Alloys that contain a high percentage of gold. They are used in restorative or prosthetic dentistry.
A mixture of metallic elements or compounds with other metallic or metalloid elements in varying proportions.
Specific alloys not less than 85% chromium and nickel or cobalt, with traces of either nickel or cobalt, molybdenum, and other substances. They are used in partial dentures, orthopedic implants, etc.
A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
The process of producing a form or impression made of metal or plaster using a mold.
Occurs in seeds of Brassica and Crucifera species. Thiouracil has been used as antithyroid, coronary vasodilator, and in congestive heart failure although its use has been largely supplanted by other drugs. It is known to cause blood dyscrasias and suspected of terato- and carcinogenesis.
The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility.
Creation of a smooth and glossy surface finish on a denture or amalgam.
Material from which the casting mold is made in the fabrication of gold or cobalt-chromium castings. (Boucher's Clinical Dental Terminology, 4th ed, p168)
The fusion of ceramics (porcelain) to an alloy of two or more metals for use in restorative and prosthodontic dentistry. Examples of metal alloys employed include cobalt-chromium, gold-palladium, gold-platinum-palladium, and nickel-based alloys.
Preparation of TOOTH surfaces, and of materials bonded to teeth or DENTAL IMPLANTS, with agents and methods which roughen the surface to facilitate adhesion. Agents include phosphoric or other acids (ACID ETCHING, DENTAL) and methods include LASERS.
A dark-gray, metallic element of widespread distribution but occurring in small amounts; atomic number, 22; atomic weight, 47.90; symbol, Ti; specific gravity, 4.5; used for fixation of fractures. (Dorland, 28th ed)
Thiones are organic compounds containing a sulfur atom bonded to two carbon atoms, often found in certain drugs and naturally occurring substances, which possess various pharmacological activities.
Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode.
The methyl esters of methacrylic acid that polymerize easily and are used as tissue cements, dental materials, and absorbent for biological substances.
The retention of a denture in place by design, device, or adhesion.
The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures.
A mixture of metallic elements or compounds with other metallic or metalloid elements in varying proportions for use in restorative or prosthetic dentistry.
Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group.
An oxide of aluminum, occurring in nature as various minerals such as bauxite, corundum, etc. It is used as an adsorbent, desiccating agent, and catalyst, and in the manufacture of dental cements and refractories.
A prosthetic restoration that reproduces the entire surface anatomy of the visible natural crown of a tooth. It may be partial (covering three or more surfaces of a tooth) or complete (covering all surfaces). It is made of gold or other metal, porcelain, or resin.
Characteristics or attributes of the outer boundaries of objects, including molecules.
Removable prosthesis constructed over natural teeth or implanted studs.
The gradual destruction of a metal or alloy due to oxidation or action of a chemical agent. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
An adhesion procedure for orthodontic attachments, such as plastic DENTAL CROWNS. This process usually includes the application of an adhesive material (DENTAL CEMENTS) and letting it harden in-place by light or chemical curing.
The internal resistance of a material to moving some parts of it parallel to a fixed plane, in contrast to stretching (TENSILE STRENGTH) or compression (COMPRESSIVE STRENGTH). Ionic crystals are brittle because, when subjected to shear, ions of the same charge are brought next to each other, which causes repulsion.
The study of the energy of electrons ejected from matter by the photoelectric effect, i.e., as a direct result of absorption of energy from electromagnetic radiation. As the energies of the electrons are characteristic of a specific element, the measurement of the energy of these electrons is a technique used to determine the chemical composition of surfaces.
The plan and delineation of dental prostheses in general or a specific dental prosthesis. It does not include DENTURE DESIGN. The framework usually consists of metal.
Holding a DENTAL PROSTHESIS in place by its design, or by the use of additional devices or adhesives.
Metal devices for fastening together two or more parts of dental prostheses for stabilizing or retaining them by attachment to abutment teeth. For a precision attachment for a partial denture DENTURE PRECISION ATTACHMENT is available.
Dental cements composed either of polymethyl methacrylate or dimethacrylate, produced by mixing an acrylic monomer liquid with acrylic polymers and mineral fillers. The cement is insoluble in water and is thus resistant to fluids in the mouth, but is also irritating to the dental pulp. It is used chiefly as a luting agent for fabricated and temporary restorations. (Jablonski's Dictionary of Dentistry, 1992, p159)
Substances used to bond COMPOSITE RESINS to DENTAL ENAMEL and DENTIN. These bonding or luting agents are used in restorative dentistry, ROOT CANAL THERAPY; PROSTHODONTICS; and ORTHODONTICS.
A commonly used prosthesis that results in a strong, permanent restoration. It consists of an electrolytically etched cast-metal retainer that is cemented (bonded), using resins, to adjacent teeth whose enamel was previously acid-treated (acid-etched). This type of bridgework is sometimes referred to as a Maryland bridge.
Inorganic or organic compounds that contain boron as an integral part of the molecule.
Materials used in the production of dental bases, restorations, impressions, prostheses, etc.
Silver. An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.
A chemical element having an atomic weight of 106.4, atomic number of 46, and the symbol Pd. It is a white, ductile metal resembling platinum, and following it in abundance and importance of applications. It is used in dentistry in the form of gold, silver, and copper alloys.
Synthetic resins, containing an inert filler, that are widely used in dentistry.
A trace element that is required in bone formation. It has the atomic symbol Sn, atomic number 50, and atomic weight 118.71.
Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
A variable mixture of the mono- and disodium salts of gold thiomalic acid used mainly for its anti-inflammatory action in the treatment of rheumatoid arthritis. It is most effective in active progressive rheumatoid arthritis and of little or no value in the presence of extensive deformities or in the treatment of other forms of arthritis.
Inorganic compounds that contain gold as an integral part of the molecule.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
Technique by which phase transitions of chemical reactions can be followed by observation of the heat absorbed or liberated.
Nanoparticles produced from metals whose uses include biosensors, optics, and catalysts. In biomedical applications the particles frequently involve the noble metals, especially gold and silver.
A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property.
A rare, metallic element designated by the symbol, Ga, atomic number 31, and atomic weight 69.72.
Niobium. A metal element atomic number 41, atomic weight 92.906, symbol Nb. (From Dorland, 28th ed)
Stainless steel. A steel containing Ni, Cr, or both. It does not tarnish on exposure and is used in corrosive environments. (Grant & Hack's Chemical Dictionary, 5th ed)
The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001)
Coating with a metal or alloy by electrolysis.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A metallic element, atomic number 49, atomic weight 114.82, symbol In. It is named from its blue line in the spectrum. (From Dorland, 28th ed)

Adhesion of adhesive resin to dental precious metal alloys. Part I. New precious metal alloys with base metals for resin bonding. (1/113)

New dental precious metal alloys for resin bonding without alloy surface modification were developed by adding base metals (In, Zn, or Sn). Before this, binary alloys of Au, Ag, Cu, or Pd containing In, Zn, or Sn were studied for water durability and bonding strength with 4-META resin. The adhesion ability of the binary alloys was improved by adding In equivalent to 15% of Au content, Zn equivalent to 20% of Ag content, and In, Zn, or Sn equivalent to 5% of Cu content. There was no addition effect of the base metals on Pd, however 15% of In addition improved adhesion with Pd-based alloys containing equi-atomic % of Cu and Pd. The alloy surfaces were analyzed by XPS and showed that oxides such as In2O3, ZnO, or SnO play an important role in improving the adhesive ability of the alloys.  (+info)

Adhesion of adhesive resin to dental precious metal alloys. Part II. The relationship between surface structure of Au-In alloys and adhesive ability with 4-META resin. (2/113)

Adhesion of 4-META to Au-In alloy was improved by adding In equivalent to .15% of Au content. On the basis of the results of Au-In alloys analyzed by XPS, the present study investigated the reason why adhesion of the Au-In alloy was improved. The O 1s spectrum could be separated into three oxygen chemical states, In2O3, chemisorbed H2O, and physisorbed H2O. The amount of chemisorbed H2O decreased remarkably with increasing amount of In. It is considered that the poor adhesive ability of the pure gold and alloys containing only small amounts of In was due to the chemisorbed H2O molecules and insufficient indium oxide on the alloy surface. It was established that excellent adhesion requires an oxide with chemical affinity for 4-META to cover at least 50% of the alloy surface.  (+info)

Phase transformations and age-hardening behaviors related to Au3Cu in Au-Cu-Pd alloys. (3/113)

Phase transformation behaviors in Au-Cu-Pd alloys were investigated by means of electrical resistivity measurements, hardness tests, X-ray diffraction and transmission electron microscopy. Anisothermal and isothermal annealing were performed. Two types of phase transformations were found, namely related to the single phase of Au3Cu and the coexistent phase of Au3Cu and AuCu I. The latter produced more remarkable hardening than the former. Hardening was brought about by the antiphase domain size effect of Au3Cu ordered phase in the single phase and by the formation of AuCu I ordered phase in the Au3Cu ordered matrix. There are three modes of phase transformation in the coexistent region depending on the composition. Each sequence is discussed.  (+info)

Phase transformation mechanisms in (AuCu)1-xPdx pseudobinary alloys by direct aging method. (4/113)

Phase transformation mechanisms in the AuCu-Pd pseudobinary system were studied by means of electrical resistivity measurements, hardness tests, X-ray diffraction and transmission electron microscopy. A direct aging method was employed to eliminate the otherwise unavoidable ordering that takes place rapidly during quenching into ice brine, hence it is important to distinguish the ordering processes with and without an incubation period. Three phase transformation modes occurred, namely; ordering at grain boundaries and in the grain interior with nucleation and growth mechanism after incubation, and spinodal ordering without any incubation period. The age-hardening of the alloys examined was attributed to AuCu I ordering. Nucleation and growth mechanism followed by twinning occurred in the specimens aged at higher temperatures, while spinodal ordering was seen in specimens aged in lower temperature. The spinodal ordering temperature of AuCu-Pd alloys increased according to Pd content.  (+info)

Isothermal age-hardening behaviour in a multi-purpose dental casting gold alloy. (5/113)

The isothermal age-hardening behaviour of a multi-purpose dental casting gold alloy was investigated by means of hardness testing, X-ray diffraction study, scanning electron microscopic observations and energy dispersive spectroscopy. By ageing of the solution-treated specimen at 400-500 degrees C, two phases of the Au-rich alpha 1 phase with an f.c.c. structure and the alpha 2 phase with an ordered f.c.c. structure based on Pt3In were transformed into three phases of the alpha 1 phase, the alpha 2 phase and the beta phase with an ordered f.c.t. structure based on PtZn. Hardening was attributed to the fine nodular precipitation resulting from the formation of the beta phase in the alpha 1 matrix. Softening was due to the coarsening of the fine nodular precipitates as the result of consumption of the alpha 2 phase.  (+info)

Isothermal age-hardening behaviour in a Au-1.6 wt% Ti alloy. (6/113)

This study describes research with a view to developing a new age-hardenable, high-carat dental gold alloy with better biocompatibility by addition of a small quantity of titanium to gold. The relationship between isothermal age-hardening and phase transformation of the Au-1.6 wt% Ti alloy was investigated by means of hardness testing, X-ray diffraction study, scanning electron microscopic observation and energy dispersive spectroscopy. The hardening in the initial stage of ageing seemed to be attributable to the continuous precipitation of the Au4Ti ordered phase in the supersaturated alpha solid solution matrix. The overaging with softening was attributed mainly to the formation of precipitates at the grain boundaries, which grew to bright lamellae and seemed to be composed of the Au4Ti phase.  (+info)

Gold alloys for resin bonding including small amount base metals--structural changes of alloy surface by the high-temperature oxidation. (7/113)

To achieve durable bonding with adhesive resin, the surface roughness and the kinds of oxides, respectively to increase mechanical retention to enhance the chemical affinity of adhesive monomer with the gold alloy, were regulated by high-temperature oxidation together with the addition of small amounts of base metals. Alloys containing 2 mass% of Ni, In, or Cr with Cu were oxidized at 800 degrees C for 20 min in air, pickled in thioglycolic acid, and subsequently oxidized at 500 degrees C for 10 min in air. The morphology of the internal oxidation zone changed markedly according to the added base metals. Although the internal oxide particle composed of only Cu2O was removed by pickling, NiO, In2O3, and chromium oxides could not removed and remained on the alloy surface. The surface roughness was increased by addition of Ni, In, or Cr. Applying the present method can control the roughness and chemical states on a gold alloy surface to increase its adhesive ability with adhesive resins.  (+info)

Influence of finishing on the electrochemical properties of dental alloys. (8/113)

Dental alloy surface finishing procedures of may influence their electrochemical behavior, which is used to evaluate their corrosion resistance. We examined the polarization resistance and potentiodynamic polarization profile of the precious-metal alloys, Type 4 gold alloy and silver-palladium alloy, and the base-metal alloys, nickel-chromium alloy, cobalt-chromium alloy, and CP-titanium. Three types of finishing procedure were examined: mirror-finishing using 0.05 micron alumina particles, polishing using #600 abrasive paper and sandblasting. Dissolution of the alloy elements in 0.9% NaCl solution was also measured and compared with the electrochemical evaluation. The corrosion resistance of the dental alloys was found to relate to finishing as follows: The polarization resistance and potentiodynamic polarization behavior revealed that the corrosion resistance improved in the order of sandblasting, #600-abrasive-paper polishing, and mirror-finishing. While the corrosion potential, critical current density and passive current density varied depending on the type of finishing, the transpassive potential remained unchanged. The influence of finishing on the corrosion resistance of precious-metal alloys was less significant than on that of base-metal alloys. A mirror-finishing specimen was recommended for use in evaluation of the corrosion resistance of various dental alloys.  (+info)

Gold alloys are not strictly a medical term, but they are often used in medical applications, particularly in the field of dentistry. Therefore, I will provide both a general definition and a dental-specific definition for clarity.

A gold alloy is a mixture of different metals, where gold is the primary component. The other metals are added to modify the properties of gold, such as its hardness, melting point, or color. These alloys can contain varying amounts of gold, ranging from 30% to 75%, depending on their intended use.

In dentistry, gold alloys refer to a specific type of alloy used for dental restorations like crowns, inlays, and onlays. These alloys typically contain between 60% and 90% gold, along with other metals such as silver, copper, and sometimes palladium or zinc. The high gold content ensures excellent biocompatibility, corrosion resistance, and durability, making these alloys a popular choice for dental applications. Additionally, their malleability allows for precise shaping and adjustment during the fabrication process.

'Alloys' is not a medical term. It is a term used in materials science and engineering to describe a mixture or solid solution composed of two or more elements, at least one of which is a metal. The components are typically present in significant amounts (>1% by weight). The properties of alloys, such as their strength, durability, and corrosion resistance, often differ from those of the constituent elements.

While not directly related to medicine, some alloys do have medical applications. For example, certain alloys are used in orthopedic implants, dental restorations, and other medical devices due to their desirable properties such as biocompatibility, strength, and resistance to corrosion.

Chromium alloys are materials made by combining chromium with other metals, such as nickel, cobalt, or iron. The addition of chromium to these alloys enhances their properties, making them resistant to corrosion and high temperatures. These alloys have a wide range of applications in various industries, including automotive, aerospace, and medical devices.

Chromium alloys can be classified into two main categories: stainless steels and superalloys. Stainless steels are alloys that contain at least 10.5% chromium by weight, which forms a passive oxide layer on the surface of the material, protecting it from corrosion. Superalloys, on the other hand, are high-performance alloys designed to operate in extreme environments, such as jet engines and gas turbines. They contain significant amounts of chromium, along with other elements like nickel, cobalt, and molybdenum.

Chromium alloys have several medical applications due to their excellent properties. For instance, they are used in surgical instruments, dental implants, and orthopedic devices because of their resistance to corrosion and biocompatibility. Additionally, some chromium alloys exhibit superelasticity, a property that allows them to return to their original shape after being deformed, making them suitable for use in stents and other medical devices that require flexibility and durability.

I believe there may be some confusion in your question. Gold is typically a chemical element with the symbol Au and atomic number 79. It is a dense, soft, malleable, and ductile metal. It is one of the least reactive chemical elements and is solid under standard conditions.

However, if you are referring to "Gold" in the context of medical terminology, it may refer to:

1. Gold salts: These are a group of compounds that contain gold and are used in medicine for their anti-inflammatory properties. They have been used in the treatment of rheumatoid arthritis, although they have largely been replaced by newer drugs with fewer side effects.
2. Gold implants: In some cases, a small amount of gold may be surgically implanted into the eye to treat conditions such as age-related macular degeneration or diabetic retinopathy. The gold helps to hold the retina in place and can improve vision in some patients.
3. Gold thread embedment: This is an alternative therapy used in traditional Chinese medicine, where gold threads are embedded into the skin or acupuncture points for therapeutic purposes. However, there is limited scientific evidence to support its effectiveness.

I hope this information helps! If you have any further questions, please let me know.

The dental casting technique is a method used in dentistry to create accurate replicas or reproductions of teeth and oral structures. This process typically involves the following steps:

1. Making an impression: A dental professional takes an impression of the patient's teeth and oral structures using a special material, such as alginate or polyvinyl siloxane. The impression material captures the precise shape and contours of the teeth and surrounding tissues.
2. Pouring the cast: The impression is then filled with a casting material, such as gypsum-based stone, which hardens to form a positive model or replica of the teeth and oral structures. This model is called a dental cast or die.
3. Examining and modifying the cast: The dental cast can be used for various purposes, such as analyzing the patient's bite, planning treatment, fabricating dental appliances, or creating study models for teaching or research purposes. Dental professionals may also modify the cast to simulate various conditions or treatments.
4. Replicating the process: In some cases, multiple casts may be made from a single impression, allowing dental professionals to create identical replicas of the patient's teeth and oral structures. This can be useful for comparing changes over time, creating duplicate appliances, or sharing information with other dental professionals involved in the patient's care.

The dental casting technique is an essential part of many dental procedures, as it enables dentists to accurately assess, plan, and implement treatments based on the unique characteristics of each patient's oral structures.

Thiouracil is not typically used as a medical treatment in current clinical practice. It is an anti-thyroid medication that was historically used to manage hyperthyroidism, particularly in cases of Graves' disease. However, due to its adverse effect profile and the availability of safer and more effective treatment options, thiouracil has largely been replaced by other medications such as methimazole and propylthiouracil.

Thiouracil works by inhibiting the enzyme thyroperoxidase, which is necessary for the production of thyroid hormones in the body. By blocking this enzyme, thiouracil reduces the amount of thyroid hormones produced and can help to control symptoms of hyperthyroidism such as rapid heart rate, tremors, and weight loss.

While thiouracil is still available for use in some cases, its use is generally reserved for patients who cannot tolerate or have failed other treatments. The medication can cause serious side effects, including liver damage, bone marrow suppression, and allergic reactions, and requires careful monitoring during treatment.

I'm happy to help! However, I must clarify that "materials testing" is not a medical term per se. It is a term used in various fields, including engineering and materials science, to describe the process of subjecting materials to different tests to evaluate their properties and performance under various conditions.

In the context of medical devices or implants, materials testing may refer to the evaluation of the physical and mechanical properties of materials used in their construction. These tests can include assessments of strength, durability, biocompatibility, and other factors that are critical to ensuring the safety and efficacy of medical devices.

Medical device manufacturers must comply with regulatory standards for materials testing to ensure that their products meet specific requirements for performance, safety, and quality. These standards may vary depending on the type of device, its intended use, and the country or region in which it will be marketed and sold.

Dental polishing is a procedure in dentistry that is performed to smooth and clean the surfaces of teeth after professional dental cleaning (prophylaxis), restoration, or other dental treatments. It is usually done using a slow-speed handpiece with a soft, rubber cup attached to it, which holds a polishing paste or a slurry of pumice and water. The polishing paste may contain an abrasive agent, fluoride, or a flavoring agent. The dental professional moves the handpiece in a circular motion over the tooth surface to remove stains, plaque, and minor surface roughness, leaving the teeth smooth and shiny. Dental polishing helps to prevent the buildup of plaque and tartar, reduce the risk of decay and gum disease, and improve the overall oral hygiene and aesthetics of the teeth.

Dental casting investment is a material used in the production of dental restorations, such as crowns and bridges, through the process of lost-wax casting. It is typically made of a gypsum-based substance that is poured into a mold containing a wax pattern of the desired restoration. Once the investment hardens, the mold is heated in a furnace to melt out the wax, leaving behind a cavity in the shape of the restoration. The molten metal alloy is then introduced into this cavity, and after it cools and solidifies, the investment is removed, revealing the finished restoration.

I'm sorry for any confusion, but "Metal Ceramic Alloys" is not a recognized medical term. It is, however, a term used in the field of materials science and engineering. Metal ceramic alloys, also known as cermets, are materials that combine properties of both metals and ceramics. They are typically composed of a metal or alloy matrix with embedded ceramic particles.

In the context of medical devices or dental restorations, the term you might be looking for is "porcelain-fused-to-metal" (PFM). PFM restorations are a type of dental crown or bridge that combines a metal substructure with a ceramic outer layer. The metal provides strength and durability, while the ceramic layer mimics the appearance of natural teeth.

If you have any questions related to medical terminology or definitions, please don't hesitate to ask!

Dental etching is a dental procedure that involves the use of a chemical agent, such as phosphoric or maleic acid, to create microscopic roughness on the surface of teeth. This process is typically used to prepare the tooth enamel for the application of bonding agents, such as dental adhesives and composite resins, which are used in various restorative and cosmetic dental procedures, such as fillings, veneers, and crowns.

During dental etching, the chemical agent is applied to the tooth surface for a specific amount of time, usually between 15-60 seconds, depending on the strength of the acid and the desired level of etching. The acid dissolves the minerals in the enamel, creating small pores or irregularities that increase the surface area and improve the bonding of the restorative material to the tooth. After etching, the tooth is rinsed with water and dried, and the bonding agent is applied and cured to create a strong and durable bond between the restoration and the tooth.

Dental etching is a safe and effective procedure when performed by a trained dental professional. However, over-etching or improper use of the acid can weaken the tooth structure and lead to sensitivity or other complications. Therefore, it is important to follow proper techniques and guidelines for dental etching to ensure optimal outcomes and patient satisfaction.

Titanium is not a medical term, but rather a chemical element (symbol Ti, atomic number 22) that is widely used in the medical field due to its unique properties. Medically, it is often referred to as a biocompatible material used in various medical applications such as:

1. Orthopedic implants: Titanium and its alloys are used for making joint replacements (hips, knees, shoulders), bone plates, screws, and rods due to their high strength-to-weight ratio, excellent corrosion resistance, and biocompatibility.
2. Dental implants: Titanium is also commonly used in dental applications like implants, crowns, and bridges because of its ability to osseointegrate, or fuse directly with bone tissue, providing a stable foundation for replacement teeth.
3. Cardiovascular devices: Titanium alloys are used in the construction of heart valves, pacemakers, and other cardiovascular implants due to their non-magnetic properties, which prevent interference with magnetic resonance imaging (MRI) scans.
4. Medical instruments: Due to its resistance to corrosion and high strength, titanium is used in the manufacturing of various medical instruments such as surgical tools, needles, and catheters.

In summary, Titanium is a chemical element with unique properties that make it an ideal material for various medical applications, including orthopedic and dental implants, cardiovascular devices, and medical instruments.

I'm sorry for any confusion, but "Thiones" is not a recognized medical term or abbreviation in physiology, pharmacology, or clinical medicine. It seems there might be a misunderstanding or a typo in your question. If you meant "thiols," I can provide a definition for that. Thiols are organic compounds containing a sulfhydryl group (-SH), which is a functional group consisting of a sulfur atom bonded to a hydrogen atom. Thiols are important in biological systems and can be found in some proteins and enzymes, where they play a crucial role in their structure and function. If you meant something else, please clarify so I can provide the most accurate information.

Electron Probe Microanalysis (EPMA) is a technique used in materials science and geology to analyze the chemical composition of materials at very small scales, typically on the order of microns or less. In this technique, a focused beam of electrons is directed at a sample, causing the emission of X-rays that are characteristic of the elements present in the sample. By analyzing the energy and intensity of these X-rays, researchers can determine the concentration of different elements in the sample with high precision and accuracy.

EPMA is typically performed using a specialized instrument called an electron probe microanalyzer (EPMA), which consists of an electron column for generating and focusing the electron beam, an X-ray spectrometer for analyzing the emitted X-rays, and a stage for positioning and manipulating the sample. The technique is widely used in fields such as mineralogy, geochemistry, metallurgy, and materials science to study the composition and structure of minerals, alloys, semiconductors, and other materials.

One of the key advantages of EPMA is its ability to analyze the chemical composition of small regions within a sample, even in cases where there are spatial variations in composition or where the sample is heterogeneous. This makes it an ideal technique for studying the distribution and behavior of trace elements in minerals, the microstructure of alloys and other materials, and the composition of individual grains or phases within a polyphase material. Additionally, EPMA can be used to analyze both conductive and non-conductive samples, making it a versatile tool for a wide range of applications.

Methyl Methacrylates (MMA) are a family of synthetic materials that are commonly used in the medical field, particularly in orthopedic and dental applications. Medically, MMA is often used as a bone cement to fix prosthetic implants, such as artificial hips or knees, into place during surgeries.

Methyl methacrylates consist of a type of acrylic resin that hardens when mixed with a liquid catalyst. This property allows it to be easily molded and shaped before it sets, making it ideal for use in surgical procedures where precise positioning is required. Once hardened, MMA forms a strong, stable bond with the bone, helping to secure the implant in place.

It's important to note that while MMA is widely used in medical applications, there have been concerns about its safety in certain situations. For example, some studies have suggested that high levels of methyl methacrylate fumes released during the setting process may be harmful to both patients and surgical staff. Therefore, appropriate precautions should be taken when using MMA-based products in medical settings.

Denture retention, in the field of dentistry, refers to the ability of a dental prosthesis (dentures) to maintain its position and stability within the mouth. It is achieved through various factors including the fit, shape, and design of the denture, as well as the use of dental implants or adhesives. Proper retention helps ensure comfortable and effective chewing, speaking, and smiling for individuals who have lost some or all of their natural teeth.

Dental stress analysis is a method used in dentistry to evaluate the amount and distribution of forces that act upon teeth and surrounding structures during biting, chewing, or other functional movements. This analysis helps dental professionals identify areas of excessive stress or strain that may lead to dental problems such as tooth fracture, mobility, or periodontal (gum) disease. By identifying these areas, dentists can develop treatment plans to reduce the risk of dental issues and improve overall oral health.

Dental stress analysis typically involves the use of specialized equipment, such as strain gauges, T-scan occlusal analysis systems, or finite element analysis software, to measure and analyze the forces that act upon teeth during various functional movements. The results of the analysis can help dentists determine the best course of treatment, which may include adjusting the bite, restoring damaged teeth with crowns or fillings, or fabricating custom-made oral appliances to redistribute the forces evenly across the dental arch.

Overall, dental stress analysis is an important tool in modern dentistry that helps dental professionals diagnose and treat dental problems related to occlusal (bite) forces, ensuring optimal oral health and function for their patients.

Dental alloys are materials made by combining two or more metals to be used in dental restorations, such as crowns, bridges, fillings, and orthodontic appliances. These alloys can be classified into three main categories based on their composition:

1. Precious Alloys: Predominantly composed of precious metals like gold, platinum, palladium, and silver. They are highly corrosion-resistant, biocompatible, and durable, making them suitable for long-term use in dental restorations. Common examples include high noble (gold) alloys and noble alloys.
2. Base Metal Alloys: Contain primarily non-precious metals like nickel, chromium, cobalt, and beryllium. They are more affordable than precious alloys but may cause allergic reactions or sensitivities in some patients. Common examples include nickel-chromium alloys and cobalt-chromium alloys.
3. Castable Glass Ionomer Alloys: A combination of glass ionomer cement (GIC) powder and metal liquid, which can be cast into various dental restorations. They have the advantage of being both strong and adhesive to tooth structure but may not be as durable as other alloy types.

Each type of dental alloy has its unique properties and applications, depending on the specific clinical situation and patient needs. Dental professionals consider factors like cost, biocompatibility, mechanical properties, and esthetics when selecting an appropriate alloy for a dental restoration.

Methacrylates are a group of chemical compounds that contain the methacrylate functional group, which is a vinyl group (CH2=CH-) with a carbonyl group (C=O) at the β-position. This structure gives them unique chemical and physical properties, such as low viscosity, high reactivity, and resistance to heat and chemicals.

In medical terms, methacrylates are used in various biomedical applications, such as dental restorative materials, bone cements, and drug delivery systems. For example, methacrylate-based resins are commonly used in dentistry for fillings, crowns, and bridges due to their excellent mechanical properties and adhesion to tooth structures.

However, there have been concerns about the potential toxicity of methacrylates, particularly their ability to release monomers that can cause allergic reactions, irritation, or even mutagenic effects in some individuals. Therefore, it is essential to use these materials with caution and follow proper handling and safety protocols.

Aluminum oxide is a chemical compound with the formula Al2O3. It is also known as alumina and it is a white solid that is widely used in various industries due to its unique properties. Aluminum oxide is highly resistant to corrosion, has a high melting point, and is an electrical insulator.

In the medical field, aluminum oxide is used in a variety of applications such as:

1. Dental crowns and implants: Aluminum oxide is used in the production of dental crowns and implants due to its strength and durability.
2. Orthopedic implants: Aluminum oxide is used in some types of orthopedic implants, such as knee and hip replacements, because of its biocompatibility and resistance to wear.
3. Medical ceramics: Aluminum oxide is used in the production of medical ceramics, which are used in various medical devices such as pacemakers and hearing aids.
4. Pharmaceuticals: Aluminum oxide is used as an excipient in some pharmaceutical products, such as tablets and capsules, to improve their stability and shelf life.
5. Medical research: Aluminum oxide is used in medical research, for example, as a substrate material for growing cells or as a coating material for medical devices.

It's important to note that while aluminum oxide has many useful applications in the medical field, exposure to high levels of aluminum can be harmful to human health. Therefore, it is important to use aluminum oxide and other aluminum-containing materials safely and according to established guidelines.

A dental crown is a type of dental restoration that completely caps or encircles a tooth or dental implant. Crowns are used to restore the strength, functionality, and appearance of teeth that have been damaged or weakened due to various reasons such as decay, fracture, or large fillings. They can be made from various materials including porcelain, ceramic, metal, or a combination of these. The crown is custom-made to fit over the prepared tooth and is cemented into place, becoming a permanent part of the tooth. Crowns are also used for cosmetic purposes to improve the appearance of discolored or misshapen teeth.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

A dental prosthesis known as an "overlay denture" is a type of removable restoration that covers and restores only the occlusal (biting) surfaces of the natural teeth, while leaving the remaining tooth structure and surrounding soft tissues intact. This type of denture is typically used when there are still sufficient healthy tooth structures present to provide support and stability for the prosthesis.

Overlay dentures can be made from various materials such as acrylic resin or metal alloys, and they can be fabricated to fit over the natural teeth with precision, ensuring optimal comfort and functionality. These dentures are designed to improve the patient's ability to chew and speak properly, while also enhancing their smile and overall oral esthetics.

It is important to note that proper dental hygiene and regular check-ups with a dental professional are essential for maintaining good oral health and ensuring the longevity of an overlay denture.

Corrosion is a process of deterioration or damage to a material, usually a metal, caused by chemical reactions with its environment. In the medical context, corrosion may refer to the breakdown and destruction of living tissue due to exposure to harsh substances or environmental conditions. This can occur in various parts of the body, such as the skin, mouth, or gastrointestinal tract, and can be caused by factors like acid reflux, infection, or exposure to chemicals.

In the case of medical devices made of metal, corrosion can also refer to the degradation of the device due to chemical reactions with bodily fluids or tissues. This can compromise the function and safety of the device, potentially leading to complications or failure. Therefore, understanding and preventing corrosion is an important consideration in the design and use of medical devices made of metal.

Dental bonding is a cosmetic dental procedure in which a tooth-colored resin material (a type of plastic) is applied and hardened with a special light, which ultimately "bonds" the material to the tooth to improve its appearance. According to the American Dental Association (ADA), dental bonding can be used for various purposes, including:

1. Repairing chipped or cracked teeth
2. Improving the appearance of discolored teeth
3. Closing spaces between teeth
4. Protecting a portion of the tooth's root that has been exposed due to gum recession
5. Changing the shape and size of teeth

Dental bonding is generally a quick and painless procedure, often requiring little to no anesthesia. The surface of the tooth is roughened and conditioned to help the resin adhere properly. Then, the resin material is applied, molded, and smoothed to the desired shape. A special light is used to harden the material, which typically takes only a few minutes. Finally, the bonded material is trimmed, shaped, and polished to match the surrounding teeth.

While dental bonding can be an effective solution for minor cosmetic concerns, it may not be as durable or long-lasting as other dental restoration options like veneers or crowns. The lifespan of a dental bonding procedure typically ranges from 3 to 10 years, depending on factors such as oral habits, location of the bonded tooth, and proper care. Regular dental checkups and good oral hygiene practices can help extend the life of dental bonding.

Shear strength is a property of a material that describes its ability to withstand forces that cause internal friction and sliding of one portion of the material relative to another. In the context of human tissues, shear strength is an important factor in understanding how tissues respond to various stresses and strains, such as those experienced during physical activities or injuries.

For example, in the case of bones, shear strength is a critical factor in determining their ability to resist fractures under different types of loading conditions. Similarly, in soft tissues like ligaments and tendons, shear strength plays a crucial role in maintaining the integrity of these structures during movement and preventing excessive deformation or injury.

It's worth noting that measuring the shear strength of human tissues can be challenging due to their complex structure and anisotropic properties. As such, researchers often use specialized techniques and equipment to quantify these properties under controlled conditions in the lab.

Photoelectron Spectroscopy (PES) is not typically considered a medical definition, but it is a term used in physical and analytical chemistry. However, I can provide a definition for you:

Photoelectron Spectroscopy (PES) is a technique used to study the electronic structure of atoms, molecules, and solids by irradiating them with photons (usually from a laser or a synchrotron light source) and measuring the kinetic energy of the ejected electrons. The technique provides information about the energy levels of the electrons in the sample, which can be used to determine its chemical composition, bonding, and electronic structure. PES is a valuable tool in surface science, materials research, and environmental analysis.

A dental prosthesis is a device that replaces missing teeth or parts of teeth and restores their function and appearance. The design of a dental prosthesis refers to the plan and specifications used to create it, including the materials, shape, size, and arrangement of the artificial teeth and any supporting structures.

The design of a dental prosthesis is typically based on a variety of factors, including:

* The number and location of missing teeth
* The condition of the remaining teeth and gums
* The patient's bite and jaw alignment
* The patient's aesthetic preferences
* The patient's ability to chew and speak properly

There are several types of dental prostheses, including:

* Dentures: A removable appliance that replaces all or most of the upper or lower teeth.
* Fixed partial denture (FPD): Also known as a bridge, this is a fixed (non-removable) appliance that replaces one or more missing teeth by attaching artificial teeth to the remaining natural teeth on either side of the gap.
* Removable partial denture (RPD): A removable appliance that replaces some but not all of the upper or lower teeth.
* Implant-supported prosthesis: An artificial tooth or set of teeth that is supported by dental implants, which are surgically placed in the jawbone.

The design of a dental prosthesis must be carefully planned and executed to ensure a good fit, proper function, and natural appearance. It may involve several appointments with a dentist or dental specialist, such as a prosthodontist, to take impressions, make measurements, and try in the finished prosthesis.

Dental prosthesis retention refers to the means by which a dental prosthesis, such as a denture, is held in place in the mouth. The retention can be achieved through several methods, including:

1. Suction: This is the most common method of retention for lower dentures, where the shape and fit of the denture base create suction against the gums to hold it in place.
2. Mechanical retention: This involves the use of mechanical components such as clasps or attachments that hook onto remaining natural teeth or dental implants to hold the prosthesis in place.
3. Adhesive retention: Dental adhesives can be used to help secure the denture to the gums, providing additional retention and stability.
4. Implant retention: Dental implants can be used to provide a more secure and stable retention of the dental prosthesis. The implant is surgically placed in the jawbone and acts as an anchor for the prosthesis.

Proper retention of a dental prosthesis is essential for optimal function, comfort, and speech. A well-retained prosthesis can help prevent sore spots, improve chewing efficiency, and enhance overall quality of life.

Dental clasps are a component of dental restorations, such as removable partial dentures (RPDs), that help to retain and stabilize the appliance in the mouth. They are typically made of metal wires or plastic materials and are designed to fit around specific teeth to hold the denture securely in place.

There are several types of dental clasps, including:

1. Adams clasp: A wire clasp that wraps around a tooth and has a circular loop that fits over the crown of the tooth.
2. Akers clasp: A wire clasp that hooks around the back of a molar tooth and has a flexible arm that extends forward to engage with another tooth.
3. C-clasp: A wire clasp that forms a "C" shape and wraps around the side of a tooth, with the open end facing away from the RPD.
4. I-bar clasp: A plastic or metal clasp that is shaped like an "I" and fits over the front of a tooth, with the two ends extending backward to engage with other teeth.
5. Ring clasp: A wire clasp that forms a complete circle around a tooth and has a small gap where it can be hooked onto the RPD.

Dental clasps are designed to be strong enough to hold the RPD in place, but flexible enough to allow for easy removal when necessary. They should fit comfortably and securely without causing damage to the teeth or gums. Regular dental check-ups and adjustments can help ensure that dental clasps continue to function properly over time.

Resin cements are dental materials used to bond or cement restorations, such as crowns, bridges, and orthodontic appliances, to natural teeth or implants. They are called "resin" cements because they are made of a type of synthetic resin material that can be cured or hardened through the use of a chemical reaction or exposure to light.

Resin cements typically consist of three components: a base, a catalyst, and a filler. The base and catalyst are mixed together to create a putty-like consistency, which is then applied to the restoration or tooth surface. Once the cement is in place, it is exposed to light or allowed to chemically cure, which causes it to harden and form a strong bond between the restoration and the tooth.

Resin cements are known for their excellent adhesive properties, as well as their ability to withstand the forces of biting and chewing. They can also be color-matched to natural teeth, making them an aesthetically pleasing option for dental restorations. However, they may not be suitable for all patients or situations, and it is important for dental professionals to carefully consider the specific needs and conditions of each patient when choosing a cement material.

Dental cements are materials used in dentistry to bond or seal restorative dental materials, such as crowns, fillings, and orthodontic appliances, to natural tooth structures. They can be made from various materials including glass ionomers, resin-modified glass ionomers, zinc oxide eugenol, polycarboxylate, and composite resins. The choice of cement depends on the specific clinical situation and the properties required, such as strength, durability, biocompatibility, and esthetics.

A partial denture that is fixed and bonded with resin is a type of dental restoration used when one or more natural teeth are missing in a jaw. Unlike removable partial dentures, fixed partial dentures, also known as "dental bridges," are permanently attached to the remaining teeth or implants for support.

In this specific type, the false tooth (or pontic) is connected to the adjacent teeth with the help of resin-bonded retainers, which are made from a special dental resin material. The retainers are bonded to the back surfaces of the supporting teeth, providing a secure and stable fit for the replacement tooth.

Resin-bonded fixed partial dentures offer several advantages, including minimally invasive preparation, lower cost compared to other types of bridges, and quicker installation time. However, they may not be suitable for all cases, especially when supporting teeth have large fillings or significant crowning. A dental professional can determine the most appropriate treatment option based on an individual's oral health needs and preferences.

Boron compounds refer to chemical substances that contain the element boron (symbol: B) combined with one or more other elements. Boron is a naturally occurring, non-metallic element found in various minerals and ores. It is relatively rare, making up only about 0.001% of the Earth's crust by weight.

Boron compounds can take many forms, including salts, acids, and complex molecules. Some common boron compounds include:

* Boric acid (H3BO3) - a weak acid used as an antiseptic, preservative, and insecticide
* Sodium borate (Na2B4O7·10H2O) - also known as borax, a mineral used in detergents, cosmetics, and enamel glazes
* Boron carbide (B4C) - an extremely hard material used in abrasives, ceramics, and nuclear reactors
* Boron nitride (BN) - a compound with properties similar to graphite, used as a lubricant and heat shield

Boron compounds have a variety of uses in medicine, including as antiseptics, anti-inflammatory agents, and drugs for the treatment of cancer. For example, boron neutron capture therapy (BNCT) is an experimental form of radiation therapy that uses boron-containing compounds to selectively target and destroy cancer cells.

It's important to note that some boron compounds can be toxic or harmful if ingested, inhaled, or otherwise exposed to the body in large quantities. Therefore, they should be handled with care and used only under the guidance of a trained medical professional.

Dental materials are substances that are used in restorative dentistry, prosthodontics, endodontics, orthodontics, and preventive dentistry to restore or replace missing tooth structure, improve the function and esthetics of teeth, and protect the oral tissues from decay and disease. These materials can be classified into various categories based on their physical and chemical properties, including metals, ceramics, polymers, composites, cements, and alloys.

Some examples of dental materials include:

1. Amalgam: a metal alloy used for dental fillings that contains silver, tin, copper, and mercury. It is strong, durable, and resistant to wear but has been controversial due to concerns about the toxicity of mercury.
2. Composite: a tooth-colored restorative material made of a mixture of glass or ceramic particles and a bonding agent. It is used for fillings, veneers, and other esthetic dental treatments.
3. Glass ionomer cement: a type of cement used for dental restorations that releases fluoride ions and helps prevent tooth decay. It is often used for fillings in children's teeth or as a base under crowns and bridges.
4. Porcelain: a ceramic material used for dental crowns, veneers, and other esthetic restorations. It is strong, durable, and resistant to staining but can be brittle and prone to fracture.
5. Gold alloy: a metal alloy used for dental restorations that contains gold, copper, and other metals. It is highly biocompatible, corrosion-resistant, and malleable but can be expensive and less esthetic than other materials.
6. Acrylic resin: a type of polymer used for dental appliances such as dentures, night guards, and orthodontic retainers. It is lightweight, flexible, and easy to modify but can be less durable than other materials.

The choice of dental material depends on various factors, including the location and extent of the restoration, the patient's oral health status, their esthetic preferences, and their budget. Dental professionals must consider these factors carefully when selecting the appropriate dental material for each individual case.

I'm sorry for any confusion, but "Silver" is not a medical term. It is a chemical element with the symbol Ag and atomic number 47. Silver is a soft, white, lustrous transition metal that occurs in its pure, free form (native silver) as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite.

In the medical field, silver compounds have been used for their antimicrobial properties. For example, silver sulfadiazine is a common topical cream used to prevent or treat wound infections. Colloidal silver, a suspension of silver particles in a liquid, has also been promoted as a dietary supplement and alternative treatment for various conditions, but its effectiveness and safety are not well-established.

I'm sorry for the confusion, but "Palladium" is not a medical term. It is a chemical element with symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by William Hyde Wollaston. It's used in various applications, including jewelry, dental work, electronics, and chemical reactions. If you have any medical terms you would like me to define, please let me know!

Composite resins, also known as dental composites or filling materials, are a type of restorative material used in dentistry to restore the function, integrity, and morphology of missing tooth structure. They are called composite resins because they are composed of a combination of materials, including a resin matrix (usually made of bisphenol A-glycidyl methacrylate or urethane dimethacrylate) and filler particles (commonly made of silica, quartz, or glass).

The composite resins are widely used in modern dentistry due to their excellent esthetic properties, ease of handling, and ability to bond directly to tooth structure. They can be used for a variety of restorative procedures, including direct and indirect fillings, veneers, inlays, onlays, and crowns.

Composite resins are available in various shades and opacities, allowing dentists to match the color and translucency of natural teeth closely. They also have good wear resistance, strength, and durability, making them a popular choice for both anterior and posterior restorations. However, composite resins may be prone to staining over time and may require more frequent replacement compared to other types of restorative materials.

I'm sorry for any confusion, but "Tin" does not have a medical definition. Tin is a chemical element with the symbol Sn and atomic number 50. It is a malleable, ductile, silvery-white post-transition metal. It is found in nature mainly as tin oxides and is obtained from the mineral cassiterite through mining and processing.

Tin has no known biological role in humans, animals, or plants, and it is not considered an essential nutrient. Small amounts of tin can be found in some foods and drinking water, but these levels are generally low and not considered harmful. High levels of tin can be toxic to the human body, causing symptoms such as nausea, vomiting, and diarrhea.

If you have any questions about a medical condition or treatment, I would recommend consulting with a healthcare professional for accurate information and guidance.

I'm sorry for any confusion, but "oxides" is not a term that has a specific medical definition. Oxides are a class of chemical compounds that contain at least one oxygen atom and one other element. They can be formed through the process of oxidation, which involves the combination of oxygen with another substance.

In a broader sense, you might encounter the term "oxide" in a medical context when discussing various materials or substances used in medical devices, treatments, or research. For instance, titanium dioxide is a common ingredient in medical-grade sunscreens due to its ability to block and scatter UV light. However, it's important to note that the term "oxides" itself doesn't have a direct connection to medicine or human health.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

Gold sodium thiomalate is a disease-modifying antirheumatic drug (DMARD) that contains gold, which can help reduce pain, swelling, and stiffness in joints caused by rheumatoid arthritis. It works by possibly inhibiting certain enzymes involved in inflammation and modulating the immune system's response to reduce tissue damage.

This medication is given as an intramuscular injection and requires medical supervision due to its potential side effects, including kidney and liver problems, skin rashes, mouth sores, and changes in blood cell counts. Regular monitoring of blood and urine tests is necessary during treatment with gold sodium thiomalate.

It's important to note that the use of this medication has declined over time due to the availability of newer and more effective treatments for rheumatoid arthritis, as well as its potential side effects.

Gold compounds refer to chemical combinations in which gold atoms are bonded with other elements. In the context of medicine, particularly in the field of rheumatology, gold compounds have been used as disease-modifying antirheumatic drugs (DMARDs) for the treatment of conditions such as rheumatoid arthritis.

The most commonly used gold compound is auranofin, which contains gold in the +1 oxidation state. Auranofin is an oral medication that can help reduce inflammation and slow down joint damage caused by rheumatoid arthritis. It works by inhibiting certain enzymes involved in the inflammatory response.

Other gold compounds, such as sodium aurothiomalate and gold thioglucose, are administered parenterally (usually intramuscularly) and contain gold in the +3 oxidation state. These medications also have anti-inflammatory properties and can help alleviate symptoms of rheumatoid arthritis.

It is important to note that the use of gold compounds as a treatment for rheumatoid arthritis has declined over time due to their side effects, which may include kidney damage, skin reactions, mouth ulcers, and bone marrow suppression. They are generally reserved for patients who have not responded well to other DMARDs or biologic agents.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

Differential Thermal Analysis (DTA) is a technique used in thermoanalysis to study the physical and chemical changes that occur in a material as it is heated or cooled. It measures the difference in temperature between a sample and a reference material, both of which are subjected to the same temperature program.

In DTA, the sample and reference material are placed in separate but identical holders, and the temperature of the reference material is kept constant while the temperature of the sample is increased or decreased at a controlled rate. As the sample undergoes physical or chemical changes, such as phase transitions or chemical reactions, it absorbs or releases heat, causing its temperature to change relative to the reference material.

The DTA curve plots the temperature difference between the sample and the reference material against time or temperature. The resulting curve provides information about the thermal behavior of the sample, including any endothermic or exothermic reactions that occur as it is heated or cooled. Endothermic reactions, which require heat input, are indicated by a negative deflection in the DTA curve, while exothermic reactions, which release heat, are indicated by a positive deflection.

DTA is widely used in materials science, chemistry, and physics to study the thermal properties of materials, including their phase transitions, melting points, crystallization behavior, and chemical stability. It can also be used to identify unknown materials or to characterize the purity of a sample.

Medical definitions generally refer to terms and concepts within the medical field. The term "metal nanoparticles" is more commonly used in materials science, chemistry, and physics. However, I can provide a general scientific definition that could be relevant to medical applications:

Metal nanoparticles are tiny particles with at least one dimension ranging from 1 to 100 nanometers (nm), composed of metals or metal compounds. They have unique optical, electronic, and chemical properties due to their small size and high surface-to-volume ratio, making them useful in various fields, including medical research. In medicine, metal nanoparticles can be used in drug delivery systems, diagnostics, and therapeutic applications such as photothermal therapy and radiation therapy. Examples of metals used for nanoparticle synthesis include gold, silver, and iron.

I'm sorry for any confusion, but "Nickel" is not a medical term. It is a chemical element with the symbol Ni and atomic number 28. Nickel is a hard, silvery-white lustrous metal with a slight golden tinge. It is one of four elements that are ferromagnetic and is used as a common component in various alloys due to its properties such as resistance to corrosion and heat.

However, in a medical context, nickel may refer to:

* Nickel allergy: A type of allergic contact dermatitis caused by an immune system response to the presence of nickel in jewelry, clothing fasteners, or other items that come into contact with the skin. Symptoms can include redness, itching, and rash at the site of exposure.
* Nickel carbonyl: A highly toxic chemical compound (Ni(CO)4) that can cause respiratory and neurological problems if inhaled. It is produced during some industrial processes involving nickel and carbon monoxide and poses a health risk to workers if proper safety measures are not taken.

If you have any concerns about exposure to nickel or symptoms related to nickel allergy, it's best to consult with a healthcare professional for further evaluation and treatment.

In the context of medical terminology, "hardness" is not a term that has a specific or standardized definition. It may be used in various ways to describe the firmness or consistency of a tissue, such as the hardness of an artery or tumor, but it does not have a single authoritative medical definition.

In some cases, healthcare professionals may use subjective terms like "hard," "firm," or "soft" to describe their tactile perception during a physical examination. For example, they might describe the hardness of an enlarged liver or spleen by comparing it to the feel of their knuckles when gently pressed against the abdomen.

However, in other contexts, healthcare professionals may use more objective measures of tissue stiffness or elasticity, such as palpation durometry or shear wave elastography, which provide quantitative assessments of tissue hardness. These techniques can be useful for diagnosing and monitoring conditions that affect the mechanical properties of tissues, such as liver fibrosis or cancer.

Therefore, while "hardness" may be a term used in medical contexts to describe certain physical characteristics of tissues, it does not have a single, universally accepted definition.

Gallium is not a medical term, but it's a chemical element with the symbol Ga and atomic number 31. It is a soft, silvery-blue metal that melts at a temperature just above room temperature. In medicine, gallium compounds such as gallium nitrate and gallium citrate are used as radiopharmaceuticals for diagnostic purposes in nuclear medicine imaging studies, particularly in the detection of inflammation, infection, and some types of cancer.

For example, Gallium-67 is a radioactive isotope that can be injected into the body to produce images of various diseases such as abscesses, osteomyelitis (bone infection), and tumors using a gamma camera. The way gallium distributes in the body can provide valuable information about the presence and extent of disease.

Therefore, while gallium is not a medical term itself, it has important medical applications as a diagnostic tool in nuclear medicine.

I'm sorry for any confusion, but "Niobium" is not a medical term. Niobium is a chemical element with the symbol Nb and atomic number 41. It is a soft, grey, crystalline metal that is naturally found in minerals such as columbite and pyrochlore.

Niobium has some applications in the medical field, particularly in the production of implants and medical devices. For instance, niobium alloys are used in orthopedic implants due to their excellent corrosion resistance and biocompatibility properties. However, niobium itself is not a medical term or concept.

I'm sorry for any confusion, but "Stainless Steel" is not a medical term. It is a type of steel that contains at least 10.5% chromium content by mass, and usually contains nickel as well. The chromium forms a passive film that protects the metal from corrosion and staining. Stainless steel is widely used in various industries including medicine, for example, in medical equipment and surgical instruments due to its resistance to rust and corrosion.

Tensile strength is a material property that measures the maximum amount of tensile (pulling) stress that a material can withstand before failure, such as breaking or fracturing. It is usually measured in units of force per unit area, such as pounds per square inch (psi) or pascals (Pa). In the context of medical devices or biomaterials, tensile strength may be used to describe the mechanical properties of materials used in implants, surgical tools, or other medical equipment. High tensile strength is often desirable in these applications to ensure that the material can withstand the stresses and forces it will encounter during use.

Electroplating is not a medical term, but rather a process used in the industrial field. It refers to the process of coating an electrically conductive object with a thin layer of metal through the use of an electrical current. This process involves immersing the object in a solution containing dissolved ions of the metal to be deposited, and then passing an electric current through the solution. The object serves as the cathode, and the metal ions are reduced at its surface, forming a thin layer of pure metal.

While electroplating is not directly related to medicine, it does have some medical applications. For example, medical devices such as pacemakers or implantable defibrillators may be coated with gold or other metals through electroplating to improve their biocompatibility and reduce the risk of corrosion or rejection by the body. Similarly, dental restorations may be electroplated with precious metals to enhance their strength and durability.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Indium is not a medical term, but it is a chemical element with the symbol In and atomic number 49. It is a soft, silvery-white, post-transition metal that is rarely found in its pure form in nature. It is primarily used in the production of electronics, such as flat panel displays, and in nuclear medicine as a radiation source for medical imaging.

In nuclear medicine, indium-111 is used in the labeling of white blood cells to diagnose and locate abscesses, inflammation, and infection. The indium-111 labeled white blood cells are injected into the patient's body, and then a gamma camera is used to track their movement and identify areas of infection or inflammation.

Therefore, while indium itself is not a medical term, it does have important medical applications in diagnostic imaging.

"Gold & Palladium Alloys Table". Aimtek.com. Archived from the original on 8 August 2010. Retrieved 26 July 2010. "Gold Tin - ... Phosphorus Alloy Silvaloy 2M Brazing Alloy Silvalite Brazing Alloy Silvabraze 33830 Brazing Alloy Silvaloy 0 Brazing Alloy " ... Alloy Silvaloy A25T Brazing Alloy Silvaloy 35 Brazing Alloy EASY FLO 3 Carbide Brazing Alloy F Bronze High Temperature Alloy ... Silvaloy 18M Brazing Alloy Matti-sil 18Si Cadmium Free Brazing Alloy SIL-FOS 18 Silver/ Copper/ Phosphorus Alloy Silvaloy 6 ...
... gold was often alloyed with copper to produce red-gold, or iron to produce a bright burgundy-gold. Gold was often found alloyed ... Examples of alloys include red gold (gold and copper), white gold (gold and silver), sterling silver (silver and copper), steel ... Some alloys, such as electrum-an alloy of silver and gold-occur naturally. Meteorites are sometimes made of naturally occurring ... Precipitation hardening alloys, such as certain alloys of aluminium, titanium, and copper, are heat-treatable alloys that ...
Nordic Gold A bronze is an alloy of copper and other metals, most often tin, but also aluminium and silicon. Aluminium bronzes ... Copper alloys are metal alloys that have copper as their principal component. They have high resistance against corrosion. The ... The following table outlines the chemical composition of various grades of copper alloys. A brass is an alloy of copper with ... nickel silver and cupronickel Speculum metal UNS C69100 Copper is often alloyed with precious metals like gold (Au) and silver ...
Examples of the common alloys for 18K rose gold, 18K red gold, 18K pink gold, and 12K red gold include: 18K red gold: 75% gold ... Purple gold (also called amethyst gold and violet gold) is an alloy of gold and aluminium rich in gold-aluminium intermetallic ... silver Rose gold is a gold-copper alloy widely used for specialized jewelry. Rose gold, also known as pink gold and red gold, ... Amongst the alloys made of gold, silver and copper, the hardest is the 18.1 K pink gold (75.7% gold and 24.3% copper). An alloy ...
"Gold Jewellery Alloys". World Gold Council. Archived from the original on 14 April 2009. Retrieved 6 June 2009. Balver Zinn ... Brass is an alloy of copper and zinc. Bronze usually refers to copper-tin alloys, but can refer to any alloy of copper such as ... Oguchi, Hachiro (1983). "Japanese Shakudō: its history, properties and production from gold-containing alloys". Gold Bulletin. ... Shakudō is a Japanese decorative alloy of copper containing a low percentage of gold, typically 4-10%, that can be patinated to ...
... cantilever gold alloy; Metropolitan Museum of Art Nose ornament; 7th-12th century; cantilever gold alloy; Metropolitan Museum ... gold alloy; 19.5 x 10.1 cm; Gold Museum (Bogotá, Colombia) Tunjo; 10th-16th century; from Guatavita Lake region; Metropolitan ... gold; 3.1 x 9.7 x 8.8 cm; Gold Museum (Bogotá, Colombia) Funerary mask; 5th-1st century BCE; embossed gold; Ilama stage; ... gold alloy casting; width: 14.6 cm (53⁄4 in.); Metropolitan Museum of Art (New York City) Anthropomorphic pendant; 18th century ...
... and other base metals in the karat gold) starting on the outside surface of the 6K gold alloy, working its way into the gold ... "Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN ... The alloy of gold and silver is called electrum. Two technologies are dominant. They both start with relatively pure gold. The ... One part pure gold is alloyed with three parts Sterling silver (inquarting). The resulting six karat (6K) gold can then be ...
"Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN ... One of the most famous lixiviants is cyanide, which is used in extracting 90% of mined gold. The combination of cyanide and air ... converts gold particles into a soluble salt. Once separated from the bulk gangue, the solution is processed in a series of ...
... alloy of gold and copper Iron pyrite, fool's gold Nordic gold, non-gold copper alloy "Standard Atomic Weights: Gold". CIAAW. ... Blue gold can be made by alloying with iron, and purple gold can be made by alloying with aluminium. Less commonly, addition of ... The gold proportion (fineness) of alloys is measured by karat (k). Pure gold (commercially termed fine gold) is designated as ... Palladium-gold alloys are more expensive than those using nickel. High-karat white gold alloys are more resistant to corrosion ...
doi:10.1016/0022-5088(74)90204-5. Hermann Renner; Günther Schlamp (2000). "Gold, Gold Alloys, and Gold Compounds". Ullmann's ... most of the gold is in the form of elemental gold. Gold(III) chloride is more stable in a chlorine atmosphere and can sublime ... and then to gold metal. Gold(III) chloride is the starting point for the chemical synthesis of many other gold compounds. For ... 3 KCl Gold(III) fluoride can be also produced from gold(III) chloride by reacting it with bromine trifluoride. Gold(III) ...
"Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN ... The resulting gold is 99.5% pure, but of lower purity than gold produced by the other common refining method, the Wohlwill ... When all impurities have been removed from the gold (observable by a change in flame color) the gold is removed and processed ... When highest purity gold is not required, refiners use the Miller process due to its relative ease, quicker turnaround times, ...
"Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN ... Gold occurs principally as a native metal, i.e., gold itself. Sometimes it is alloyed to a greater or lesser extent with silver ... Gold cyanides bind also to some clays. While the romantic picture of gold mining focuses on nuggets, the reality is that gold ... Gold extraction is the extraction of gold from dilute ores using a combination of chemical processes. Gold mining produces ...
"Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN ... Most metal ores contain metals of interest (e.g. gold, copper, nickel) in some oxidized states and thus the goal of most ... Insoluble solid impurities sedimenting below the anode often contain valuable rare elements such as gold, silver and selenium. ... cyanide-extracts of gold ores. Because metal deposition rates are related to available surface area, maintaining properly ...
"Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN ... Gold(I) chloride is a compound of gold and chlorine with the chemical formula AuCl. Gold(I) chloride is prepared by thermal ... When heated with water, the compound dispropotionates to metallic gold and gold(III) chloride in an autoredox reaction: 3 AuCl ... all gold chlorides convert to gold. This conversion is key to the Miller process, which is widely used for the purification of ...
"Practical manual for calculating gold alloys..."), 1844 Kleines Handbuch für Goldarbeiter ("Small handbook for goldworkers"), ... In 1820 the Grand Duchy of Baden appointed him official gold inspector. In 1829 he developed a safe oxyhydrogen equipment for ...
"Alloy of gold". Robert M. McBride & Company. February 20, 1915 - via Hathi Trust. Starbuck, A.; Holmes, Roy Joseph (February 20 ... Dunlap Alloy of Gold (1915) Star of the North (1916) illustrated by D. C. Hutchison The Godson of Jeanette Gontreau in War ...
Gold alloys are still used by dentists today. They most often combine gold with other metals such as palladium, nickel, or ... Gold teeth are very popular in the country with people getting permanent gold teeth from as young as 12 years old. Gold teeth ... "Gold teeth are a gold mine". BBC News. Retrieved January 16, 2006. May, Meredith (May 1, 2005). "The gold standard of style: No ... Early traces of gold teeth were found in the 1300-1400s. They were found in Luzon, an island in the Philippines. Gold dental ...
doi:10.1007/s40544-015-0074-6. Chaston, J.C. (1 December 1974). "Wear resistance of gold alloys for coinage". Gold Bulletin. 7 ... they used a simple reciprocating machine to evaluate the wear rate of gold coins. They found that coins with grit between them ...
"Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/ ... This results in a removal of gold ions from solution and allows further oxidation of gold to take place. The gold dissolves to ... The gold then crystallizes in the form of gold(III) chloride, whose red crystals Basil called "the rose of our masters" and " ... The rooster symbolizes gold (from its association with sunrise and the sun's association with gold), and the fox represents ...
Eder, Andrew; Wickens, J. (1996). "Surface treatment of gold alloys for resin adhesion". Quintessence International. 27 (1): 35 ...
Klement, W.; Willens, R. H.; Duwez, POL (1960). "Non-crystalline Structure in Solidified Gold-Silicon Alloys". Nature. 187 ( ... The formation of a non-crystalline form of a gold-silicon alloy by the method of splat quenching from the melt led to further ... For alloys with lower resistivity and longer electronic mean free paths, the electrons could begin to sense[dubious - discuss] ... Thus, the glass formation tendencies of certain alloys may therefore be due in part to the fact that the electron mean free ...
Ölander, A. (1932). "An Electrochemical Investigation of Solid Cadmium-Gold Alloys". Journal of the American Chemical Society. ... Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60. Nitinol alloys ... Ölander first observed the property in gold-cadmium alloys. The same effect was observed in Cu-Zn (brass) in the early 1950s. ... When the alloy is fully martensite and is subjected to heating, austenite starts to form at the austenite start temperature, As ...
Klement, W.; Willens, R. H.; Duwez, POL (1960). "Non-crystalline structure in solidified gold-silicon Alloys". Nature. 187 ( ... Amorphous Ca65Zn20Mg15 alloy exhibits extremely poor corrosion resistance. Wang et al. reported that the said amorphous alloy ... Similar to the Mg-Zn-Ca, these two amorphous alloys are both bioresorbable metallic glasses and are based on the same Mg-Zn-Ca ... This and other early glass-forming alloys had to be cooled extremely rapidly (in the order of one mega-kelvin per second, 106 K ...
... s were made of gold or tumbaga; a gold-silver-copper alloy. The Muisca used their tunjos in various instances in their ... The Muisca used to make matrixes or moulds of rock types such as shales and obsidian and poured their molten gold or tumbaga ... The design of the majority of tunjos appears to have gold wire soldered or brazed onto their surface. This, however, is not the ... One of the most common finds of these gold or tumbaga figures are the tunjos. Tunjos were small figures picturing people, the ...
Ternary alloys have much greater importance: dental amalgams are usually silver-tin-mercury alloys, silver-copper-gold alloys ... Most other binary alloys are of little use: for example, silver-gold alloys are too soft and silver-cadmium alloys too toxic. ... Silver readily forms alloys with copper, gold, and zinc. Zinc-silver alloys with low zinc concentration may be considered as ... Silver and its alloys with gold are used as wire or ring seals for oxygen compressors and vacuum equipment. Silver metal is a ...
A lowland Zenú cast-gold bird ornament that served as a staff head, dated 490 CE. This culture used alloys with a high gold ... Cartagena grew rapidly, fueled first by the gold in the tombs of the Sinú Culture, and later by trade. The thirst for gold and ... Pre-Columbian The zipa used to cover his body in gold and, from his Muisca raft, he offered treasures to the Guatavita goddess ... Tairona figure pendants in gold. Golden statuette of a Quimbaya cacique. San Agustín Archaeological Park (UNESCO World Heritage ...
Ornaments were made of silver, gold, and some alloys. Metalwork techniques were filigree and casting. Male costumes were ... more common are silk cherry-gold or dark brown silk clothes, with a floral motif. Czepiec, was handmade, and his appearance ...
A lowland Zenú cast-gold bird ornament that served as a staff head, dated 490 CE. This culture used alloys with a high gold ... Pre-Columbian The zipa used to cover his body in gold and, from his Muisca raft, he offered treasures to the Guatavita goddess ... Tairona figure pendants in gold. Golden statuette of a Quimbaya cacique. San Agustín Archaeological Park (UNESCO World Heritage ...
... coppery alloy, iron, gold and garnet; height: 31.8 cm; British Museum Shoulder-clasps from Sutton Hoo; early 7th century; gold ... gold paint, and gold leaf on parchment; height: 25.2 cm; Getty Center (Los Angeles) Romanesque art refers to the period from ... Buckle of Sutton Hoo; 580-620; gold and niello; length: 13.1 cm; British Museum (London) The helmet of Sutton Hoo; early 7th ... gold, and ink on parchment, and leather binding; overall: 36.8 x 29.6 x 12.4 cm, folio: 35 x 26.2 cm; Metropolitan Museum of ...
Karat is a fractional measure of purity for gold alloys. Karat may also refer to: Karat (airline), a former Russian airline SDB ...

No FAQ available that match "gold alloys"

No images available that match "gold alloys"