Behavioral changes and cholinesterase activity of rats acutely treated with propoxur. (1/272)

Early assessment of neurological and behavioral effects is extremely valuable for early identification of intoxications because preventive measures can be taken against more severe or chronic toxic consequences. The time course of the effects of an oral dose of the anticholinesterase agent propoxur (8.3 mg/kg) was determined on behaviors displayed in the open-field and during an active avoidance task by rats and on blood and brain cholinesterase activity. Maximum inhibition of blood cholinesterase was observed within 30 min after administration of propoxur. The half-life of enzyme-activity recovery was estimated to be 208.6 min. Peak brain cholinesterase inhibition was also detected between 5 and 30 min of the pesticide administration, but the half-life for enzyme activity recovery was much shorter, in the range of 85 min. Within this same time interval of the enzyme effects, diminished motor and exploratory activities and decreased performance of animals in the active avoidance task were observed. Likewise, behavioral normalization after propoxur followed a time frame similar to that of brain cholinesterase. These data indicate that behavioral changes that occur during intoxication with low oral doses of propoxur may be dissociated from signs characteristic of cholinergic over-stimulation but accompany brain cholinesterase activity inhibition.  (+info)

Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat. (2/272)

To investigate whether brain leptin involves neuropeptidergic pathways influencing ingestion, metabolism, and gastrointestinal functioning, leptin (3.5 micrograms) was infused daily into the third cerebral ventricular of rats for 3 days. To distinguish between direct leptin effects and those secondary to leptin-induced anorexia, we studied vehicle-infused rats with food available ad libitum and those that were pair-fed to leptin-treated animals. Although body weight was comparably reduced (-8%) and plasma glycerol was comparably increased (142 and 17%, respectively) in leptin-treated and pair-fed animals relative to controls, increases in plasma fatty acids and ketones were only detected (132 and 234%, respectively) in pair-fed rats. Resting energy expenditure (-15%) and gastrointestinal fill (-50%) were reduced by pair-feeding relative to the ad libitum group, but they were not reduced by leptin treatment. Relative to controls, leptin increased hypothalamic mRNA for corticotropin-releasing hormone (CRH; 61%) and for proopiomelanocortin (POMC; 31%) but did not reduce mRNA for neuropeptide Y. These results suggest that CNS leptin prevents metabolic/gastrointestinal responses to caloric restriction by activating hypothalamic CRH- and POMC-containing pathways and raise the possibility that these peripheral responses to CNS leptin administration contribute to leptin's anorexigenic action.  (+info)

Behavioural and physiological effects induced by an infusion of antisense to alpha(2D)-adrenoceptors in the rat. (3/272)

1. The aim of this study was to investigate the behavioural and physiological effects of an i.c.v. infusion of antisense oligonucleotide to the alpha(2D)-adrenoceptor subtype. Behavioural and physiological parameters were monitored for 2 days before the infusion, throughout the 3-day infusion period and for 3 days following the end of the infusion. 2. The antisense infusion resulted in a significant increase in behavioural activity characterized by increased locomotion and grooming scores. Behavioural activity scores of rats treated with antisense to alpha(2D)-adrenoceptors were significantly higher than those of rats treated with vehicle (H(2)O) or the mismatch toxicity control on day 4 and day 5 and, significantly higher than vehicle controls on day 6. 3. Body weight gain was significantly reduced in the antisense-treated rats at the end of the study compared to the vehicle (34%) and mismatch groups (30%), although daily food and water intakes were not significantly different at any time point. 4. Pupil diameters of rats infused with antisense to alpha(2D)-adrenoceptors were significantly greater than those of animals treated either with vehicle or mismatch oligonucleotide on day 5 of the study. On day 6, the pupil diameters of these animals were still significantly greater than the mismatch group. 5. In conclusion, an i.c.v. infusion of antisense to the alpha(2D)-adrenoceptor induced behavioural activation in rats, increased pupil diameter and reduced total weight gain. These effects were specific to the antisense-treated group and were fully reversed post-infusion.  (+info)

Reflex secretion of proteins into submandibular saliva in conscious rats, before and after preganglionic sympathectomy. (4/272)

1. An indwelling catheter was placed in the left submandibular duct of rats, under pentobarbitone anaesthesia, and connected to an outflow cannula that emerged above the skull. 2. Saliva was collected from the outflow cannula in conscious rats, the same day after recovery from anaesthesia, under four different reflex conditions: grooming, heat exposure, rejection of a bitter tasting substance and feeding on softened chow, repeated in different orders. 3. Saliva flow was greatest for grooming and least for rejection. Protein concentrations were least with heat but much greater and similar for the other stimulations. Acinar peroxidase activity was high for feeding, intermediate for grooming and rejection, and again lowest with heat. Tubular tissue kallikrein activities were moderately low, being greatest with feeding and least with grooming. Secretory immunoglobulin A (SIgA) concentration was least with heat and similar for the other stimulations. 4. The next day, under pentobarbitone anaesthesia, the left preganglionic sympathetic trunk was sectioned (sympathetic decentralization) and, after recovery, the preceding stimulations were repeated. Flow of saliva showed little change, but protein and peroxidase concentrations and outputs decreased dramatically with grooming, rejection and feeding to levels similar to those with heat, which showed little change. Tissue kallikrein was lowered less dramatically, but the reductions in output were significant except with heat. Patterns of proteins resolved by electrophoresis changed for grooming, rejection and feeding and became similar to saliva from heat, which showed little change. No significant effects on SIgA concentrations occurred. 5. Gland weights from the sympathetically decentralized side were greater than from the intact side at the end of the experiments and histologically showed retention of acinar mucin. 6. Thus reflex sympathetic drive varied with the different stimulations; it was least during heat, but it had pronounced effects on acinar secretion of proteins during the other stimulations. At the same time this sympathetic drive had less impact on tissue kallikrein secretion from tubules and had little influence on flow or the concentration of SIgA secreted.  (+info)

Spontaneous behavior of the gray short-tailed opossum (Monodelphis domestica) in the elevated plus-maze: comparison with Long-Evans rats. (5/272)

We observed the spontaneous behavior of a laboratory marsupial--the gray short-tailed opossum (Monodelphis domestica)--in the elevated plus-maze (EPM) during six consecutive sessions and compared it with the behavior of Long-Evans rats. During the first exposure to the maze both species spent most of the time in the enclosed arms but opossums showed much higher frequency of entries into the open arms and stayed there longer. On the third and subsequent days opossums reduced their entries into the open arms and spent more time on the central square, where unlike rats they frequently groomed their lower belly and hind legs. During the last sessions they started spending more time in the enclosed arms. It is concluded that probably opossums, like rats show a stable anxiety evoked by open space. However, in the rat anxiety prevails over motivation to explore a new environment, while in the opossum it is initially at equilibrium with curiosity which habituates slower than in the rat. Results are discussed in the context of different ecology of the gray opossum that actively searches and hunts quickly moving insects. Thigmotaxic behavior, while strong in both species, dominates spontaneous behavior of the rat, but not opossum.  (+info)

Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. (6/272)

Growing axons follow highly stereotypical pathways, guided by a variety of attractive and repulsive cues, before establishing specific connections with distant targets. A particularly well-known example that illustrates the complexity of axonal migration pathways involves the axonal projections of motor neurons located in the motor cortex. These projections take a complex route during which they first cross the midline, then form the corticospinal tract, and ultimately connect with motor neurons in the contralateral side of the spinal cord. These obligatory contralateral connections account for why one side of the brain controls movement on the opposing side of the body. The netrins and slits provide well-known midline signals that regulate axonal crossings at the midline. Herein we report that a member of the ephrin family, ephrin-B3, also plays a key role at the midline to regulate axonal crossing. In particular, we show that ephrin-B3 acts as the midline barrier that prevents corticospinal tract projections from recrossing when they enter the spinal gray matter. We report that in ephrin-B3(-/-) mice, corticospinal tract projections freely recross in the spinal gray matter, such that the motor cortex on one side of the brain now provides bilateral input to the spinal cord. This neuroanatomical abnormality in ephrin-B3(-/-) mice correlates with loss of unilateral motor control, yielding mice that simultaneously move their right and left limbs and thus have a peculiar hopping gait quite unlike the alternate step gait displayed by normal mice. The corticospinal and walking defects in ephrin-B3(-/-) mice resemble those recently reported for mice lacking the EphA4 receptor, which binds ephrin-B3 as well as other ephrins, suggesting that the binding of EphA4-bearing axonal processes to ephrin-B3 at the midline provides the repulsive signal that prevents corticospinal tract projections from recrossing the midline in the developing spinal cord.  (+info)

Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. (7/272)

We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000-4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000-4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures.  (+info)

Limits to sustained energy intake. IV. Effect of variation in food quality on lactating mice Mus musculus. (8/272)

Observations were made on 30 MF1 mice with their litters. The animals were fed either normal pelleted mouse food (SDS BP Nutrition Ltd) containing 13.4 kJ x g(-1) digestible energy or a specially formulated diet that provided 25% less digestible energy (9.75 kJ x g(-1)) but equivalent amounts of protein and essential minerals and vitamins per gram as the normal diet. Half the animals were switched to the low-energy diet during early pregnancy and half after parturition. The food intake of the two groups increased enormously following parturition, reaching an asymptote over the last few days of lactation. In both groups, the asymptotic food intake exceeded that previously observed across 71 litters of this strain of mice fed the normal diet throughout pregnancy and lactation; the intake of the group fed the low-energy diet from early lactation significantly exceeded that of the mice switched to the low-energy diet after parturition. The increased intakes of the experimental groups were, however, insufficient to offset the lower digestible energy content of the food during lactation. The body mass of the mothers at the end of lactation did not differ between the two experimental groups and the controls. Offspring mass at weaning was inversely related to litter size, but also did not differ between the three groups; pup mortality did not differ between the experimental and control groups. Behavioural observations showed that during both the dark and light phases the general activity of the mother declined enormously from early pregnancy to late lactation. In the dark phase, the time spent in general activity was replaced by time spent both feeding and resting (suckling young), but in the light phase it was replaced only by feeding. At peak lactation, the mice fed for 30-50% of the dark phase and for 30-40% of the light phase. The data indicate that a previously observed asymptote in food intake during peak lactation at 23 g x day(-1) is unlikely to be a limit mediated centrally by the alimentary tract. A higher central limit may exist, at 26.9 g x day(-1), but this is unlikely to reflect the time available for feeding. The data are consistent with limits on sustainable daily energy intake being mediated by the performance of the mammary glands. Animals appeared to accommodate the demands for milk production within a constrained total energy budget by compensating their behaviour, most notably by reductions in the time spent in 'general activity'.  (+info)

No FAQ available that match "grooming"

No images available that match "grooming"