic side effects like weight gain, sedation, and orthostatic hypotension. It is essential to use fluphenazine under the close supervision of a healthcare provider who can monitor for side effects and adjust the dosage accordingly.

Sigma receptors are a type of cell surface receptor that were initially thought to be opioid receptors but later found to have a distinct pharmacology. They are a heterogeneous group of proteins that are widely distributed in the brain and other tissues, where they play a role in various physiological functions such as neurotransmission, signal transduction, and modulation of ion channels.

Sigma receptors can be divided into two subtypes: sigma-1 and sigma-2. Sigma-1 receptors are ligand-regulated chaperone proteins that are localized in the endoplasmic reticulum (ER) and mitochondria-associated ER membranes, where they modulate calcium signaling, protein folding, and stress responses. Sigma-2 receptors, on the other hand, are still poorly characterized and their endogenous ligands and physiological functions remain elusive.

Sigma receptors can be activated by a variety of drugs, including certain antidepressants, neuroleptics, psychostimulants, and hallucinogens, as well as some natural compounds such as steroids and phenolamines. The activation of sigma receptors has been implicated in various neurological and psychiatric disorders, such as schizophrenia, depression, anxiety, addiction, pain, and neurodegeneration, although their exact role and therapeutic potential are still under investigation.

Thioridazine is an antipsychotic medication that belongs to the class of phenothiazines. It works by blocking dopamine receptors in the brain, which helps to reduce psychotic symptoms such as delusions, hallucinations, and disordered thought processes. Thioridazine is used to treat schizophrenia and other mental disorders associated with anxiety, agitation, or hostility.

It's important to note that thioridazine has been associated with serious side effects, including prolongation of the QT interval on the electrocardiogram (ECG), which can lead to potentially fatal arrhythmias. Therefore, its use is generally reserved for patients who have not responded to other antipsychotic medications or who cannot tolerate them. Thioridazine has been withdrawn from the market in many countries due to these safety concerns.

Schizophrenia is a severe mental disorder characterized by disturbances in thought, perception, emotion, and behavior. It often includes hallucinations (usually hearing voices), delusions, paranoia, and disorganized speech and behavior. The onset of symptoms typically occurs in late adolescence or early adulthood. Schizophrenia is a complex, chronic condition that requires ongoing treatment and management. It significantly impairs social and occupational functioning, and it's often associated with reduced life expectancy due to comorbid medical conditions. The exact causes of schizophrenia are not fully understood, but research suggests that genetic, environmental, and neurodevelopmental factors play a role in its development.

Dopamine agonists are a class of medications that mimic the action of dopamine, a neurotransmitter in the brain that regulates movement, emotion, motivation, and reinforcement of rewarding behaviors. These medications bind to dopamine receptors in the brain and activate them, leading to an increase in dopaminergic activity.

Dopamine agonists are used primarily to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. By increasing dopaminergic activity in the brain, dopamine agonists can help alleviate some of these symptoms.

Examples of dopamine agonists include:

1. Pramipexole (Mirapex)
2. Ropinirole (Requip)
3. Rotigotine (Neupro)
4. Apomorphine (Apokyn)

Dopamine agonists may also be used off-label to treat other conditions, such as restless legs syndrome or certain types of dopamine-responsive dystonia. However, these medications can have significant side effects, including nausea, dizziness, orthostatic hypotension, compulsive behaviors (such as gambling, shopping, or sexual addiction), and hallucinations. Therefore, they should be used with caution and under the close supervision of a healthcare provider.

Chlorpromazine is a type of antipsychotic medication, also known as a phenothiazine. It works by blocking dopamine receptors in the brain, which helps to reduce the symptoms of psychosis such as hallucinations, delusions, and disordered thinking. Chlorpromazine is used to treat various mental health conditions including schizophrenia, bipolar disorder, and severe behavioral problems in children. It may also be used for the short-term management of severe anxiety or agitation, and to control nausea and vomiting.

Like all medications, chlorpromazine can have side effects, which can include drowsiness, dry mouth, blurred vision, constipation, weight gain, and sexual dysfunction. More serious side effects may include neurological symptoms such as tremors, rigidity, or abnormal movements, as well as cardiovascular problems such as low blood pressure or irregular heart rhythms. It is important for patients to be monitored closely by their healthcare provider while taking chlorpromazine, and to report any unusual symptoms or side effects promptly.

Phencyclidine (PCP) is a dissociative drug that was originally developed as an intravenous anesthetic in the 1950s. It can lead to distortions of time, space and body image, hallucinations, and a sense of physical invulnerability.

It can also cause numbness, loss of coordination, and aggressive behavior. High doses can lead to seizures, coma, and death. Long-term use can lead to memory loss, difficulties with speech and thinking, and mental health issues such as depression and suicidal thoughts. It is classified as a Schedule II drug in the United States, indicating it has a high potential for abuse but also an accepted medical use.

Trifluperidol is a potent, long-acting typical antipsychotic drug that is primarily used in the management of chronic schizophrenia. It belongs to the chemical class of diphenylbutylpiperidines and has strong antagonist activity at dopamine D2 receptors.

The medical definition of Trifluperidol can be stated as follows:

Trifluperidol (INN, BAN), also known as Etrafon, Stelazine, or Trilafon, is a potent antipsychotic medication used to treat chronic schizophrenia and related psychotic disorders. It has a high affinity for dopamine D2 receptors and exhibits strong antagonist activity, which contributes to its therapeutic effects in managing positive symptoms of schizophrenia such as hallucinations, delusions, and disorganized thinking.

Trifluperidol is available in oral and injectable forms, with the latter being used for more rapid symptom control or when oral administration is not feasible. Its long-acting properties make it suitable for once-daily dosing, although its use has declined in recent years due to the availability of newer atypical antipsychotic medications with fewer side effects.

Like other typical antipsychotics, Trifluperidol can cause extrapyramidal symptoms (EPS), including akathisia, dystonia, parkinsonism, and tardive dyskinesia, as well as other adverse effects such as sedation, orthostatic hypotension, and weight gain. Its use should be monitored closely to minimize these risks and optimize therapeutic outcomes.

Emergency services in psychiatry, also known as crisis intervention services, refer to immediate and urgent mental health services provided to individuals who are experiencing an acute mental health emergency. These services aim to assess, manage, and stabilize the individual's mental health crisis and ensure their safety, as well as the safety of others.

Psychiatric emergency services may include:

1. Crisis hotlines: 24-hour telephone support lines that provide immediate assistance and referral to appropriate mental health services.
2. Mobile crisis teams: Mental health professionals who provide on-site assessment, intervention, and referral services in the community.
3. Psychiatric emergency departments: Specialized units within hospitals that provide urgent psychiatric evaluation, treatment, and short-term stabilization for individuals in a mental health crisis.
4. Inpatient psychiatric units: Short-term hospitalization for individuals who require intensive psychiatric care and monitoring during a crisis.
5. Respite care services: Temporary supportive housing and care for individuals in a mental health crisis, providing relief for both the individual and their family or caregivers.

The primary goal of psychiatric emergency services is to provide timely and effective interventions that can help prevent further deterioration of the individual's mental health, reduce the risk of suicide or self-harm, and promote recovery and stabilization.

Dibenzothiazepines are a class of heterocyclic chemical compounds that contain a dibenzothiazepine ring structure. This structure is composed of a benzene ring fused to a thiazepine ring, which is itself formed by the fusion of a benzene ring and a diazepine ring (a seven-membered ring containing two nitrogen atoms).

In the medical field, dibenzothiazepines are known for their pharmacological properties and have been used in the development of various drugs. Some dibenzothiazepine derivatives exhibit antipsychotic, anxiolytic, and anticonvulsant activities. However, due to their potential for adverse effects and the availability of safer alternatives, they are not widely used in clinical practice today.

It is important to note that specific dibenzothiazepine compounds may have unique properties and uses beyond their general classification as a chemical class. Always consult medical literature or healthcare professionals for accurate information on specific drugs or compounds.

Stereotyped behavior, in the context of medicine and psychology, refers to repetitive, rigid, and invariant patterns of behavior or movements that are purposeless and often non-functional. These behaviors are not goal-directed or spontaneous and typically do not change in response to environmental changes or social interactions.

Stereotypies can include a wide range of motor behaviors such as hand flapping, rocking, head banging, body spinning, self-biting, or complex sequences of movements. They are often seen in individuals with developmental disabilities, intellectual disabilities, autism spectrum disorder, and some mental health conditions.

Stereotyped behaviors can also be a result of substance abuse, neurological disorders, or brain injuries. In some cases, these behaviors may serve as a self-soothing mechanism or a way to cope with stress, anxiety, or boredom. However, they can also interfere with daily functioning and social interactions, and in severe cases, may cause physical harm to the individual.

Dopamine D3 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as part of the D2-like family of dopamine receptors, which also includes the D2 and D4 receptors. The D3 receptor is primarily expressed in the limbic areas of the brain, including the hippocampus and the nucleus accumbens, where it plays a role in regulating motivation, reward, and cognition.

D3 receptors have been found to be involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, and drug addiction. In Parkinson's disease, the loss of dopamine-producing neurons in the substantia nigra results in a decrease in dopamine levels and an increase in D3 receptor expression. This increase in D3 receptor expression has been linked to the development of motor symptoms such as bradykinesia and rigidity.

In schizophrenia, antipsychotic medications that block D2-like receptors, including D3 receptors, are used to treat positive symptoms such as hallucinations and delusions. However, selective D3 receptor antagonists have also been shown to have potential therapeutic effects in treating negative symptoms of schizophrenia, such as apathy and anhedonia.

In drug addiction, D3 receptors have been found to play a role in the rewarding effects of drugs of abuse, such as cocaine and amphetamines. Selective D3 receptor antagonists have shown promise in reducing drug-seeking behavior and preventing relapse in animal models of addiction.

Overall, dopamine D3 receptors play an important role in several neurological and psychiatric disorders, and further research is needed to fully understand their functions and potential therapeutic uses.

Pirenzepine is a medication that belongs to a class of drugs called anticholinergics or parasympatholytics. It works by blocking the action of acetylcholine, a neurotransmitter in the body, on certain types of muscarinic receptors.

Pirenzepine is primarily used to treat peptic ulcers and gastroesophageal reflux disease (GERD) by reducing the production of stomach acid. It may also be used to manage symptoms of irritable bowel syndrome, such as abdominal pain and diarrhea.

The medication is available in the form of tablets or gel for topical application. Side effects of pirenzepine may include dry mouth, blurred vision, constipation, dizziness, and difficulty urinating. It should be used with caution in people with glaucoma, benign prostatic hyperplasia, or other conditions that may be exacerbated by anticholinergic drugs.

It is important to note that this definition is for informational purposes only and should not be taken as medical advice. Always consult with a healthcare professional before starting any new medication.

Neurotensin is a neuropeptide that is widely distributed in the central nervous system and the gastrointestinal tract. It is composed of 13 amino acids and plays a role as a neurotransmitter or neuromodulator in various physiological functions, including pain regulation, temperature regulation, and feeding behavior. Neurotensin also has been shown to have potential roles in the development of certain diseases such as cancer and neurological disorders. It exerts its effects by binding to specific receptors, known as neurotensin receptors (NTSR1, NTSR2, and NTSR3), which are widely distributed throughout the body.

Phenazocine is a synthetic opioid analgesic, which is primarily used for the treatment of moderate to severe pain. It is a schedule II controlled substance in the United States due to its high potential for abuse and addiction. Phenazocine works by binding to the mu-opioid receptors in the brain and spinal cord, which are responsible for mediating pain perception, reward, and addictive behaviors.

The medical definition of Phenazocine is:

A potent opioid analgesic with a rapid onset of action and a duration of effect of 2-4 hours. It is approximately ten times more potent than morphine and has similar side effects, including respiratory depression, sedation, nausea, vomiting, and constipation. Phenazocine is used for the management of acute pain, cancer pain, and as an adjunct in anesthesia. It is available in oral and injectable forms and may be administered intravenously, intramuscularly, or subcutaneously.

It's important to note that Phenazocine should only be used under the supervision of a qualified medical professional due to its potential for addiction and abuse.

Spiperone is an antipsychotic drug that belongs to the chemical class of diphenylbutylpiperidines. It has potent dopamine D2 receptor blocking activity and moderate serotonin 5-HT2A receptor affinity. Spiperone is used primarily in research settings for its ability to bind to and block dopamine receptors, which helps scientists study the role of dopamine in various physiological processes.

In clinical practice, spiperone has been used off-label to treat chronic schizophrenia, but its use is limited due to its significant side effects, including extrapyramidal symptoms (involuntary muscle movements), tardive dyskinesia (irregular, jerky movements), and neuroleptic malignant syndrome (a rare but potentially fatal complication characterized by fever, muscle rigidity, and autonomic instability).

It's important to note that spiperone is not approved by the US Food and Drug Administration (FDA) for use in the United States. Its use is more common in research settings or in countries where it may be approved for specific indications.

Pentazocine is a synthetic opioid analgesic, chemically unrelated to other opiates or opioids. It acts as an agonist at the kappa-opioid receptor and as an antagonist at the mu-opioid receptor, which means it can produce pain relief but block the effects of full agonists such as heroin or morphine. Pentazocine is used for the management of moderate to severe pain and is available in oral, intramuscular, and intravenous formulations. Common side effects include dizziness, lightheadedness, sedation, nausea, and vomiting.

Clopenthixol is a type of antipsychotic medication that is primarily used to manage and treat symptoms associated with various mental health disorders, such as schizophrenia and other psychotic disorders. It belongs to a class of drugs known as "typical" or "first-generation" antipsychotics, which work by blocking dopamine receptors in the brain.

Clopenthixol has potent activity at both dopamine D2 and serotonin 5-HT2 receptors, which contributes to its efficacy in treating positive symptoms of schizophrenia, such as hallucinations and delusions, as well as negative symptoms, like apathy and social withdrawal. It is also used off-label for the treatment of agitation and aggression in individuals with dementia or intellectual disabilities.

The medication is available in two forms: immediate-release tablets (Clopenthixol decanoate) and a long-acting injectable form (Clopenthixol decanoate). The long-acting injection is typically administered every 2-4 weeks, while the oral tablet is taken daily.

Like all medications, clopenthixol can have side effects, which may include extrapyramidal symptoms (EPS), such as Parkinsonism, akathisia, and dystonia; weight gain; metabolic changes; sexual dysfunction; and cardiovascular issues. It is essential to monitor patients taking clopenthixol for these potential adverse effects and adjust the treatment plan accordingly.

It's important to note that clopenthixol should only be prescribed and administered under the supervision of a qualified healthcare professional, and patients should follow their instructions carefully to ensure safe and effective use.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Ritanserin is a medication that belongs to the class of drugs known as serotonin antagonists. It works by blocking the action of serotonin, a neurotransmitter in the brain, which helps to reduce anxiety and improve mood. Ritanserin was initially developed for the treatment of depression and schizophrenia, but its development was discontinued due to its side effects.

The medical definition of Ritanserin is:

A piperazine derivative and a serotonin antagonist that has been used in the treatment of depression and schizophrenia. Its therapeutic effect is thought to be related to its ability to block the action of serotonin at 5HT2 receptors. However, development of ritanserin was discontinued due to its side effects, including orthostatic hypotension, dizziness, and sedation. It has also been studied for its potential in treating cocaine addiction and alcohol withdrawal syndrome.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Remoxipride is not a medication that is currently in medical use. It was a antipsychotic drug that was used in the treatment of schizophrenia, but it was withdrawn from the market in the late 1990s due to concerns about its safety. Specifically, it was found to be associated with an increased risk of a serious side effect called agranulocytosis, which is a condition characterized by a dangerously low white blood cell count.

Remoxipride belongs to a class of drugs known as benzamides, which are a type of atypical antipsychotic. These medications work by blocking the action of dopamine, a neurotransmitter in the brain that is thought to play a role in the development of psychosis. However, remoxipride has been replaced by other, safer and more effective antipsychotic medications.

It's important to note that if you are taking any medication, it is always best to consult with your healthcare provider for accurate information about its uses, side effects, and potential risks. They can provide you with the most up-to-date information and help you make informed decisions about your treatment.

Butyrophenones are a group of synthetic antipsychotic drugs that are primarily used to treat symptoms of schizophrenia and other psychotic disorders. They act as dopamine receptor antagonists, which means they block the action of dopamine, a neurotransmitter in the brain associated with mood, motivation, and pleasure.

Some examples of butyrophenones include haloperidol, droperidol, and benperidol. These drugs are known for their potent antipsychotic effects and can also be used to manage agitation, aggression, and other behavioral disturbances in patients with various psychiatric and neurological disorders.

In addition to their antipsychotic properties, butyrophenones have been used off-label for their sedative and analgesic effects. However, they are associated with a range of side effects, including extrapyramidal symptoms (EPS), such as involuntary muscle spasms and tremors, as well as other neurological and cardiovascular adverse reactions. Therefore, their use is typically reserved for cases where other treatments have been ineffective or contraindicated.

Butaclamol is a type of antipsychotic drug that is used primarily in research settings. It is not commonly used in clinical practice due to its significant side effects.

Chemically, butaclamol is a derivative of haloperidol, another antipsychotic medication. It works as an antagonist at dopamine receptors in the brain, particularly at the D1 and D2 receptor subtypes. This can help to reduce the symptoms of psychosis, such as delusions and hallucinations, although other antipsychotics are typically preferred due to their more favorable side effect profiles.

In addition to its use in research, butaclamol has been investigated for its potential therapeutic benefits in a range of conditions, including substance abuse disorders, Tourette's syndrome, and chronic pain. However, further research is needed to establish its safety and efficacy in these contexts.

It is important to note that butaclamol should only be used under the close supervision of a healthcare provider, and its use is typically reserved for cases where other treatments have been ineffective or are not well-tolerated.

Homovanillic acid (HVA) is a major metabolite of dopamine, a neurotransmitter in the human body. It is formed in the body when an enzyme called catechol-O-methyltransferase (COMT) breaks down dopamine. HVA can be measured in body fluids such as urine, cerebrospinal fluid, and plasma to assess the activity of dopamine and the integrity of the dopaminergic system. Increased levels of HVA are associated with certain neurological disorders, including Parkinson's disease, while decreased levels may indicate dopamine deficiency or other conditions affecting the nervous system.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

A startle reaction is a natural, defensive response to an unexpected stimulus that is characterized by a sudden contraction of muscles, typically in the face, neck, and arms. It's a reflexive action that occurs involuntarily and is mediated by the brainstem. The startle reaction can be observed in many different species, including humans, and is thought to have evolved as a protective mechanism to help organisms respond quickly to potential threats. In addition to the muscle contraction, the startle response may also include other physiological changes such as an increase in heart rate and blood pressure.

Anti-dyskinetic agents are a class of medications that are used to treat or manage dyskinesias, which are involuntary movements or abnormal muscle contractions. These medications work by blocking or reducing the activity of dopamine, a neurotransmitter in the brain that is involved in movement control.

Dyskinetic symptoms can occur as a side effect of long-term use of levodopa therapy in patients with Parkinson's disease. Anti-dyskinetic agents such as amantadine, anticholinergics, and dopamine agonists may be used to manage these symptoms.

Amantadine works by increasing the release of dopamine and blocking its reuptake, which can help reduce dyskinesias. Anticholinergic medications such as trihexyphenidyl and benztropine work by blocking the action of acetylcholine, another neurotransmitter that can contribute to dyskinesias. Dopamine agonists such as pramipexole and ropinirole mimic the effects of dopamine in the brain and can help reduce dyskinesias by reducing the dose of levodopa required for symptom control.

It is important to note that anti-dyskinetic agents may have side effects, and their use should be carefully monitored by a healthcare provider.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Quinpirole is not a medical condition or disease, but rather a synthetic compound used in research and medicine. It's a selective agonist for the D2 and D3 dopamine receptors, which means it binds to and activates these receptors, mimicking the effects of dopamine, a neurotransmitter involved in various physiological processes such as movement, motivation, reward, and cognition.

Quinpirole is used primarily in preclinical research to study the role of dopamine receptors in different neurological conditions, including Parkinson's disease, schizophrenia, drug addiction, and others. It helps researchers understand how dopamine systems work and contributes to the development of new therapeutic strategies for these disorders.

It is important to note that quinpirole is not used as a medication in humans or animals but rather as a research tool in laboratory settings.

Basal ganglia diseases are a group of neurological disorders that affect the function of the basal ganglia, which are clusters of nerve cells located deep within the brain. The basal ganglia play a crucial role in controlling movement and coordination. When they are damaged or degenerate, it can result in various motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and difficulty with balance and walking.

Some examples of basal ganglia diseases include:

1. Parkinson's disease - a progressive disorder that affects movement due to the death of dopamine-producing cells in the basal ganglia.
2. Huntington's disease - an inherited neurodegenerative disorder that causes uncontrolled movements, emotional problems, and cognitive decline.
3. Dystonia - a movement disorder characterized by sustained or intermittent muscle contractions that cause twisting and repetitive movements or abnormal postures.
4. Wilson's disease - a rare genetic disorder that causes excessive copper accumulation in the liver and brain, leading to neurological and psychiatric symptoms.
5. Progressive supranuclear palsy (PSP) - a rare brain disorder that affects movement, gait, and balance, as well as speech and swallowing.
6. Corticobasal degeneration (CBD) - a rare neurological disorder characterized by progressive loss of nerve cells in the cerebral cortex and basal ganglia, leading to stiffness, rigidity, and difficulty with movement and coordination.

Treatment for basal ganglia diseases varies depending on the specific diagnosis and symptoms but may include medication, surgery, physical therapy, or a combination of these approaches.

Phencyclidine (PCP) receptors refer to the specific binding sites in the brain and central nervous system where the drug phencyclidine exerts its pharmacological effects. PCP is an N-methyl-D-aspartate (NMDA) receptor antagonist, which means it blocks the action of the neurotransmitter glutamate at the NMDA receptors. These receptors are involved in learning, memory, and perception of pain.

PCP also interacts with other types of receptors, including sigma receptors, dopamine receptors, and muscarinic acetylcholine receptors, which contributes to its psychoactive effects. The drug's ability to cause dissociative states, hallucinations, and changes in perception is thought to be due to its antagonism of NMDA receptors, while its stimulant and euphoric effects are attributed to its interaction with dopamine receptors.

Overall, the binding of PCP to these various receptors results in a complex set of effects that can include altered mood, perception, and cognition, as well as potentially dangerous physical symptoms such as increased heart rate, blood pressure, and body temperature.

Clorazepate dipotassium is a benzodiazepine medication that is used to treat anxiety disorders. It works by enhancing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter in the brain that has a calming effect. Clorazepate dipotassium is available in tablet form and is typically taken two to four times a day.

The medical definition of clorazepate dipotassium is as follows:

Clorazepate dipotassium: A benzodiazepine medication used for the treatment of anxiety disorders, including panic disorder and generalized anxiety disorder. It has anticonvulsant, sedative, and muscle relaxant properties. Clorazepate dipotassium is rapidly absorbed and converted to desmethyldiazepam, which has a long half-life and contributes to the drug's effectiveness in managing anxiety symptoms over an extended period. Common side effects include drowsiness, dizziness, and weakness. It may also cause dependence and withdrawal symptoms if discontinued abruptly.

Pyrrolidines are not a medical term per se, but they are a chemical compound that can be encountered in the field of medicine and pharmacology. Pyrrolidine is an organic compound with the molecular formula (CH2)4NH. It is a cyclic secondary amine, which means it contains a nitrogen atom surrounded by four carbon atoms in a ring structure.

Pyrrolidines can be found in certain natural substances and are also synthesized for use in pharmaceuticals and research. They have been used as building blocks in the synthesis of various drugs, including some muscle relaxants, antipsychotics, and antihistamines. Additionally, pyrrolidine derivatives can be found in certain plants and fungi, where they may contribute to biological activity or toxicity.

It is important to note that while pyrrolidines themselves are not a medical condition or diagnosis, understanding their chemical properties and uses can be relevant to the study and development of medications.

Dibenzothiepins are a class of chemical compounds that contain a dibenzothiepin ring structure. This ring structure is composed of two benzene rings fused to a thiepin ring, which is a six-membered ring containing a sulfur atom and a double bond.

In the medical field, dibenzothiepins are primarily known for their use as antipsychotic drugs. The first dibenzothiepin antipsychotic, clopenthixol, was synthesized in the 1960s and found to have potent antipsychotic effects. Since then, several other dibenzothiepins have been developed for use as antipsychotics, including flupentixol and thiothixene.

These drugs work by blocking dopamine receptors in the brain, which helps to reduce the symptoms of psychosis such as hallucinations, delusions, and disorganized thinking. However, they can also cause side effects such as extrapyramidal symptoms (involuntary muscle movements), sedation, and weight gain.

It's worth noting that while dibenzothiepins have been used as antipsychotics for several decades, they are not commonly prescribed today due to the availability of newer antipsychotic drugs with fewer side effects.

Serotonin receptor agonists are a class of medications that bind to and activate serotonin receptors in the body, mimicking the effects of the neurotransmitter serotonin. These drugs can have various effects depending on which specific serotonin receptors they act upon. Some serotonin receptor agonists are used to treat conditions such as migraines, cluster headaches, and Parkinson's disease, while others may be used to stimulate appetite or reduce anxiety. It is important to note that some serotonin receptor agonists can have serious side effects, particularly when taken in combination with other medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs) or monoamine oxidase inhibitors (MAOIs). This can lead to a condition called serotonin syndrome, which is characterized by symptoms such as agitation, confusion, rapid heart rate, high blood pressure, and muscle stiffness.

Delirium is a serious disturbance in mental abilities that results in confused thinking and reduced awareness of the environment, which can cause people to be easily distracted and unable to focus on any one topic for very long. It can also lead to rapid changes in emotions, perception, behavior, sleep-wake cycle, and hallucinations. Delirium is caused by various underlying medical conditions, such as infection, illness, or medication side effects, and it can be a symptom of severe illness or brain disorder. It can develop quickly, often over the course of hours or days, and it may come and go.

Delirium is different from dementia, which is a chronic and progressive decline in cognitive abilities, although delirium can occur in people with dementia. Delirium is also different from a mental illness such as schizophrenia, which involves persistent disturbances in thinking and perception that are not caused by a medical condition or medication.

Delirium is a serious medical condition that requires immediate evaluation and treatment. If you suspect someone may have delirium, it's important to seek medical attention right away.

Serotonin antagonists are a class of drugs that block the action of serotonin, a neurotransmitter, at specific receptor sites in the brain and elsewhere in the body. They work by binding to the serotonin receptors without activating them, thereby preventing the natural serotonin from binding and transmitting signals.

Serotonin antagonists are used in the treatment of various conditions such as psychiatric disorders, migraines, and nausea and vomiting associated with cancer chemotherapy. They can have varying degrees of affinity for different types of serotonin receptors (e.g., 5-HT2A, 5-HT3, etc.), which contributes to their specific therapeutic effects and side effect profiles.

Examples of serotonin antagonists include ondansetron (used to treat nausea and vomiting), risperidone and olanzapine (used to treat psychiatric disorders), and methysergide (used to prevent migraines). It's important to note that these medications should be used under the supervision of a healthcare provider, as they can have potential risks and interactions with other drugs.

Chlordiazepoxide is a medication that belongs to a class of drugs known as benzodiazepines. It is primarily used to treat anxiety disorders, but can also be used for the short-term relief of symptoms related to alcohol withdrawal and muscle spasms. Chlordiazepoxide works by enhancing the activity of gamma-aminobutyric acid (GABA), a neurotransmitter that inhibits nerve impulses in the brain, resulting in sedative, hypnotic, anxiolytic, anticonvulsant, and muscle relaxant properties.

The medication is available in both immediate-release and extended-release forms, and is typically taken orally. Common side effects of chlordiazepoxide include dizziness, drowsiness, and impaired coordination. More serious side effects can include memory problems, confusion, and difficulty breathing. Chlordiazepoxide can also be habit-forming, so it is important to use the medication only as directed by a healthcare provider.

It's important to note that chlordiazepoxide can interact with other medications, including certain antidepressants, opioids, and sedatives, so it's essential to inform your doctor about all the medications you are taking before starting chlordiazepoxide. Additionally, this medication should not be used during pregnancy or while breastfeeding, as it can cause harm to the developing fetus or newborn baby.

Amphetamine is a central nervous system stimulant drug that works by increasing the levels of certain neurotransmitters (chemical messengers) in the brain, such as dopamine and norepinephrine. It is used medically to treat conditions such as attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity, due to its appetite-suppressing effects.

Amphetamines can be prescribed in various forms, including tablets, capsules, or liquids, and are available under several brand names, such as Adderall, Dexedrine, and Vyvanse. They are also known by their street names, such as speed, uppers, or wake-ups, and can be abused for their euphoric effects and ability to increase alertness, energy, and concentration.

Long-term use of amphetamines can lead to dependence, tolerance, and addiction, as well as serious health consequences, such as cardiovascular problems, mental health disorders, and malnutrition. It is essential to use amphetamines only under the supervision of a healthcare provider and follow their instructions carefully.

Dextroamphetamine is a central nervous system stimulant that is used in the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy. It works by increasing the levels of certain neurotransmitters, such as dopamine and norepinephrine, in the brain. Dextroamphetamine is available as a prescription medication and is sold under various brand names, including Adderall and Dexedrine. It is important to use this medication only as directed by a healthcare professional, as it can have potentially serious side effects if used improperly.

3,4-Dihydroxyphenylacetic Acid (3,4-DOPAC) is a major metabolite of dopamine, which is a neurotransmitter in the brain. Dopamine is metabolized by the enzyme monoamine oxidase to form dihydroxyphenylacetaldehyde, which is then further metabolized to 3,4-DOPAC by the enzyme aldehyde dehydrogenase.

3,4-DOPAC is found in the urine and can be used as a marker for dopamine turnover in the brain. Changes in the levels of 3,4-DOPAC have been associated with various neurological disorders such as Parkinson's disease and schizophrenia. Additionally, 3,4-DOPAC has been shown to have antioxidant properties and may play a role in protecting against oxidative stress in the brain.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Bromocriptine is a dopamine receptor agonist drug, which means it works by binding to and activating dopamine receptors in the brain. It has several therapeutic uses, including:

* Treatment of Parkinson's disease: Bromocriptine can be used alone or in combination with levodopa to help manage the symptoms of Parkinson's disease, such as stiffness, tremors, spasms, and poor muscle control.
* Suppression of lactation: Bromocriptine can be used to suppress milk production in women who are not breastfeeding or who have stopped breastfeeding but still have high levels of prolactin, a hormone that stimulates milk production.
* Treatment of pituitary tumors: Bromocriptine can be used to shrink certain types of pituitary tumors, such as prolactinomas, which are tumors that secrete excessive amounts of prolactin.
* Management of acromegaly: Bromocriptine can be used to manage the symptoms of acromegaly, a rare hormonal disorder characterized by abnormal growth and enlargement of body tissues, by reducing the production of growth hormone.

Bromocriptine is available in immediate-release and long-acting formulations, and it is usually taken orally. Common side effects of bromocriptine include nausea, dizziness, lightheadedness, and drowsiness. Serious side effects are rare but can include hallucinations, confusion, and priapism (prolonged erection).

... is excreted in breast milk. A few studies have examined the impact of haloperidol exposure on breastfed infants and ... Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the ... A 2013 systematic review compared haloperidol to placebo in schizophrenia: Data from animal experiments indicate haloperidol is ... The decanoate ester of haloperidol (haloperidol decanoate, trade names Haldol decanoate, Halomonth, Neoperidole) has a much ...
... is provided in the form of 50 or 100 mg/mL oil solution of sesame oil and benzyl alcohol in ampoules or ... Haloperidol decanoate, sold under the brand name Haldol Decanoate among others, is a typical antipsychotic which is used in the ... "Haloperidol Uses, Side Effects & Warnings". Parent M, Toussaint C, Gilson H (1983). "Long-term treatment of chronic psychotics ... Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ...
Haloperidol • Loxapine • Mesoridazine • Methotrimeprazine • Nemonapride • Penfluridol • Perazine • Periciazine • Perphenazine ...
Atypicals are less likely than haloperidol-the most widely used typical antipsychotic-to cause extrapyramidal motor control ... Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ... PAFIP 3-Year Follow-Up Randomized Clinical Trials Comparing Haloperidol, Olanzapine, Risperidone, Aripiprazole, Quetiapine, and ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
... were the typical antipsychotics fluphenazine and haloperidol. Both fluphenazile and haloperidol are formulated as decanoates, ... Haloperidol, due to the availability of a rapid-acting injectable formulation and decades of use, remains the most commonly ... For reference, the typical antipsychotic haloperidol tends to block about 80% of D2 receptors at doses ranging from 2 to 5 mg ... Another prominent grouping of antipsychotics are the butyrophenones, an example of which is haloperidol. The newer, second- ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Bechelli LP, Ruffino-Netto A, Hetem G (December 1983). "A double-blind controlled trial of pipotiazine, haloperidol and placebo ... Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Haloperidol (in doses approximating 5 m.g. per day) may also serve a similar purpose, but only in cases with a history of tics ... Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ... antipsychotics like haloperidol and second-generation (atypical) antipsychotics like clozapine. It has received this ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ... Bromperidol decanoate Clopentixol decanoate Flupentixol decanoate Fluphenazine decanoate Fluphenazine enanthate Haloperidol ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ...
Reyntigens AJ, Heykants JJ, Woestenborghs RJ, Gelders YG, Aerts TJ (1982). "Pharmacokinetics of haloperidol decanoate. A 2-year ... Beresford R, Ward A (January 1987). "Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic ... that evidence is strong that risperidone is more effective than all first-generation antipsychotics other than haloperidol, but ...
"Poisonous KO?" Author: D. Lederman "Haloperidol". The American Society of Health-System Pharmacists. Archived from the original ... but Katlin suggested that Klitschko could have been poisoned with Haloperidol. The drug has no taste or smell and causes mental ...
Haloperidol - a typical antipsychotic. Risperidone - (Risperdal, and generics) is a second-generation or atypical antipsychotic ...
Vella-Brincat J, Macleod AD (April 2004). "Haloperidol in palliative care". Palliative Medicine. 18 (3): 195-201. doi:10.1191/ ... Nausea and vomiting Typically controlled using haloperidol, metoclopramide, ondansetron, cyclizine; or other anti-emetics. ... antipsychotics such as haloperidol or levomepromazine may also be used instead of, or concomitantly with benzodiazepines. ...
Enciprazine BMY-14802 Azaperone Janssen PA (1967). "Haloperidol and related butyrophenones". In Gordon M (ed.). ...
Haloperidol, Chlorpromazine Serotonin syndrome; excessive serotonergic activity due usually to combined use of serotonergic ...
"Poisonous KO?" Author: D. Lederman "Haloperidol". The American Society of Health-System Pharmacists. Archived from the original ... but Katlin suggested that Klitschko could have been poisoned with Haloperidol. The drug has no taste or smell and causes mental ...
... haloperidol, benperidol, etc.); metoclopramide and Tetrabenazine. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a drug ...
Haldol (haloperidol) - typical antipsychotic. Imovane (zopiclone) - a non-benzodiazepine hypnotic. Inderal (propranolol) - a ...
Kudo S, Ishizaki T (December 1999). "Pharmacokinetics of haloperidol: an update". Clinical Pharmacokinetics. 37 (6): 435-56. ...
Haloperidol is excreted in breast milk. A few studies have examined the impact of haloperidol exposure on breastfed infants and ... Haloperidol, sold under the brand name Haldol among others, is a typical antipsychotic medication. Haloperidol is used in the ... A 2013 systematic review compared haloperidol to placebo in schizophrenia: Data from animal experiments indicate haloperidol is ... The decanoate ester of haloperidol (haloperidol decanoate, trade names Haldol decanoate, Halomonth, Neoperidole) has a much ...
Haloperidol Injection: learn about side effects, dosage, special precautions, and more on MedlinePlus ... Haloperidol extended-release injection is usually given once every 4 weeks.. Haloperidol injection and haloperidol extended- ... Haloperidol injection comes as a solution to be injected into a muscle by a healthcare provider. Haloperidol injection is ... Haloperidol injection or haloperidol extended-release injection may cause other side effects. Call your doctor if you have any ...
The meaning of HALOPERIDOL is a depressant C21H23ClFNO2 of the central nervous system used especially as an antipsychotic drug. ... Examples of haloperidol in a Sentence. Recent Examples on the Web Indeed, haloperidol and olanzapine countered the ... 2019 Avidan read the Introduction, Methods, and Results of this paper, about a recent clinical trial of the drug haloperidol. - ... 2023 The three most common in muscle tissue were opioid pain reliever tramadol, the heart medicine flecainide and haloperidol. ...
In a study of 12 schizophrenic patients coadministered haloperidol and rifampin, plasma haloperidol levels were decreased by a ... The possibility that haloperidol caused death cannot, of course, be excluded, but it is to be kept in mind that sudden and ... HALOPERIDOL tablet. If this SPL contains inactivated NDCs listed by the FDA initiated compliance action, they will be specified ... Haloperidol should be reserved for these two groups of children only after failure to respond to psychotherapy or medications ...
Haloperidol can lower the seizure threshold. It is considered high risk in geriatrics (patients older than 65 years) per Beers ... Because haloperidol is relatively novel for pain and nausea/vomiting, document the rationale for its use and ideally that you ... Haloperidol undermining gastroparesis symptoms (HUGS) in the emergency department. Am J Emerg Med. 2017 Aug;35(8):1118-20. ... Haloperidol a novel treatment for cannabinoid hyperemesis syndrome. Am J Ther. 2017 Jan/Feb;24(1):e64-e67. ...
Haloperidol Injection Haloperidol injection and haloperidol extended-release injection are used to treat schizophrenia (a ... Haloperidol Haloperidol is used to treat psychotic disorders (conditions that cause difficulty telling the difference between ... relieved with these medicines: Carbidopa/levodopa Diazepam Phenobarbital Haloperidol Self-harm can be reduced by removal of ... this disorder are older antipsychotics, including: Chlorpromazine Fluphenazine Haloperidol Perphenazine Prochlorperazine ...
View images of haloperidol and identify pills by imprint code, shape and color with the Drugs.com Pill Identifier. ... Haloperidol Strength. 5 mg. Imprint. ZC 07. Color. Green. Shape. Capsule/Oblong. View details ... Haloperidol Strength. 0.5 mg. Imprint. MYLAN 351. Color. Orange. Shape. Round. View details ... Haloperidol Strength. 0.5 mg. Imprint. AC 151. Color. White. Shape. Round. View details ...
Haloperidol is an antipsychotic drug used to treat schizophrenia and mania. Learn more about how it is used, interactions, and ... FAQs about haloperidol. How long does it take for haloperidol to work?. Haloperidol can work within the hour, depending on the ... How is haloperidol usually taken?. Haloperidol is taken orally via a tablet or oral concentrate one to two times per day. The ... How long does haloperidol stay in your system? Haloperidol has been found in the system 14.5-36.7 hours after a single oral ...
Bioaccumulation. Haloperidol has the potential to bioaccumulate in aquatic organisms.. Toxicity. Haloperidol has high acute ... Haloperidol is not recommended in the Wise list.. *An option for introduction into patients with schizophrenia may be ... In Sweden haloperidol has been reported in wild fish and treated wastewater exposed fish at levels around therapeutic ... Haloperidol is included in Region Stockholms table of pharmaceuticals with a negative environmental impact according to the ...
... Psychiatry Res. ... In a between-group design, 11 schizophrenic subjects on olanzapine, 16 subjects on haloperidol, and 14 subjects who were on no ... In the current study the effects on PPI of the atypical antipsychotic olanzapine and the typical antipsychotic haloperidol were ... These data do not indicate a preferential effect of olanzapine compared to haloperidol on sensorimotor gating in schizophrenia ...
APO HALOPERIDOL, 2MG, TABLET. Common uses. This medication is typically used for agitation and aggressiveness or for certain ...
Ketamine versus haloperidol and benzodiazepine or physical restraint only ... Patients who received ketamine versus haloperidol and benzodiazepine were more likely to be intubated (11.6% vs 1.5%). They ... A prospective study of ketamine versus haloperidol for severe prehospital agitation. Clin Toxicol (Phila). 2016;54(7):556-562. ... During this time options for treatment were physical restraint only until November 2014 at which time intramuscular haloperidol ...
The median number of days alive without delirium or coma was 8.5, 7.9, and 8.7 in the placebo, haloperidol, and ziprasidone ... neither haloperidol nor ziprasidone alters the duration of delirium compared with placebo, according to a study published ... groups (P = 0.26 for overall effect across trial groups). Compared with placebo, use of haloperidol or ziprasidone had no ... with acute respiratory failure or shock and hypoactive or hyperactive delirium to receive intravenous boluses of haloperidol, ...
Haloperidol for agitation in dementia.. (4):CD002852 (latest version 28 Aug 2001).. ... and if they evaluated haloperidol for , 1 week. ... QUESTION: In patients with dementia, is haloperidol effective ...
Effects of Haloperidol and Atypical Neuroleptics on Psychomotor Performance and Driving Ability in Schizophrenic Patients: ... Haloperidol Blood Levels during Dosage Reduction in Chronic Schizophrenic Patients Neuropsychobiology (February,2008) ... Sabine Kagerer, Catja Winter, Hans-Jürgen Möller, Michael Soyka; Effects of Haloperidol and Atypical Neuroleptics on ... Plasma Alpha-One Acid Glycoprotein and Haloperidol Concentrations in Schizophrenic Patients Neuropsychobiology (February,2008) ...
Food deprivation and acquisition of intravenous cocaine self-administration in rats: effect of naltrexone and haloperidol.. J ... Food deprivation and acquisition of intravenous cocaine self-administration in rats: effect of naltrexone and haloperidol.. J ... Food deprivation and acquisition of intravenous cocaine self-administration in rats: effect of naltrexone and haloperidol.. J ... Self-administration of 0.06 mg/ml of cocaine tended to be decreased by naltrexone (1 mg/kg) and haloperidol (375 micrograms/kg ...
HomePublicationsAmeliorative effect of ethoxylated chalcone based MAO-B inhibitor on behavioural predictors of Haloperidol- ... Ameliorative effect of ethoxylated chalcone based MAO-B inhibitor on behavioural predictors of Haloperidol-induced Parkinsonism ... "Ameliorative effect of ethoxylated chalcone based MAO-B inhibitor on behavioural predictors of Haloperidol-induced Parkinsonism ...
Haloperidol (Haldol): reminder of risks when used in elderly patients for the acute treatment of delirium. Drug Safety Update ...
... drugstore xenical. Gutscheine, Vergleiche und Informationen zu Online-Apotheken haloperidol.6376 - 781. Viagra ... à un bon prix haloperidol. drugstore xenical. For Low Income, Uninsured Patients. Ma vie a chang haloperidol. Anafranil ... Click aquí haloperidol. Meilleur pharmacie en ligne - nous offrons des produits de mé. Lowest Prices Guaranteed. zoloft and ... haloperidol. . Créé par Pascale Merchin, English for Kids ! pratique la plus jolie, et la plus simple des méthodes pour ...
Safety of First-Generation Antipsychotics Like Haloperidol. Posted on May 18, 2015. by nnmh ... suggests that haloperidol and its likenesses should be retired as first generation antipsychotics are not safe for the brain ( ... but how safe are first-generation antipsychotics like haloperidol? One doctor, Henry A. Nasrallah, MD, ... he and the literature contend). Are first-generation antipsychotics like haloperidol safe or possibly neurotoxic? ...
Haloperidol is not approved for use in older adults with dementia-related psychosis.What is haloperidol?Haloperidol is an ... Haldol DecanoateWhat is the most important information I should know about haloperidol? ... What is the most important information I should know about haloperidol?. Haloperidol is not approved for use in older adults ... How is haloperidol injection given?. You may be given oral haloperidol to take by mouth for a short time before you are treated ...
There are a lot of recurrent themes in this months edition of the articles of the month (which has […] ...
3508 GA UTRECHT, The Netherlands. Email: [email protected] ...
Before using haloperidol, tell your doctor or pharmacist of all the drugs you take and if you have any of the following ... Haloperidol can also be used to treat uncontrolled movements and outbursts of words/sounds related to Tourette\s syndrome. ... Before using haloperidol, report all medications you are currently using to your doctor or pharmacist. Tell your doctor or ... USES: Haloperidol is used to treat certain mental/mood disorders (such as schizophrenia, schizoaffective disorders). This ...
Tag Archives: Haloperidol Involuntary Chemical Sedation-The Right Medications. Posted on April 13, 2013. by Jeffrey Keller MD ... Posted in Drug Evaluations, Medical Practice, Restraint , Tagged correctional medicine, evidence based medicine, Haloperidol, ... It can be given IV as well as IM (though we would seldom give haloperidol IV in a correctional facility as is done routinely in ... The main advantage of haloperidol is that it is so safe. It does not cause respiratory depression and so can be given to ...
APO HALOPERIDOL, 5MG, TABLET. Common uses. This medication is typically used for agitation and aggressiveness or for certain ...
Haloperidol also has a monthly depot form (Haldol Decanoate). Depot antipsychotics are not intended for use in the acute ... Risperidone, unlike haloperidol, has serotonergic (5-HT2)-blocking effects that alleviate negative symptoms of psychosis (eg, ... Typical antipsychotics (eg, haloperidol) effectively treat psychosis with acute agitation, which is at least partially ... Haloperidol controls psychosis and provides rapid tranquilization. Administer it with a benzodiazepine to protect against ...
Haloperidol) if the medication is stopped abruptly. ...
Find information on Haloperidol (Haldol) in Daviss Drug Guide including dosage, side effects, interactions, nursing ... www.drugguide.com/ddo/view/Davis-Drug-Guide/51374/all/haloperidol. Vallerand AHA, Sanoski CAC, Quiring CC. Haloperidol. Daviss ... Vallerand, A. H., Sanoski, C. A., & Quiring, C. (2023). Haloperidol. In Daviss Drug Guide (18th ed.). F.A. Davis Company. ... TY - ELEC T1 - haloperidol ID - 51374 A1 - Sanoski,Cynthia A, AU - Vallerand,April Hazard, AU - Quiring,Courtney, BT - Daviss ...
PHEMC is a non-profit organisation dedicated to Emergency Medicine education & training

No FAQ available that match "haloperidol"