Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage)
A subclass of GLYCOSPHINGOLIPIDS containing one or more sugars within their head group connected directly to a ceramide moiety. They consist of monoglycosyl-, and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides.
A subclass of GLYCOSPHINGOLIPIDS containing large polar heads made up of several sugar units. One or more of their terminal sugar units are bound to a negatively charged molecule at pH 7. Members of this class include: GANGLIOSIDES, uronoglycosphingolipids, SULFOGLYCOSPHINGOLIPIDS, phosphoglycosphingolipids, and phosphonoglycosphingolipids.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Glycosphingolipids which contain as their polar head group a lactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in lactosylceramide beta-galactosidase, is the cause of lactosylceramidosis.
A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997)
Glycosphingolipids containing N-acetylglucosamine (paragloboside) or N-acetylgalactosamine (globoside). Globoside is the P antigen on erythrocytes and paragloboside is an intermediate in the biosynthesis of erythrocyte blood group ABH and P 1 glycosphingolipid antigens. The accumulation of globoside in tissue, due to a defect in hexosaminidases A and B, is the cause of Sandhoff disease.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
Cerebrosides which contain as their polar head group a glucose moiety bound in glycosidic linkage to the hydroxyl group of ceramides. Their accumulation in tissue, due to a defect in beta-glucosidase, is the cause of Gaucher's disease.
GLYCOSPHINGOLIPIDS with a sulfate group esterified to one of the sugar groups.
Neutral glycosphingolipids that contain a monosaccharide, normally glucose or galactose, in 1-ortho-beta-glycosidic linkage with the primary alcohol of an N-acyl sphingoid (ceramide). In plants the monosaccharide is normally glucose and the sphingoid usually phytosphingosine. In animals, the monosaccharide is usually galactose, though this may vary with the tissue and the sphingoid is usually sphingosine or dihydrosphingosine. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1st ed)
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
A ganglioside present in abnormally large amounts in the brain and liver due to a deficient biosynthetic enzyme, G(M3):UDP-N-acetylgalactosaminyltransferase. Deficiency of this enzyme prevents the formation of G(M2) ganglioside from G(M3) ganglioside and is the cause of an anabolic sphingolipidosis.
Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE.
A class of membrane lipids that have a polar head and two nonpolar tails. They are composed of one molecule of the long-chain amino alcohol sphingosine (4-sphingenine) or one of its derivatives, one molecule of a long-chain acid, a polar head alcohol and sometimes phosphoric acid in diester linkage at the polar head group. (Lehninger et al, Principles of Biochemistry, 2nd ed)
A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis.
Glycosphingolipids which contain as their polar head group a trisaccharide (galactose-galactose-glucose) moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in ceramide trihexosidase, is the cause of angiokeratoma corporis diffusum (FABRY DISEASE).
An intermediate in the biosynthesis of cerebrosides. It is formed by reaction of sphingosine with UDP-galactose and then itself reacts with fatty acid-Coenzyme A to form the cerebroside.
A glycolipid, cross-species antigen that induces production of antisheep hemolysin. It is present on the tissue cells of many species but absent in humans. It is found in many infectious agents.
The characteristic 3-dimensional shape of a carbohydrate.
A mass spectrometric technique that is used for the analysis of a wide range of biomolecules, such as glycoalkaloids, glycoproteins, polysaccharides, and peptides. Positive and negative fast atom bombardment spectra are recorded on a mass spectrometer fitted with an atom gun with xenon as the customary beam. The mass spectra obtained contain molecular weight recognition as well as sequence information.
A glycosphingolipid that accumulates due to a deficiency of hexosaminidase A or B (BETA-N-ACETYLHEXOSAMINIDASES), or GM2 activator protein, resulting in GANGLIOSIDOSES, heredity metabolic disorders that include TAY-SACHS DISEASE and SANDHOFF DISEASE.
The major human blood type system which depends on the presence or absence of two antigens A and B. Type O occurs when neither A nor B is present and AB when both are present. A and B are genetic factors that determine the presence of enzymes for the synthesis of certain glycoproteins mainly in the red cell membrane.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.
A family of glycoprotein cofactors that are required for the efficient catabolization of SPHINGOLIPIDS by specific acid hydrolases such as GLUCOSYLCERAMIDASE; GALACTOCEREBROSIDASE; BETA-N-ACETYLHEXOSAMINIDASE; and CEREBROSIDE-SULFATASE.
Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
Antigens stimulating the formation of, or combining with heterophile antibodies. They are cross-reacting antigens found in phylogenetically unrelated species.
An X-linked inherited metabolic disease caused by a deficiency of lysosomal ALPHA-GALACTOSIDASE A. It is characterized by intralysosomal accumulation of globotriaosylceramide and other GLYCOSPHINGOLIPIDS in blood vessels throughout the body leading to multi-system complications including renal, cardiac, cerebrovascular, and skin disorders.
The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.
A group of four homologous sphingolipid activator proteins that are formed from proteolytic cleavage of a common protein precursor molecule referred to as prosaposin.
Glycoside Hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds, resulting in the breakdown of complex carbohydrates and oligosaccharides into simpler sugars.
Cerebrosides which contain as their polar head group a galactose moiety bound in glycosidic linkage to the hydroxyl group of ceramide. Their accumulation in tissue, due to a defect in beta-galactosidase, is the cause of galactosylceramide lipidosis or globoid cell leukodystrophy.
Sets of cell surface antigens located on BLOOD CELLS. They are usually membrane GLYCOPROTEINS or GLYCOLIPIDS that are antigenically distinguished by their carbohydrate moieties.
Detergent-insoluble CELL MEMBRANE components. They are enriched in SPHINGOLIPIDS and CHOLESTEROL and clustered with glycosyl-phosphatidylinositol (GPI)-anchored proteins.
A species of parasitic nematode usually found in domestic pigs and a few other animals. Human infection can also occur, presumably as result of handling pig manure, and can lead to intestinal obstruction.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the hydrolysis of terminal, non-reducing alpha-D-galactose residues in alpha-galactosides including galactose oligosaccharides, galactomannans, and galactolipids.
An essential cofactor for the degradation of G(M2)GANGLIOSIDE by lysosomal BETA-N-ACETYLHEXOSAMINIDASES. Genetic mutations resulting in loss of G(M2) activator protein are one of the causes of TAY-SACHS DISEASE, AB VARIANT.
An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.
An alpha-glucosidase inhibitor with antiviral action. Derivatives of deoxynojirimycin may have anti-HIV activity.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A group of inherited metabolic disorders characterized by the intralysosomal accumulation of SPHINGOLIPIDS primarily in the CENTRAL NERVOUS SYSTEM and to a variable degree in the visceral organs. They are classified by the enzyme defect in the degradation pathway and the substrate accumulation (or storage). Clinical features vary in subtypes but neurodegeneration is a common sign.
Sugars in which the OXYGEN is replaced by a NITROGEN atom. This substitution prevents normal METABOLISM resulting in inhibition of GLYCOSIDASES and GLYCOSYLTRANSFERASES.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Neuraminic acids are a family of nine-carbon sugars (sialic acids) that are commonly found as terminal residues on glycoproteins and gangliosides in animal tissues, playing crucial roles in various biological processes including cell recognition, inflammation, and bacterial/viral infectivity.
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
A group of enzymes with the general formula CMP-N-acetylneuraminate:acceptor N-acetylneuraminyl transferase. They catalyze the transfer of N-acetylneuraminic acid from CMP-N-acetylneuraminic acid to an acceptor, which is usually the terminal sugar residue of an oligosaccharide, a glycoprotein, or a glycolipid. EC 2.4.99.-.
Cell-surface molecules that exhibit lineage-restricted patterns of expression during EMBRYONIC DEVELOPMENT. The antigens are useful markers in the identification of EMBRYONIC STEM CELLS.
Hexoses are simple monosaccharides, specifically six-carbon sugars, which include glucose, fructose, and galactose, and play crucial roles in biological processes such as energy production and storage, and structural components of cells.
A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
Enzymes that catalyze the transfer of galactose from a nucleoside diphosphate galactose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
Enzymes that catalyze the transfer of N-acetylgalactosamine from a nucleoside diphosphate N-acetylgalactosamine to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
A blood group related to the ABO, Lewis and I systems. At least five different erythrocyte antigens are possible, some very rare, others almost universal. Multiple alleles are involved in this blood group.
An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed)
A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues.
A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis.
An autosomal recessive neurodegenerative disorder characterized by an accumulation of G(M2) GANGLIOSIDE in neurons and other tissues. It is caused by mutation in the common beta subunit of HEXOSAMINIDASE A and HEXOSAMINIDASE B. Thus this disease is also known as the O variant since both hexosaminidase A and B are missing. Clinically, it is indistinguishable from TAY-SACHS DISEASE.
An autosomal recessive disorder caused by a deficiency of acid beta-glucosidase (GLUCOSYLCERAMIDASE) leading to intralysosomal accumulation of glycosylceramide mainly in cells of the MONONUCLEAR PHAGOCYTE SYSTEM. The characteristic Gaucher cells, glycosphingolipid-filled HISTIOCYTES, displace normal cells in BONE MARROW and visceral organs causing skeletal deterioration, hepatosplenomegaly, and organ dysfunction. There are several subtypes based on the presence and severity of neurological involvement.
An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA).
Carbohydrates covalently linked to a nonsugar moiety (lipids or proteins). The major glycoconjugates are glycoproteins, glycopeptides, peptidoglycans, glycolipids, and lipopolysaccharides. (From Biochemical Nomenclature and Related Documents, 2d ed; From Principles of Biochemistry, 2d ed)
Enzymes that catalyze the transfer of glycosyl groups to an acceptor. Most often another carbohydrate molecule acts as an acceptor, but inorganic phosphate can also act as an acceptor, such as in the case of PHOSPHORYLASES. Some of the enzymes in this group also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. Subclasses include the HEXOSYLTRANSFERASES; PENTOSYLTRANSFERASES; SIALYLTRANSFERASES; and those transferring other glycosyl groups. EC 2.4.
An autosomal recessive metabolic disorder caused by a deficiency of GALACTOSYLCERAMIDASE leading to intralysosomal accumulation of galactolipids such as GALACTOSYLCERAMIDES and PSYCHOSINE. It is characterized by demyelination associated with large multinucleated globoid cells, predominantly involving the white matter of the central nervous system. The loss of MYELIN disrupts normal conduction of nerve impulses.
The thick green-to-black mucilaginous material found in the intestines of a full-term fetus. It consists of secretions of the INTESTINAL GLANDS; BILE PIGMENTS; FATTY ACIDS; AMNIOTIC FLUID; and intrauterine debris. It constitutes the first stools passed by a newborn.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Compounds possessing both a hydroxyl (-OH) and an amino group (-NH2).
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
A group of autosomal recessive disorders in which harmful quantities of lipids accumulate in the viscera and the central nervous system. They can be caused by deficiencies of enzyme activities (SPHINGOMYELIN PHOSPHODIESTERASE) or defects in intracellular transport, resulting in the accumulation of SPHINGOMYELINS and CHOLESTEROL. There are various subtypes based on their clinical and genetic differences.
A hexosaminidase with specificity for terminal non-reducing N-acetyl-D-galactosamine residues in N-acetyl-alpha-D-galactosaminides.
Inborn errors of metabolism characterized by defects in specific lysosomal hydrolases and resulting in intracellular accumulation of unmetabolized substrates.
Endocytic/exocytic CELL MEMBRANE STRUCTURES rich in glycosphingolipids, cholesterol, and lipid-anchored membrane proteins that function in ENDOCYTOSIS (potocytosis), transcytosis, and SIGNAL TRANSDUCTION. Caveolae assume various shapes from open pits to closed vesicles. Caveolar coats are composed of CAVEOLINS.
A mass spectrometry technique used for analysis of nonvolatile compounds such as proteins and macromolecules. The technique involves preparing electrically charged droplets from analyte molecules dissolved in solvent. The electrically charged droplets enter a vacuum chamber where the solvent is evaporated. Evaporation of solvent reduces the droplet size, thereby increasing the coulombic repulsion within the droplet. As the charged droplets get smaller, the excess charge within them causes them to disintegrate and release analyte molecules. The volatilized analyte molecules are then analyzed by mass spectrometry.
A vascular, horny neoplasm of the skin characterized by TELANGIECTASIS and secondary epithelial changes including acanthosis and hyperkeratosis.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
Conditions characterized by abnormal lipid deposition due to disturbance in lipid metabolism, such as hereditary diseases involving lysosomal enzymes required for lipid breakdown. They are classified either by the enzyme defect or by the type of lipid involved.
A group of recessively inherited diseases characterized by the intralysosomal accumulation of G(M2) GANGLIOSIDE in the neuronal cells. Subtypes include mutations of enzymes in the BETA-N-ACETYLHEXOSAMINIDASES system or G(M2) ACTIVATOR PROTEIN leading to disruption of normal degradation of GANGLIOSIDES, a subclass of ACIDIC GLYCOSPHINGOLIPIDS.
An enzyme that catalyzes the conversion of UDP-galactose and N-acylsphingosine to D-galactosylceramide and UDP.

A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. (1/1370)

Inherited defects in the degradation of glycosphingolipids (GSLs) cause a group of severe diseases known as GSL storage disorders. There are currently no effective treatments for the majority of these disorders. We have explored a new treatment paradigm, substrate deprivation therapy, by constructing a genetic model in mice. Sandhoff's disease mice, which abnormally accumulate GSLs, were bred with mice that were blocked in their synthesis of GSLs. The mice with simultaneous defects in GSL synthesis and degradation no longer accumulated GSLs, had improved neurologic function, and had a much longer life span. However, these mice eventually developed a late-onset neurologic disease because of accumulation of another class of substrate, oligosaccharides. The results support the validity of the substrate deprivation therapy and also highlight some limitations.  (+info)

Separation of molecular species of glucosylceramide by high performance liquid chromatography of their benzoyl derivatives. (2/1370)

The method of separation of glucosylceramide by HPLC was reported. Glucosylceramide was perbenzoylated and separated on a packed muBondapack C18 column, using methanol as eluting solvent. The pattern obtained by HPLC closely resembled that obtained by GLC of the TMS-glucosylceramide, and reflected the molecular species of fatty acid components. This method is reproducible, and sensitive as GLC. This method also can be used for analysis of higher glycolipids.  (+info)

Determination of the anomeric configurations of Corbicula ceramide di- and trihexoside by chromium trioxide oxidation. (3/1370)

The anomeric configurations of Corbicula ceramide dihexoside and ceramide trihexoside were determined by chromium trioxide oxidation and the structures of these lipids were shown to be Man-beta(1 leads to 4)-Glc-beta(1 leads to 1)-ceramide and Man-alpha(1 leads to 4)-Man-beta(1 leads to 4)-Glc-beta(1 leads to 1)-ceramide. These results are compatible with those obtained by enzymic hydrolysis reported previously.  (+info)

MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. (4/1370)

Glycosylphosphatidylinositol (GPI)-anchored proteins are cell surface-localized proteins that serve many important cellular functions. The pathway mediating synthesis and attachment of the GPI anchor to these proteins in eukaryotic cells is complex, highly conserved, and plays a critical role in the proper targeting, transport, and function of all GPI-anchored protein family members. In this article, we demonstrate that MCD4, an essential gene that was initially identified in a genetic screen to isolate Saccharomyces cerevisiae mutants defective for bud emergence, encodes a previously unidentified component of the GPI anchor synthesis pathway. Mcd4p is a multimembrane-spanning protein that localizes to the endoplasmic reticulum (ER) and contains a large NH2-terminal ER lumenal domain. We have also cloned the human MCD4 gene and found that Mcd4p is both highly conserved throughout eukaryotes and has two yeast homologues. Mcd4p's lumenal domain contains three conserved motifs found in mammalian phosphodiesterases and nucleotide pyrophosphases; notably, the temperature-conditional MCD4 allele used for our studies (mcd4-174) harbors a single amino acid change in motif 2. The mcd4-174 mutant (1) is defective in ER-to-Golgi transport of GPI-anchored proteins (i.e., Gas1p) while other proteins (i.e., CPY) are unaffected; (2) secretes and releases (potentially up-regulated cell wall) proteins into the medium, suggesting a defect in cell wall integrity; and (3) exhibits marked morphological defects, most notably the accumulation of distorted, ER- and vesicle-like membranes. mcd4-174 cells synthesize all classes of inositolphosphoceramides, indicating that the GPI protein transport block is not due to deficient ceramide synthesis. However, mcd4-174 cells have a severe defect in incorporation of [3H]inositol into proteins and accumulate several previously uncharacterized [3H]inositol-labeled lipids whose properties are consistent with their being GPI precursors. Together, these studies demonstrate that MCD4 encodes a new, conserved component of the GPI anchor synthesis pathway and highlight the intimate connections between GPI anchoring, bud emergence, cell wall function, and feedback mechanisms likely to be involved in regulating each of these essential processes. A putative role for Mcd4p as participating in the modification of GPI anchors with side chain phosphoethanolamine is also discussed.  (+info)

Regulation of intracellular ceramide content in B16 melanoma cells. Biological implications of ceramide glycosylation. (5/1370)

We previously reported that ceramide released from glycosphingolipids (GSLs) by endoglycoceramidase was directly metabolized to GSLs, and thus the content of GSLs was constantly maintained in B16 melanoma cells (Ito, M., and Komori, H. (1996) J. Biol. Chem. 271, 12655-12660). In this study, the metabolism of ceramide released from sphingomyelin (SM) by bacterial sphingomyelinase (SMase) was examined using B16 cells and their GSL-deficient mutant counterpart GM95 cells. Treatment of B16 melanoma cells with bacterial SMase effectively hydrolyzed SM on the plasma membrane. Under these conditions, NeuAcalpha2,3Galbeta1, 4Glcbeta1,1ceramide was significantly increased. Interestingly, UDP-glucose:ceramide glucosyltransferase-1 (GlcT-1) activity and GSL synthesis, but not SM synthesis or sphingosine generation, were found to be up-regulated by SMase treatment. The up-regulation of GSL synthesis seemed to occur at both the transcriptional and post-translational steps of GlcT-1 synthesis. Accumulation of ceramide by bacterial SMase was much higher in GM95 cells than in the parental cells. When the enzyme was removed from the culture medium, the intracellular ceramide level in B16 cells, but not that in the mutant cells, normalized. No rapid restoration of SM in either of the cell lines was observed after removal of the enzyme. SMase treatment strongly inhibited DNA synthesis in GM95 cells but not that in B16 cells. In the presence of D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of GlcT-1, SMase treatment markedly increased the ceramide content and thus inhibited DNA synthesis in B16 cells. Our study provides the first evidence that GlcT-1 functions to regulate the level of intracellular ceramide by glycosylation of the ceramide when it is present in excess.  (+info)

Apoptosis induced by N-hexanoylsphingosine in CHP-100 cells associates with accumulation of endogenous ceramide and is potentiated by inhibition of glucocerebroside synthesis. (6/1370)

We report that apoptosis induced by N-hexanoylsphingosine (C6-Cer) in CHP-100 human neuroepithelioma cells associates with accumulation of monohexosylsphingolipids produced not only by short-chain ceramide glycosylation but also through glycosylation of a ceramide pool endogenously produced. By high-performance thin layer chromatography on borate silica gel plates, newly formed monohexosylsphingolipids were identified as glucosylceramides (GluCer); however, accumulation of lactosylceramide or higher-order glycosphingolipids was not observed. GluCer accumulation was fully suppressed by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; moreover, while this inhibitor had no effect on cell viability when administered alone, it markedly potentiated the apoptotic effect of C6-Cer. These results provide evidence that activation of GluCer synthesis is an important mechanism through which CHP-100 cells attempt to escape ceramide-induced apoptosis.  (+info)

Isolation and structural characterization of glycosphingolipids of in vitro propagated human umbilical vein endothelial cells. (7/1370)

To investigate in detail the expression of glycosphingolipids (GSLs) on endothelial cells, 4.85 x 10(9) human umbilical vein endothelial cells (HUVECs) were cultivated in a 2 l bioreactor using microcarriers as a support for anchorage dependent growing cells. Neutral GSLs and gangliosides were isolated and their structures were determined by TLC immunostaining, fast atom bombardment-mass spectrometry (FAB-MS) of the native GSLs, and gas chromatography-electron impact mass spectrometry (GC-EIMS) of partially methylated alditol acetates. GbOse4Cer, GbOse3Cer, and LacCer, all carrying mainly C24- and C16-fatty acid beside C18-sphingosine, were detected as the major neutral GSLs (36%, 23%, and 15% of the total orcinol stain, respectively); GlcCer, nLcOse4Cer, and nLcOse6Cer were expressed to substantial minor amounts (9%, 12%, and 5% of the total orcinol stain, respectively). TLC immunostaining revealed the presence of lipid bound Lewisx antigen, whereas the isomeric Lewisa structure was detectable only in very low quantities. GM3(Neu5Ac) with C18-sphingosine was the major ganglioside constituting about 90% of the whole ganglioside fraction. The fatty acid composition was determined by GC-MS of fatty acid methyl esters, indicating the predominance of C24- and C16-substituted GM3(Neu5Ac), followed by C18- and C22-substituted species. Terminally alpha2-3 sialylated neolacto-series ganglioside IV3Neu5Ac-nLcOse4Cer was the second most abundant ganglioside in HUVECs (8% of the total resorcinol stain), and IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer (together less than 2% of total resorcinol stain) were found in minor quantities. Lipid bound sialyl Lewisx antigen with poly-N-acetyllactosaminyl chains, and traces of gangliotetraose-type gangliosides GM1 and GD1a were identified by TLC immunostaining. The expression of dominant neutral GSLs LacCer, GbOse3Cer, and GbOse4Cer, and of ganglioside GM3(Neu5Ac) was assayed by indirect immunofluorescence microscopy of cell layers grown in chamber slides, each showing different plasma membrane and subcellular distribution patterns. The complete structural characterization of GSLs from HUVECs contributes to our understanding about their functional role, not only of the carbohydrate but also of the lipid moiety, as receptors for bacterial toxins, as cell surface antigens of cellular interaction and as receptors for blood components and macromolecules of the extracellular matrix.  (+info)

Accumulation of glycolipids in mutant Chinese hamster ovary cells (Z65) with defective peroxisomal assembly and comparison of the metabolic rate of glycosphingolipids between Z65 cells and wild-type CHO-K1 cells. (8/1370)

The influence of peroxisomal dysfunction on glycosphingolipid metabolism was investigated using mutant Chinese hamster ovary (CHO) cells (Z65) with defective assembly of the peroxisomal membranes. In accordance with previous observations, the concentration of very long chain fatty acid (C24:0) was shown to be higher in Z65 cells than in control cells. We then compared the composition of glycolipids in Z65 cells with that in CHO-K1 cells, which are wild-type Chinese hamster ovary cells with intact peroxisomes, and found significantly increased concentrations of ceramide monohexoside (CMH) and ganglioside GM3 in Z65 cells. However, there were no differences in the concentrations of glycerophospholipids, triglycerides, free fatty acids and cholesterol between Z65 and CHO-K1 cells. Further, to investigate the metabolic rate of the major lipids, Z65 and CHO-K1 cells were pulse-labeled with [3-14C]serine. [3-14C]Serine was incorporated into phosphatidylserine, phosphatidylethanolamine and sphingomyelin more quickly in CHO-K1 than in Z65 cells. However, after 48 h, the radioactivity incorporated into those lipids, including CMH, was greater in Z65 cells than in CHO-K1 cells. Thus, the altered metabolism of glycosphingolipids, probably due to peroxisomal dysfunction, was thought to be responsible for the change in glycosphingolipid composition in Z65 cells.  (+info)

Glycosphingolipids are a type of complex lipid molecule found in animal cell membranes, particularly in the outer leaflet of the plasma membrane. They consist of a hydrophobic ceramide backbone, which is composed of sphingosine and fatty acids, linked to one or more hydrophilic sugar residues, such as glucose or galactose.

Glycosphingolipids can be further classified into two main groups: neutral glycosphingolipids (which include cerebrosides and gangliosides) and acidic glycosphingolipids (which are primarily gangliosides). Glycosphingolipids play important roles in various cellular processes, including cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism or structure of glycosphingolipids have been implicated in several diseases, such as lysosomal storage disorders (e.g., Gaucher's disease, Fabry's disease) and certain types of cancer (e.g., ganglioside-expressing neuroblastoma).

Neutral glycosphingolipids (NGSLs) are a type of glycosphingolipid, which are lipids that contain a ceramide backbone with one or more sugar residues attached. NGSLs are characterized by the absence of charged groups in their carbohydrate moiety. They consist of a core structure of ceramide, to which one or more sugars such as glucose or galactose are attached.

NGSLs can be further classified into two main categories: cerebrosides and globosides. Cerebrosides contain a single sugar residue (monosaccharide) attached to the ceramide backbone, while globosides contain more complex oligosaccharide chains. NGSLs are important components of cell membranes and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion.

Abnormal accumulation of NGSLs can lead to various genetic disorders known as sphingolipidoses, such as Gaucher's disease, Fabry's disease, and Krabbe's disease. These conditions are characterized by the buildup of lipids in various organs and tissues, leading to progressive damage and dysfunction.

Acidic glycosphingolipids are a class of complex lipids that contain one or more sugar molecules (glycans) and a fatty acid attached to sphingosine, which is a type of amino alcohol. The term "acidic" refers to the presence of a negatively charged group, such as a sulfate or a carboxylic acid, in the glycan part of the molecule.

Acidic glycosphingolipids are important components of cell membranes and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion. They are also involved in the development and progression of several diseases, such as cancer, neurodegenerative disorders, and infectious diseases caused by bacteria and viruses.

Examples of acidic glycosphingolipids include sulfatides, gangliosides, and globosides, which differ in the structure and composition of their sugar chains. Abnormalities in the metabolism or function of acidic glycosphingolipids have been associated with various pathological conditions, such as lysosomal storage diseases, inflammatory disorders, and autoimmune diseases.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Lactosylceramides are a type of glycosphingolipid, which are complex lipids found in the outer layer of cell membranes. They consist of a ceramide molecule (a fatty acid and sphingosine) with a lactose sugar (glucose and galactose) attached. Lactosylceramides play important roles in various cellular processes, including cell recognition, signal transduction, and adhesion. They are also involved in the development and progression of certain diseases, such as cancer and neurological disorders.

Gangliosides are a type of complex lipid molecule known as sialic acid-containing glycosphingolipids. They are predominantly found in the outer leaflet of the cell membrane, particularly in the nervous system. Gangliosides play crucial roles in various biological processes, including cell recognition, signal transduction, and cell adhesion. They are especially abundant in the ganglia (nerve cell clusters) of the peripheral and central nervous systems, hence their name.

Gangliosides consist of a hydrophobic ceramide portion and a hydrophilic oligosaccharide chain that contains one or more sialic acid residues. The composition and structure of these oligosaccharide chains can vary significantly among different gangliosides, leading to the classification of various subtypes, such as GM1, GD1a, GD1b, GT1b, and GQ1b.

Abnormalities in ganglioside metabolism or expression have been implicated in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and various lysosomal storage diseases like Tay-Sachs and Gaucher's diseases. Additionally, certain bacterial toxins, such as botulinum neurotoxin and tetanus toxin, target gangliosides to gain entry into neuronal cells, causing their toxic effects.

Globosides are a type of glycosphingolipids, which are molecules that consist of a lipid and a carbohydrate. They are found in animal tissues, especially in the nervous system. The term "globoside" refers to a specific structure of these molecules, where the carbohydrate portion consists of a complex chain of sugars, including galactose, N-acetylgalactosamine, and glucose. Globosides play important roles in cell recognition and interaction, and abnormalities in their metabolism have been associated with certain diseases, such as paroxysmal nocturnal hemoglobinuria (PNH).

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

Glucosylceramides are a type of glycosphingolipid, which are complex lipids found in the outer layer of cell membranes. They consist of a ceramide molecule (a fatty acid and sphingosine) with a glucose molecule attached to it through a glycosidic bond.

Glucosylceramides play important roles in various cellular processes, including cell signaling, membrane structure, and cell-to-cell recognition. They are particularly abundant in the nervous system, where they contribute to the formation of the myelin sheath that surrounds nerve fibers.

Abnormal accumulation of glucosylceramides is associated with certain genetic disorders, such as Gaucher disease and Krabbe disease, which are characterized by neurological symptoms and other health problems. Enzyme replacement therapy or stem cell transplantation may be used to treat these conditions.

Sulfoglycosphingolipids are a type of glycosphingolipid that contain a sulfate ester group in their carbohydrate moiety. They are important components of animal cell membranes and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion.

The most well-known sulfoglycosphingolipids are the sulfatides, which contain a 3'-sulfate ester on the galactose residue of the glycosphingolipid GalCer (galactosylceramide). Sulfatides are abundant in the nervous system and have been implicated in various neurological disorders.

Other sulfoglycosphingolipids include the seminolipids, which contain a 3'-sulfate ester on the galactose residue of lactosylceramide (Galβ1-4Glcβ1-Cer), and are found in high concentrations in the testis.

Abnormalities in sulfoglycosphingolipid metabolism have been associated with several genetic disorders, such as metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD), which are characterized by progressive neurological deterioration.

Cerebrosides are a type of sphingolipid, which are lipids that contain sphingosine. They are major components of the outer layer of cell membranes and are particularly abundant in the nervous system. Cerebrosides are composed of a ceramide molecule (a fatty acid attached to sphingosine) and a sugar molecule, usually either glucose or galactose.

Glycosphingolipids that contain a ceramide with a single sugar residue are called cerebrosides. Those that contain more complex oligosaccharide chains are called gangliosides. Cerebrosides play important roles in cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism of cerebrosides can lead to various genetic disorders, such as Gaucher's disease, Krabbe disease, and Fabry disease. These conditions are characterized by the accumulation of cerebrosides or their breakdown products in various tissues, leading to progressive damage and dysfunction.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

Ceramides are a type of lipid molecule that are found naturally in the outer layer of the skin (the stratum corneum). They play a crucial role in maintaining the barrier function and hydration of the skin. Ceramides help to seal in moisture, support the structure of the skin, and protect against environmental stressors such as pollution and bacteria.

In addition to their role in the skin, ceramides have also been studied for their potential therapeutic benefits in various medical conditions. For example, abnormal levels of ceramides have been implicated in several diseases, including diabetes, cardiovascular disease, and cancer. As a result, ceramide-based therapies are being investigated as potential treatments for these conditions.

Medically, ceramides may be mentioned in the context of skin disorders or diseases where there is a disruption in the skin's barrier function, such as eczema, psoriasis, and ichthyosis. In these cases, ceramide-based therapies may be used to help restore the skin's natural barrier and improve its overall health and appearance.

Sphingolipids are a class of lipids that contain a sphingosine base, which is a long-chain amino alcohol with an unsaturated bond and an amino group. They are important components of animal cell membranes, particularly in the nervous system. Sphingolipids include ceramides, sphingomyelins, and glycosphingolipids.

Ceramides consist of a sphingosine base linked to a fatty acid through an amide bond. They play important roles in cell signaling, membrane structure, and apoptosis (programmed cell death).

Sphingomyelins are formed when ceramides combine with phosphorylcholine, resulting in the formation of a polar head group. Sphingomyelins are major components of the myelin sheath that surrounds nerve cells and are involved in signal transduction and membrane structure.

Glycosphingolipids contain one or more sugar residues attached to the ceramide backbone, forming complex structures that play important roles in cell recognition, adhesion, and signaling. Abnormalities in sphingolipid metabolism have been linked to various diseases, including neurological disorders, cancer, and cardiovascular disease.

Trihexosylceramides are a type of glycosphingolipids, which are complex lipids found in animal tissues. They consist of a ceramide molecule (a sphingosine and fatty acid) with three hexose sugars attached to it in a specific sequence, typically glucose-galactose-galactose.

Trihexosylceramides are further classified into two types based on the type of ceramide they contain: lactosylceramide (Gal-Glc-Cer) and isoglobotrihexosylceramide (GalNAcβ1-4Galβ1-4Glc-Cer).

These lipids are important components of the cell membrane and play a role in various biological processes, including cell recognition, signal transduction, and cell adhesion. Abnormal accumulation of trihexosylceramides has been implicated in certain diseases, such as Gaucher disease and Tay-Sachs disease, which are caused by deficiencies in enzymes involved in their breakdown.

I'm sorry for any confusion, but "psychosine" is not a commonly used term in medicine or psychology. It is a lipid molecule that has been researched in the context of certain neurological conditions, particularly Krabbe disease, which is a rare and fatal genetic disorder affecting the nervous system.

In Krabbe disease, psychosine accumulates in the body due to a deficiency of an enzyme called galactocerebrosidase. This buildup of psychosine is thought to contribute to the damage and destruction of nerve cells, leading to the symptoms of the disease. However, it's important to note that this is still an area of ongoing research, and there is no medical definition for "psychosine" in a general sense.

The Forssman antigen is a type of heterophile antigen, which is a substance that can stimulate an immune response in animals of different species. It was first discovered by the Swedish bacteriologist, John Forssman, in 1911. The Forssman antigen is found in a variety of tissues and organs, including the kidney, liver, and brain, in many different animal species, including humans.

The Forssman antigen is unique because it can induce the production of antibodies that cross-react with tissues from other species. This means that an immune response to the Forssman antigen in one species can also recognize and react with similar antigens in another species, leading to the possibility of cross-species immune reactions.

The Forssman antigen is a complex glycosphingolipid molecule that is found on the surface of cells. It is not clear what role, if any, the Forssman antigen plays in normal physiological processes. However, its presence has been implicated in various disease processes, including autoimmune disorders and transplant rejection.

In summary, the Forssman antigen is a heterophile antigen found in a variety of tissues and organs in many different animal species, including humans. It can induce cross-reacting antibodies and has been implicated in various disease processes.

Carbohydrate conformation refers to the three-dimensional shape and structure of a carbohydrate molecule. Carbohydrates, also known as sugars, can exist in various conformational states, which are determined by the rotation of their component bonds and the spatial arrangement of their functional groups.

The conformation of a carbohydrate molecule can have significant implications for its biological activity and recognition by other molecules, such as enzymes or antibodies. Factors that can influence carbohydrate conformation include the presence of intramolecular hydrogen bonds, steric effects, and intermolecular interactions with solvent molecules or other solutes.

In some cases, the conformation of a carbohydrate may be stabilized by the formation of cyclic structures, in which the hydroxyl group at one end of the molecule forms a covalent bond with the carbonyl carbon at the other end, creating a ring structure. The most common cyclic carbohydrates are monosaccharides, such as glucose and fructose, which can exist in various conformational isomers known as anomers.

Understanding the conformation of carbohydrate molecules is important for elucidating their biological functions and developing strategies for targeting them with drugs or other therapeutic agents.

Fast Atom Bombardment (FAB) Mass Spectrometry is a technique used for determining the mass of ions in a sample. In FAB-MS, the sample is mixed with a matrix material and then bombarded with a beam of fast atoms, usually xenon or cesium. This bombardment leads to the formation of ions from the sample which can then be detected and measured using a mass analyzer. The resulting mass spectrum provides information about the molecular weight and structure of the sample molecules. FAB-MS is particularly useful for the analysis of large, thermally labile, or polar molecules that may not ionize well by other methods.

The ABO blood-group system is a classification system used in blood transfusion medicine to determine the compatibility of donated blood with a recipient's blood. It is based on the presence or absence of two antigens, A and B, on the surface of red blood cells (RBCs), as well as the corresponding antibodies present in the plasma.

There are four main blood types in the ABO system:

1. Type A: These individuals have A antigens on their RBCs and anti-B antibodies in their plasma.
2. Type B: They have B antigens on their RBCs and anti-A antibodies in their plasma.
3. Type AB: They have both A and B antigens on their RBCs but no natural antibodies against either A or B antigens.
4. Type O: They do not have any A or B antigens on their RBCs, but they have both anti-A and anti-B antibodies in their plasma.

Transfusing blood from a donor with incompatible ABO antigens can lead to an immune response, causing the destruction of donated RBCs and potentially life-threatening complications such as acute hemolytic transfusion reaction. Therefore, it is crucial to match the ABO blood type between donors and recipients before performing a blood transfusion.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

Sphingolipid activator proteins (SAPs), also known as saposins, are a group of small proteins that play a crucial role in the metabolism of sphingolipids, a class of lipids found in cell membranes. These proteins are produced by the cleavage of a precursor protein called prosaposin.

SAPs facilitate the hydrolysis of sphingolipids by activating specific lysosomal hydrolases, enzymes that break down these lipids into simpler molecules. Each SAP has a unique structure and function, and they are named SapA, SapB, SapC, and SapD.

SapA and SapB activate the enzyme glucocerebrosidase, which breaks down glucosylceramide into glucose and ceramide. SapC activates the enzyme galactocerebrosidase, which breaks down galactosylceramide into galactose and ceramide. SapD has multiple functions, including activating the enzyme acid sphingomyelinase, which breaks down sphingomyelin into ceramide and phosphorylcholine.

Deficiencies in SAPs can lead to lysosomal storage disorders, such as Gaucher disease (caused by a deficiency in glucocerebrosidase) and Krabbe disease (caused by a deficiency in galactocerebrosidase). These disorders are characterized by the accumulation of undigested sphingolipids in various tissues, leading to cell dysfunction and tissue damage.

Glucosyltransferases (GTs) are a group of enzymes that catalyze the transfer of a glucose molecule from an activated donor to an acceptor molecule, resulting in the formation of a glycosidic bond. These enzymes play crucial roles in various biological processes, including the biosynthesis of complex carbohydrates, cell wall synthesis, and protein glycosylation. In some cases, GTs can also contribute to bacterial pathogenesis by facilitating the attachment of bacteria to host tissues through the formation of glucans, which are polymers of glucose molecules.

GTs can be classified into several families based on their sequence similarities and catalytic mechanisms. The donor substrates for GTs are typically activated sugars such as UDP-glucose, TDP-glucose, or GDP-glucose, which serve as the source of the glucose moiety that is transferred to the acceptor molecule. The acceptor can be a wide range of molecules, including other sugars, proteins, lipids, or small molecules.

In the context of human health and disease, GTs have been implicated in various pathological conditions, such as cancer, inflammation, and microbial infections. For example, some GTs can modify proteins on the surface of cancer cells, leading to increased cell proliferation, migration, and invasion. Additionally, GTs can contribute to bacterial resistance to antibiotics by modifying the structure of bacterial cell walls or by producing biofilms that protect bacteria from host immune responses and antimicrobial agents.

Overall, Glucosyltransferases are essential enzymes involved in various biological processes, and their dysregulation has been associated with several human diseases. Therefore, understanding the structure, function, and regulation of GTs is crucial for developing novel therapeutic strategies to target these enzymes and treat related pathological conditions.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Heterophile antigens are a type of antigen that can induce an immune response in multiple species, not just the one they originate from. They are called "heterophile" because they exhibit cross-reactivity with antibodies produced against different antigens from other species. A common example of heterophile antigens is the Forssman antigen, which can be found in various animals such as guinea pigs, rabbits, and humans.

Heterophile antibody tests are often used in diagnostic medicine to detect certain infections or autoimmune disorders. One well-known example is the Paul-Bunnell test, which was historically used to diagnose infectious mononucleosis (IM) caused by the Epstein-Barr virus (EBV). The test detects heterophile antibodies produced against EBV antigens that cross-react with sheep red blood cells. However, this test has been largely replaced by more specific and sensitive EBV antibody tests.

It is important to note that heterophile antibody tests can sometimes produce false positive results due to the presence of these cross-reactive antibodies in individuals who have not been infected with the targeted pathogen. Therefore, it is crucial to interpret test results cautiously and consider them alongside clinical symptoms, medical history, and other diagnostic findings.

Fabry disease is a rare X-linked inherited lysosomal storage disorder caused by mutations in the GLA gene, which encodes the enzyme alpha-galactosidase A. This enzyme deficiency leads to the accumulation of glycosphingolipids, particularly globotriaosylceramide (Gb3 or GL-3), in various tissues and organs throughout the body. The accumulation of these lipids results in progressive damage to multiple organ systems, including the heart, kidneys, nerves, and skin.

The symptoms of Fabry disease can vary widely among affected individuals, but common manifestations include:

1. Pain: Acroparesthesias (burning or tingling sensations) in the hands and feet, episodic pain crises, chronic pain, and neuropathy.
2. Skin: Angiokeratomas (small, red, rough bumps on the skin), hypohidrosis (decreased sweating), and anhydrosis (absent sweating).
3. Gastrointestinal: Abdominal pain, diarrhea, constipation, nausea, and vomiting.
4. Cardiovascular: Left ventricular hypertrophy (enlargement of the heart muscle), cardiomyopathy, ischemic heart disease, arrhythmias, and valvular abnormalities.
5. Renal: Proteinuria (protein in the urine), hematuria (blood in the urine), chronic kidney disease, and end-stage renal disease.
6. Nervous system: Hearing loss, tinnitus, vertigo, stroke, and cognitive decline.
7. Ocular: Corneal opacities, cataracts, and retinal vessel abnormalities.
8. Pulmonary: Chronic cough, bronchial hyperresponsiveness, and restrictive lung disease.
9. Reproductive system: Erectile dysfunction in males and menstrual irregularities in females.

Fabry disease affects both males and females, but the severity of symptoms is generally more pronounced in males due to the X-linked inheritance pattern. Early diagnosis and treatment with enzyme replacement therapy (ERT) or chaperone therapy can help manage the progression of the disease and improve quality of life.

Carbohydrates are a major nutrient class consisting of organic compounds that primarily contain carbon, hydrogen, and oxygen atoms. They are classified as saccharides, which include monosaccharides (simple sugars), disaccharides (double sugars), oligosaccharides (short-chain sugars), and polysaccharides (complex carbohydrates).

Monosaccharides, such as glucose, fructose, and galactose, are the simplest form of carbohydrates. They consist of a single sugar molecule that cannot be broken down further by hydrolysis. Disaccharides, like sucrose (table sugar), lactose (milk sugar), and maltose (malt sugar), are formed from two monosaccharide units joined together.

Oligosaccharides contain a small number of monosaccharide units, typically less than 20, while polysaccharides consist of long chains of hundreds to thousands of monosaccharide units. Polysaccharides can be further classified into starch (found in plants), glycogen (found in animals), and non-starchy polysaccharides like cellulose, chitin, and pectin.

Carbohydrates play a crucial role in providing energy to the body, with glucose being the primary source of energy for most cells. They also serve as structural components in plants (cellulose) and animals (chitin), participate in various metabolic processes, and contribute to the taste, texture, and preservation of foods.

Saposins are a group of naturally occurring lipid-binding proteins that play an essential role in the metabolism of lipids within cells. They are named after a skin disease called "Niemann-Pick disease," where defects in saposin function lead to an accumulation of lipids in various tissues, including the brain.

There are four types of saposins (SapA, SapB, SapC, and SapD) that are produced by the cleavage of a larger precursor protein called prosaposin. These proteins help to facilitate the breakdown of lipids in lysosomes, which are specialized organelles within cells that break down and recycle various materials.

Saposins play an important role in activating certain enzymes that are involved in breaking down lipids, such as sphingolipids and gangliosides. They do this by binding to these enzymes and presenting them with their lipid substrates in a way that allows the enzymes to efficiently break them down.

Defects in saposin function can lead to a variety of diseases, including Niemann-Pick disease, Gaucher disease, and Krabbe disease, which are characterized by an accumulation of lipids in various tissues and neurological symptoms.

Glycoside hydrolases are a class of enzymes that catalyze the hydrolysis of glycosidic bonds found in various substrates such as polysaccharides, oligosaccharides, and glycoproteins. These enzymes break down complex carbohydrates into simpler sugars by cleaving the glycosidic linkages that connect monosaccharide units.

Glycoside hydrolases are classified based on their mechanism of action and the type of glycosidic bond they hydrolyze. The classification system is maintained by the International Union of Biochemistry and Molecular Biology (IUBMB). Each enzyme in this class is assigned a unique Enzyme Commission (EC) number, which reflects its specificity towards the substrate and the type of reaction it catalyzes.

These enzymes have various applications in different industries, including food processing, biofuel production, pulp and paper manufacturing, and biomedical research. In medicine, glycoside hydrolases are used to diagnose and monitor certain medical conditions, such as carbohydrate-deficient glycoprotein syndrome, a rare inherited disorder affecting the structure of glycoproteins.

Galactosylceramides are a type of glycosphingolipids, which are lipid molecules that contain a sugar (glyco-) attached to a ceramide. Galactosylceramides have a galactose molecule attached to the ceramide. They are important components of cell membranes and play a role in cell recognition and signaling. In particular, they are abundant in the myelin sheath, which is the protective covering around nerve fibers in the brain and spinal cord. Abnormal accumulation of galactosylceramides can lead to certain genetic disorders, such as Krabbe disease and Gaucher disease.

Blood group antigens are molecular markers found on the surface of red blood cells (RBCs) and sometimes other types of cells in the body. These antigens are proteins, carbohydrates, or glycoproteins that can stimulate an immune response when foreign antigens are introduced into the body.

There are several different blood group systems, but the most well-known is the ABO system, which includes A, B, AB, and O blood groups. The antigens in this system are called ABO antigens. Individuals with type A blood have A antigens on their RBCs, those with type B blood have B antigens, those with type AB blood have both A and B antigens, and those with type O blood have neither A nor B antigens.

Another important blood group system is the Rh system, which includes the D antigen. Individuals who have this antigen are considered Rh-positive, while those who do not have it are considered Rh-negative.

Blood group antigens can cause complications during blood transfusions and pregnancy if there is a mismatch between the donor's or fetus's antigens and the recipient's antibodies. For example, if a person with type A blood receives type B blood, their anti-B antibodies will attack the foreign B antigens on the donated RBCs, causing a potentially life-threatening transfusion reaction. Similarly, if an Rh-negative woman becomes pregnant with an Rh-positive fetus, her immune system may produce anti-D antibodies that can cross the placenta and attack the fetal RBCs, leading to hemolytic disease of the newborn.

It is important for medical professionals to determine a patient's blood group before performing a transfusion or pregnancy-related procedures to avoid these complications.

Membrane microdomains, also known as lipid rafts, are specialized microenvironments within the cell membrane. They are characterized by the presence of sphingolipids, cholesterol, and specific proteins that cluster together, forming dynamic, heterogeneous, and highly organized domains. These microdomains are involved in various cellular processes such as signal transduction, membrane trafficking, and pathogen entry. However, it's important to note that the existence and function of membrane microdomains are still subjects of ongoing research and debate within the scientific community.

'Ascaris suum' is a species of roundworm that primarily infects pigs, although it can also rarely infect humans. It is a type of parasitic nematode that lives in the intestines of its host and obtains nutrients from ingested food. The adult female worm can grow up to 40 cm in length and produces thousands of eggs every day. These eggs are passed in the feces of infected animals and can survive in the environment for years, making them a significant source of infection for other pigs or humans who come into contact with them.

In pigs, 'Ascaris suum' infection can cause a range of symptoms, including diarrhea, vomiting, and stunted growth. In severe cases, it can lead to intestinal blockages or pneumonia. Humans who become infected with 'Ascaris suum' typically experience milder symptoms, such as abdominal pain, coughing, and wheezing. However, in rare cases, the infection can cause more serious complications, particularly if the worms migrate to other parts of the body.

Preventing 'Ascaris suum' infection involves good hygiene practices, such as washing hands thoroughly after handling animals or coming into contact with soil that may contain infected feces. It is also important to properly cook pork before eating it and to avoid consuming raw or undercooked meat. In areas where 'Ascaris suum' is common, deworming programs for pigs can help reduce the risk of infection for both animals and humans.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Alpha-galactosidase is an enzyme that breaks down complex carbohydrates, specifically those containing alpha-galactose molecules. This enzyme is found in humans, animals, and microorganisms. In humans, a deficiency of this enzyme can lead to a genetic disorder known as Fabry disease, which is characterized by the accumulation of these complex carbohydrates in various tissues and organs, leading to progressive damage. Alpha-galactosidase is also used as a medication for the treatment of Fabry disease, where it is administered intravenously to help break down the accumulated carbohydrates and alleviate symptoms.

Galactose is a simple sugar or monosaccharide that is a constituent of lactose, the disaccharide found in milk and dairy products. It's structurally similar to glucose but with a different chemical structure, and it plays a crucial role in various biological processes.

Galactose can be metabolized in the body through the action of enzymes such as galactokinase, galactose-1-phosphate uridylyltransferase, and UDP-galactose 4'-epimerase. Inherited deficiencies in these enzymes can lead to metabolic disorders like galactosemia, which can cause serious health issues if not diagnosed and treated promptly.

In summary, Galactose is a simple sugar that plays an essential role in lactose metabolism and other biological processes.

1-Deoxynojirimycin (DNJ) is an antagonist of the enzyme alpha-glucosidase, which is involved in the digestion of carbohydrates. DNJ is a naturally occurring compound found in some plants, including mulberry leaves and the roots of the African plant Moringa oleifera. It works by binding to the active site of alpha-glucosidase and inhibiting its activity, which can help to slow down the digestion and absorption of carbohydrates in the small intestine. This can help to reduce postprandial glucose levels (the spike in blood sugar that occurs after a meal) and may have potential benefits for the management of diabetes and other metabolic disorders. DNJ is also being studied for its potential anti-cancer effects.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Sphingolipidoses are a group of inherited metabolic disorders characterized by the accumulation of sphingolipids in various tissues and organs due to deficiencies in enzymes involved in sphingolipid metabolism. Sphingolipids are a type of lipid molecule that play important roles in cell membranes, signal transduction, and cell recognition.

Examples of sphingolipidoses include Gaucher's disease, Tay-Sachs disease, Niemann-Pick disease, Fabry disease, and Krabbe disease, among others. These disorders can affect various organs and systems in the body, including the brain, liver, spleen, bones, and nervous system, leading to a range of symptoms such as developmental delay, seizures, movement disorders, enlarged organs, and skin abnormalities.

Treatment for sphingolipidoses typically involves managing symptoms and addressing complications, although some forms of these disorders may be amenable to enzyme replacement therapy or stem cell transplantation.

Iminosugars are a class of naturally occurring compounds that are structural analogs of simple sugars (monosaccharides), in which the oxygen atom in the furan ring is replaced by a nitrogen atom. This small change in structure gives iminosugars unique biological properties, particularly their ability to inhibit carbohydrate-processing enzymes such as glycosidases and glycosyltransferases.

Iminosugars are found in various plants, animals, and microorganisms, and have been studied for their potential therapeutic applications in a variety of diseases, including diabetes, viral infections, and cancer. Some iminosugars have been shown to act as potent inhibitors of glycosidases involved in the replication of certain viruses, such as HIV and hepatitis C virus, making them promising candidates for antiviral therapy.

In addition, iminosugars have been investigated for their potential to modulate the immune system and reduce inflammation, which has led to interest in their use as therapeutic agents for autoimmune diseases and other inflammatory conditions. However, further research is needed to fully understand the mechanisms of action and safety profiles of iminosugars before they can be widely used in clinical settings.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Neuraminic acids, also known as sialic acids, are a family of nine-carbon sugars that are commonly found on the outermost layer of many cell surfaces in animals. They play important roles in various biological processes, such as cell recognition, immune response, and viral and bacterial infection. Neuraminic acids can exist in several forms, with N-acetylneuraminic acid (NANA) being the most common one in mammals. They are often found attached to other sugars to form complex carbohydrates called glycoconjugates, which are involved in many cellular functions and interactions.

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

Sialyltransferases are a group of enzymes that play a crucial role in the biosynthesis of sialic acids, which are a type of sugar molecule found on the surface of many cell types. These enzymes catalyze the transfer of sialic acid from a donor molecule (usually CMP-sialic acid) to an acceptor molecule, such as a glycoprotein or glycolipid.

The addition of sialic acids to these molecules can affect their function and properties, including their recognition by other cells and their susceptibility to degradation. Sialyltransferases are involved in various biological processes, including cell-cell recognition, inflammation, and cancer metastasis.

There are several different types of sialyltransferases, each with specific substrate preferences and functions. For example, some sialyltransferases add sialic acids to the ends of N-linked glycans, while others add them to O-linked glycans or glycolipids.

Abnormalities in sialyltransferase activity have been implicated in various diseases, including cancer, inflammatory disorders, and neurological conditions. Therefore, understanding the function and regulation of these enzymes is an important area of research with potential implications for disease diagnosis and treatment.

Stage-Specific Embryonic Antigens (SSEAs) are a type of antigens that are found on the surface of early embryonic cells during specific stages of development. These antigens were first discovered in mouse embryos and are expressed in a stage-specific manner, meaning they appear and disappear at specific times during embryonic development.

SSEAs are classified into different types based on their carbohydrate structures, including SSEA-1, SSEA-3, SSEA-4, and SSEA-5. These antigens have been found to be important markers for identifying the stage of embryonic development and have been used in research to study early embryonic development, stem cell biology, and cancer.

In particular, SSEAs have been identified as markers for pluripotent stem cells, which are cells that have the ability to differentiate into any type of cell in the body. These antigens are often used to isolate and characterize pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs).

It's worth noting that SSEAs have also been found to be expressed in some types of cancer cells, suggesting a potential role in tumor growth and progression. However, more research is needed to fully understand the function and significance of these antigens in both embryonic development and cancer.

Hexoses are simple sugars (monosaccharides) that contain six carbon atoms. The most common hexoses include glucose, fructose, and galactose. These sugars play important roles in various biological processes, such as serving as energy sources or forming complex carbohydrates like starch and cellulose. Hexoses are essential for the structure and function of living organisms, including humans.

Sphingomyelins are a type of sphingolipids, which are a class of lipids that contain sphingosine as a backbone. Sphingomyelins are composed of phosphocholine or phosphoethanolamine bound to the ceramide portion of the molecule through a phosphodiester linkage. They are important components of cell membranes, particularly in the myelin sheath that surrounds nerve fibers. Sphingomyelins can be hydrolyzed by the enzyme sphingomyelinase to form ceramide and phosphorylcholine or phosphorylethanolamine. Abnormalities in sphingomyelin metabolism have been implicated in several diseases, including Niemann-Pick disease, a group of inherited lipid storage disorders.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

Galactosyltransferases are a group of enzymes that play a crucial role in the biosynthesis of glycoconjugates, which are complex carbohydrate structures found on the surface of many cell types. These enzymes catalyze the transfer of galactose, a type of sugar, to another molecule, such as another sugar or a lipid, to form a glycosidic bond.

Galactosyltransferases are classified based on the type of donor substrate they use and the type of acceptor substrate they act upon. For example, some galactosyltransferases use UDP-galactose as a donor substrate and transfer galactose to an N-acetylglucosamine (GlcNAc) residue on a protein or lipid, forming a lactosamine unit. Others may use different donor and acceptor substrates to form different types of glycosidic linkages.

These enzymes are involved in various biological processes, including cell recognition, signaling, and adhesion. Abnormalities in the activity of galactosyltransferases have been implicated in several diseases, such as congenital disorders of glycosylation, cancer, and inflammatory conditions. Therefore, understanding the function and regulation of these enzymes is important for developing potential therapeutic strategies for these diseases.

N-Acetylgalactosaminyltransferases (GalNAc-Ts) are a family of enzymes that play a crucial role in the process of protein glycosylation. Protein glycosylation is the attachment of carbohydrate groups, also known as glycans, to proteins. This modification significantly influences various biological processes such as protein folding, stability, trafficking, and recognition.

GalNAc-Ts specifically catalyze the transfer of N-acetylgalactosamine (GalNAc) from a donor molecule, UDP-GalNAc, to serine or threonine residues on acceptor proteins. This initial step of adding GalNAc to proteins is called mucin-type O-glycosylation and sets the stage for further glycan additions by other enzymes.

There are at least 20 different isoforms of GalNAc-Ts identified in humans, each with distinct substrate specificities, tissue distributions, and subcellular localizations. Aberrant expression or dysfunction of these enzymes has been implicated in various diseases, including cancer, where altered glycosylation patterns contribute to tumor progression and metastasis.

The P blood group system is one of the rarest blood group systems in humans, with only a few antigens discovered so far. The main antigens in this system are P1 and P, which can be either present or absent on red blood cells (RBCs). The presence or absence of these antigens determines an individual's P blood group type.

The P1 antigen is a carbohydrate structure found on the surface of RBCs in individuals with the P1 phenotype, while those with the p phenotype lack this antigen. The P antigen is a protein found on the surface of RBCs in both P1 and p individuals.

Individuals with the P1 phenotype can develop antibodies against the P antigen if they are exposed to RBCs that lack the P1 antigen, such as those from a person with the p phenotype. Similarly, individuals with the p phenotype can develop antibodies against the P1 antigen if they are exposed to RBCs that have the P1 antigen.

Transfusion reactions can occur if an individual receives blood from a donor with a different P blood group type, leading to the destruction of RBCs and potentially life-threatening complications. Therefore, it is essential to determine an individual's P blood group type before transfusing blood or performing other medical procedures that involve RBCs.

Overall, the P blood group system is a complex and relatively rare system that requires careful consideration in medical settings to ensure safe and effective treatment.

Sphingosine is not a medical term per se, but rather a biological compound with importance in the field of medicine. It is a type of sphingolipid, a class of lipids that are crucial components of cell membranes. Sphingosine itself is a secondary alcohol with an amino group and two long-chain hydrocarbons.

Medically, sphingosine is significant due to its role as a precursor in the synthesis of other sphingolipids, such as ceramides, sphingomyelins, and gangliosides, which are involved in various cellular processes like signal transduction, cell growth, differentiation, and apoptosis (programmed cell death).

Moreover, sphingosine-1-phosphate (S1P), a derivative of sphingosine, is an important bioactive lipid mediator that regulates various physiological functions, including immune response, vascular maturation, and neuronal development. Dysregulation of S1P signaling has been implicated in several diseases, such as cancer, inflammation, and cardiovascular disorders.

In summary, sphingosine is a crucial biological compound with medical relevance due to its role as a precursor for various sphingolipids involved in cellular processes and as a precursor for the bioactive lipid mediator S1P.

Sialic acids are a family of nine-carbon sugars that are commonly found on the outermost surface of many cell types, particularly on the glycoconjugates of mucins in various secretions and on the glycoproteins and glycolipids of cell membranes. They play important roles in a variety of biological processes, including cell recognition, immune response, and viral and bacterial infectivity. Sialic acids can exist in different forms, with N-acetylneuraminic acid being the most common one in humans.

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a type of mass spectrometry that is used to analyze large biomolecules such as proteins and peptides. In this technique, the sample is mixed with a matrix compound, which absorbs laser energy and helps to vaporize and ionize the analyte molecules.

The matrix-analyte mixture is then placed on a target plate and hit with a laser beam, causing the matrix and analyte molecules to desorb from the plate and become ionized. The ions are then accelerated through an electric field and into a mass analyzer, which separates them based on their mass-to-charge ratio.

The separated ions are then detected and recorded as a mass spectrum, which can be used to identify and quantify the analyte molecules present in the sample. MALDI-MS is particularly useful for the analysis of complex biological samples, such as tissue extracts or biological fluids, because it allows for the detection and identification of individual components within those mixtures.

Sandhoff disease is a rare inherited disorder that affects the nervous system. It's a type of GM2 gangliosidosis, which is a group of conditions characterized by the body's inability to break down certain fats (lipids) called gangliosides.

In Sandhoff disease, deficiencies in the enzymes hexosaminidase A and B lead to an accumulation of GM2 ganglioside in various cells, particularly in nerve cells of the brain. This accumulation results in progressive damage to the nervous system.

The symptoms of Sandhoff disease typically appear between 6 months and 2 years of age and can include developmental delay, seizures, an exaggerated startle response, muscle weakness, loss of motor skills, and vision and hearing loss. The condition is often fatal by around age 3. It's caused by mutations in the HEXB gene, and it's inherited in an autosomal recessive manner, meaning an individual must inherit two copies of the mutated gene (one from each parent) to develop the disease.

Gaucher disease is an inherited metabolic disorder caused by the deficiency of the enzyme glucocerebrosidase. This enzyme is responsible for breaking down a complex fatty substance called glucocerebroside, found in the cells of various tissues throughout the body. When the enzyme is not present in sufficient quantities or is entirely absent, glucocerebroside accumulates inside the lysosomes (cellular organelles responsible for waste material breakdown) of certain cell types, particularly within white blood cells called macrophages. This buildup of lipids leads to the formation of characteristic lipid-laden cells known as Gaucher cells.

There are three main types of Gaucher disease, classified based on the absence or presence and severity of neurological symptoms:

1. Type 1 (non-neuronopathic) - This is the most common form of Gaucher disease, accounting for approximately 95% of cases. It primarily affects the spleen, liver, and bone marrow but does not typically involve the central nervous system. Symptoms may include an enlarged spleen and/or liver, low red blood cell counts (anemia), low platelet counts (thrombocytopenia), bone pain and fractures, and fatigue.
2. Type 2 (acute neuronopathic) - This rare and severe form of Gaucher disease affects both visceral organs and the central nervous system. Symptoms usually appear within the first six months of life and progress rapidly, often leading to death before two years of age due to neurological complications.
3. Type 3 (subacute neuronopathic) - This form of Gaucher disease affects both visceral organs and the central nervous system but has a slower progression compared to type 2. Symptoms may include those seen in type 1, as well as neurological issues such as seizures, eye movement abnormalities, and cognitive decline.

Gaucher disease is inherited in an autosomal recessive manner, meaning that an individual must inherit two defective copies of the gene (one from each parent) to develop the condition. Treatment options for Gaucher disease include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and chaperone therapy, depending on the type and severity of the disease.

Diptera is an order of insects that includes flies, mosquitoes, and gnats. The name "Diptera" comes from the Greek words "di," meaning two, and "pteron," meaning wing. This refers to the fact that all members of this order have a single pair of functional wings for flying, while the other pair is reduced to small knob-like structures called halteres, which help with balance and maneuverability during flight.

Some common examples of Diptera include houseflies, fruit flies, horseflies, tsetse flies, and midges. Many species in this order are important pollinators, while others can be significant pests or disease vectors. The study of Diptera is called dipterology.

Glycoconjugates are a type of complex molecule that form when a carbohydrate (sugar) becomes chemically linked to a protein or lipid (fat) molecule. This linkage, known as a glycosidic bond, results in the formation of a new molecule that combines the properties and functions of both the carbohydrate and the protein or lipid component.

Glycoconjugates can be classified into several categories based on the type of linkage and the nature of the components involved. For example, glycoproteins are glycoconjugates that consist of a protein backbone with one or more carbohydrate chains attached to it. Similarly, glycolipids are molecules that contain a lipid anchor linked to one or more carbohydrate residues.

Glycoconjugates play important roles in various biological processes, including cell recognition, signaling, and communication. They are also involved in the immune response, inflammation, and the development of certain diseases such as cancer and infectious disorders. As a result, understanding the structure and function of glycoconjugates is an active area of research in biochemistry, cell biology, and medical science.

Glycosyltransferases are a group of enzymes that play a crucial role in the synthesis of glycoconjugates, which are complex carbohydrate structures found on the surface of cells and in various biological fluids. These enzymes catalyze the transfer of a sugar moiety from an activated donor molecule to an acceptor molecule, resulting in the formation of a glycosidic bond.

The donor molecule is typically a nucleotide sugar, such as UDP-glucose or CMP-sialic acid, which provides the energy required for the transfer reaction. The acceptor molecule can be a wide range of substrates, including proteins, lipids, and other carbohydrates.

Glycosyltransferases are highly specific in their activity, with each enzyme recognizing a particular donor and acceptor pair. This specificity allows for the precise regulation of glycan structures, which have been shown to play important roles in various biological processes, including cell recognition, signaling, and adhesion.

Defects in glycosyltransferase function can lead to a variety of genetic disorders, such as congenital disorders of glycosylation (CDG), which are characterized by abnormal glycan structures and a wide range of clinical manifestations, including developmental delay, neurological impairment, and multi-organ dysfunction.

Globoid cell leukodystrophy, also known as Krabbe disease, is a rare inherited disorder that affects the nervous system. It is characterized by the accumulation of abnormal quantities of a protein called psychosine in the brain's nerve cells, leading to their destruction and progressive damage to the protective sheath (myelin) that covers the nerves.

The term "leukodystrophy" refers to a group of disorders that affect the white matter of the brain, which is primarily composed of myelin. In globoid cell leukodystrophy, the accumulation of psychosine in the brain's nerve cells, particularly in macrophages (which are then referred to as "globoid cells"), results in progressive demyelination and severe neurological symptoms.

Early-onset forms of Krabbe disease typically present within the first six months of life, with symptoms such as irritability, feeding difficulties, muscle weakness, and developmental delays. Late-onset forms may not become apparent until later in childhood or even adulthood, with symptoms that can include vision loss, hearing impairment, muscle stiffness, and difficulty coordinating movements. The progression of the disease is often rapid, leading to severe disability and a shortened lifespan.

There is currently no cure for globoid cell leukodystrophy, but various treatments, such as bone marrow transplantation and enzyme replacement therapy, are being investigated to help manage the symptoms and slow down the progression of the disease.

Meconium is the first stool passed by a newborn infant, typically within the first 48 hours of life. It is composed of materials ingested during fetal development, including intestinal epithelial cells, lanugo (fine hair), amniotic fluid, mucus, bile, and water. The color of meconium is usually greenish-black, and its consistency can range from a thick paste to a liquid. Meconium staining of the amniotic fluid can occur when the fetus has passed meconium while still in the uterus, which may indicate fetal distress and requires careful medical attention during delivery.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Amino alcohols are organic compounds containing both amine and hydroxyl (alcohol) functional groups. They have the general structure R-NH-OH, where R represents a carbon-containing group. Amino alcohols can be primary, secondary, or tertiary, depending on the number of alkyl or aryl groups attached to the nitrogen atom.

These compounds are important in many chemical and biological processes. For example, some amino alcohols serve as intermediates in the synthesis of pharmaceuticals, dyes, and polymers. In biochemistry, certain amino alcohols function as neurotransmitters or components of lipids.

Some common examples of amino alcohols include:

* Ethanolamine (monoethanolamine, MEA): a primary amino alcohol used in the production of detergents, emulsifiers, and pharmaceuticals
* Serinol: a primary amino alcohol that occurs naturally in some foods and is used as a flavoring agent
* Choline: a quaternary ammonium compound with a hydroxyl group, essential for human nutrition and found in various foods such as eggs, liver, and peanuts
* Trimethylamine (TMA): a tertiary amino alcohol that occurs naturally in some marine animals and is responsible for the "fishy" odor of their flesh.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Niemann-Pick diseases are a group of inherited metabolic disorders characterized by the accumulation of lipids, particularly sphingomyelin and cholesterol, within cells due to deficiencies in certain enzymes. These diseases are caused by mutations in the SMPD1, NPC1, or NPC2 genes, among others. There are four main types of Niemann-Pick disease (Types A, B, C, and D), each with varying severity and symptoms.

Type A and Type B diseases, also known as Acid Sphingomyelinase Deficiency or ASMD, result from mutations in the SMPD1 gene leading to a deficiency of acid sphingomyelinase enzyme. This causes excessive accumulation of sphingomyelin in various tissues, particularly in the liver, spleen, lungs, and brain.

Type A is the most severe form, typically presenting in infancy with symptoms such as developmental delay, feeding difficulties, enlarged liver and spleen, lung infection, and progressive neurological degeneration, which often leads to early death, usually before age 3.

Type B has a broader range of severity and onset, from infancy to adulthood. Symptoms may include enlarged liver and spleen, lung disease, poor growth, and varying degrees of neurological impairment. Type B patients can survive into adolescence or adulthood, depending on the severity of their symptoms.

Type C and Type D diseases, also known as Niemann-Pick Type C Disease (NPC), are caused by mutations in either the NPC1 or NPC2 genes, leading to defective intracellular lipid transport. This results in excessive accumulation of cholesterol and other lipids within cells, particularly in the brain, liver, spleen, and lungs.

Type C typically presents in childhood but can also manifest in adolescence or adulthood. Symptoms include progressive neurological degeneration, ataxia, seizures, dementia, problems with speech and swallowing, and yellowish skin (jaundice) at birth or during infancy due to liver involvement. Type C patients usually have a shorter life expectancy, often surviving into their teens, twenties, or thirties.

Type D is a subtype of NPC that affects people of Nova Scotian descent and has similar symptoms to Type C but with an earlier onset and faster progression.

Alpha-N-Acetylgalactosaminidase (also known as alpha-GalNAcase) is an enzyme that belongs to the class of glycoside hydrolases. Its systematic name is N-acetyl-alpha-galactosaminide galactosaminohydrolase. This enzyme is responsible for catalyzing the hydrolysis of the terminal, non-reducing N-acetyl-D-galactosamine residues in gangliosides and glycoproteins.

Gangliosides are sialic acid-containing glycosphingolipids found in animal tissues, especially in the nervous system. Glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone.

Deficiency or dysfunction of alpha-N-Acetylgalactosaminidase can lead to various genetic disorders, such as Schindler and Kanzaki diseases, which are characterized by the accumulation of gangliosides and glycoproteins in lysosomes, leading to progressive neurological deterioration.

Lysosomal storage diseases (LSDs) are a group of rare inherited metabolic disorders caused by defects in lysosomal function. Lysosomes are membrane-bound organelles within cells that contain enzymes responsible for breaking down and recycling various biomolecules, such as proteins, lipids, and carbohydrates. In LSDs, the absence or deficiency of specific lysosomal enzymes leads to the accumulation of undigested substrates within the lysosomes, resulting in cellular dysfunction and organ damage.

These disorders can affect various organs and systems in the body, including the brain, nervous system, bones, skin, and visceral organs. Symptoms may include developmental delays, neurological impairment, motor dysfunction, bone abnormalities, coarse facial features, hepatosplenomegaly (enlarged liver and spleen), and recurrent infections.

Examples of LSDs include Gaucher disease, Tay-Sachs disease, Niemann-Pick disease, Fabry disease, Pompe disease, and mucopolysaccharidoses (MPS). Treatment options for LSDs may include enzyme replacement therapy, substrate reduction therapy, or bone marrow transplantation. Early diagnosis and intervention can help improve the prognosis and quality of life for affected individuals.

Caveolae are small, flask-shaped invaginations of the plasma membrane that are abundant in many cell types, including endothelial cells, adipocytes, and muscle cells. They are characterized by the presence of caveolin proteins, which play a crucial role in their formation and function.

Caveolae have been implicated in various cellular processes, such as endocytosis, signal transduction, cholesterol homeostasis, and mechanoprotection. They can also serve as platforms for the assembly of signaling complexes and the regulation of various enzymatic activities.

The invaginated structure of caveolae allows them to interact with extracellular molecules and intracellular proteins, facilitating the exchange of materials between the plasma membrane and the cytosol. Dysregulation of caveolae function has been linked to several diseases, including cardiovascular disorders, cancer, and neurological conditions.

Mass spectrometry with electrospray ionization (ESI-MS) is an analytical technique used to identify and quantify chemical species in a sample based on the mass-to-charge ratio of charged particles. In ESI-MS, analytes are ionized through the use of an electrospray, where a liquid sample is introduced through a metal capillary needle at high voltage, creating an aerosol of charged droplets. As the solvent evaporates, the analyte molecules become charged and can be directed into a mass spectrometer for analysis.

ESI-MS is particularly useful for the analysis of large biomolecules such as proteins, peptides, and nucleic acids, due to its ability to gently ionize these species without fragmentation. The technique provides information about the molecular weight and charge state of the analytes, which can be used to infer their identity and structure. Additionally, ESI-MS can be interfaced with separation techniques such as liquid chromatography (LC) for further purification and characterization of complex samples.

Angiokeratoma is a cutaneous condition characterized by the presence of small, dilated blood vessels (capillaries) in the upper dermis, which are covered by thickened epidermis. These lesions appear as dark red to black papules or plaques on the skin surface. They can occur spontaneously or as a result of an underlying medical condition such as Fabry disease. Angiokeratomas are typically asymptomatic but may occasionally cause mild discomfort or itching. They most commonly affect the lower extremities, particularly the buttocks and genital region, but can also appear on other parts of the body.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

Methylation, in the context of genetics and epigenetics, refers to the addition of a methyl group (CH3) to a molecule, usually to the nitrogenous base of DNA or to the side chain of amino acids in proteins. In DNA methylation, this process typically occurs at the 5-carbon position of cytosine residues that precede guanine residues (CpG sites) and is catalyzed by enzymes called DNA methyltransferases (DNMTs).

DNA methylation plays a crucial role in regulating gene expression, genomic imprinting, X-chromosome inactivation, and suppression of repetitive elements. Hypermethylation or hypomethylation of specific genes can lead to altered gene expression patterns, which have been associated with various human diseases, including cancer.

In summary, methylation is a fundamental epigenetic modification that influences genomic stability, gene regulation, and cellular function by introducing methyl groups to DNA or proteins.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Lipidoses are a group of genetic disorders characterized by abnormal accumulation of lipids (fats or fat-like substances) in various tissues and cells of the body due to defects in lipid metabolism. These disorders include conditions such as Gaucher's disease, Tay-Sachs disease, Niemann-Pick disease, Fabry disease, and Wolman disease, among others. The accumulation of lipids can lead to progressive damage in multiple organs, resulting in a range of symptoms and health complications. Early diagnosis and management are essential for improving the quality of life and prognosis of affected individuals.

GM2 gangliosidoses are a group of inherited metabolic disorders caused by the accumulation of harmful amounts of GM2 gangliosides in the body's cells, particularly in the nerve cells of the brain. There are three main types of GM2 gangliosidoses: Tay-Sachs disease, Sandhoff disease, and AB variant of GM2 gangliosidosis. These conditions are characterized by progressive neurological degeneration, which can lead to severe physical and mental disabilities, and ultimately death in childhood or early adulthood.

The underlying cause of GM2 gangliosides is a deficiency in the enzyme hexosaminidase A (Tay-Sachs and AB variant) or both hexosaminidase A and B (Sandhoff disease), which are responsible for breaking down GM2 gangliosides. Without sufficient enzyme activity, GM2 gangliosides accumulate in the lysosomes of cells, leading to cell dysfunction and death.

Symptoms of GM2 gangliosidoses can vary depending on the specific type and severity of the disorder, but often include developmental delay, muscle weakness, loss of motor skills, seizures, blindness, and dementia. There is currently no cure for GM2 gangliosidoses, and treatment is focused on managing symptoms and improving quality of life.

N-Acylsphingosine Galactosyltransferase is a type of enzyme that plays a role in the synthesis of galactosylceramide, which is a critical component of the myelin sheath in the nervous system. The enzyme's systematic name is UDP-galactose:N-acylsphingosine galactosyltransferase, and it catalyzes the following chemical reaction:
UDP-galactose + N-acylsphingosine = UDP + D-galactosyl-N-acylsphingosine.
This enzyme is also known as galactosylceramide synthase, and it is involved in the biosynthesis of galactolipids, which are essential for the formation and maintenance of the myelin sheath around neurons. Deficiencies in this enzyme have been linked to certain genetic disorders, such as Krabbe disease and hereditary sensory and autonomic neuropathy type I.

In general, glycosphingolipids can be categorized into two groups: neutral glycosphingolipids (also called glycosphingolipids) ... Glycosphingolipids are a group of lipids (more specifically, sphingolipids) and are a part of the cell membrane. They consist ... Neutral glycosphingolipids are also important, for example as blood type antigens. Inheritable enzyme defects can lead to ... Glycosphingolipids are a subtype of glycolipids containing the amino alcohol sphingosine. They may be considered as ...
The systematic name of this enzyme class is glycosphingolipid amidohydrolase. This enzyme is also called glycosphingolipid ... In enzymology, a glycosphingolipid deacylase (EC 3.5.1.69) is an enzyme that catalyzes a chemical reaction that cleaves ... Hirabayashi Y, Kimura M, Matsumoto M, Yamamoto K, Kadowaki S, Tochikura T (January 1988). "A novel glycosphingolipid ... which cleaves the linkage between the fatty acid and sphingosine base in glycosphingolipids". Journal of Biochemistry. 103 (1 ...
2007). "Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide". Nature. 449 (7158): 62-67. Bibcode:2007Natur. ... In addition to their role as building blocks of biological membranes, glycosphingolipids have long attracted attention because ... Glucosylceramides (GluCer) are the most widely distributed glycosphingolipids in cells serving as precursors for the formation ... Hakomori, S (2000). "Traveling for the glycosphingolipid path". Glycoconj. J. 17 (7/9): 627-647. doi:10.1023/A:1011086929064. ...
These molecules include cholesterol, triacylglycerides, and glycosphingolipids. The optimum growing range for this species is ...
Research has found that this cucumber secretes a biologically active glycosphingolipid HPG-7 that is a major component of cell ... Hakomori, Senitiroh (January 2003). "Structure, organization, and function of glycosphingolipids in membrane". Current Opinion ...
GNE myopathy is a rare genetic disorder caused by hyposialylated muscle proteins and glycosphingolipids because there is ... "Non-specific accumulation of glycosphingolipids in GNE myopathy". Journal of Inherited Metabolic Disease. 37 (2): -297-308. doi ...
Glycosphingolipids are ceramides with one or more sugar residues joined in a β-glycosidic linkage at the 1-hydroxyl position ( ... Ceramides and glycosphingolipids are N-acyl derivatives of these compounds. The sphingosine backbone is O-linked to a (usually ... Certain complex glycosphingolipids were found to be involved in specific functions, such as cell recognition and signaling. ... The complex glycosphingolipids are hydrolyzed to glucosylceramide and galactosylceramide. These lipids are then hydrolyzed by ...
Gangliosides are membrane-bound glycosphingolipids containing sialic acid. Ganglioside GD3 is known to be important for cell ...
GalNAc-T is the enzyme involved in the biosynthesis of G(M2) and G(D2) glycosphingolipids. GalNAc-T catalyzes the transfer of ... GM2 and GD2 gangliosides are sialic acid-containing glycosphingolipids. ...
Glycosphingolipids: a sub-group of glycolipids based on sphingolipids. Glycosphingolipids are mostly located in nervous tissue ... Globosides: glycosphingolipids with more than one sugar as part of the carbohydrate complex. They have a variety of functions; ... Cerebrosides: a group glycosphingolipids involved in nerve cell membranes. Galactocerebrosides: a type of cerebroseide with ... Hakomori S, Igarashi Y (December 1995). "Functional role of glycosphingolipids in cell recognition and signaling". Journal of ...
"Recognition of bacterial glycosphingolipids by natural killer T cells". Nature. 434 (7032): 520-525. doi:10.1038/nature03407. ...
This enzyme participates in 3 metabolic pathways: glycosphingolipid biosynthesis - lactoseries, glycosphingolipid biosynthesis ... Percy AK, Gottfries J, Vilbergsson G, Mansson JE, Svennerholm L (1991). "Glycosphingolipid glycosyltransferases in human fetal ...
LOS is also found in lactoneoseries glycosphingolipids from human cells. Most meningococci from groups B and C, as well as ...
Lachmann RH, Platt FM (2001). "Substrate reduction therapy for glycosphingolipid storage disorders". Expert Opinion on ... which catalyzes the first step in synthesizing glucose-based glycosphingolipids like GM2 ganglioside. As Tay-Sachs disease is a ...
2004). "Glycolipid transfer protein mediated transfer of glycosphingolipids between membranes: a model for action based on ... 2004). "Structural basis for glycosphingolipid transfer specificity". Nature. 430 (7003): 1048-53. Bibcode:2004Natur.430.1048M ... "Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers". ... protein encoded by this gene is similar to bovine and porcine proteins which accelerate transfer of certain glycosphingolipids ...
Lachmann RH, Platt FM (2001). "Substrate reduction therapy for glycosphingolipid storage disorders". Expert Opinion on ...
"Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide". Nature. 449 (7158): 62-7. Bibcode:2007Natur.449...62D ...
"Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton". Science. 326 (5954): 861-865. Bibcode: ... and the production of viral glycosphingolipids as a result of infection from coccolithoviruses in Emiliania huxleyii Reddy CM, ...
Among glycosphingolipids two types of glycans are serving as SeV receptors. The first type is represented by fucosylated ... Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (December 2007). "Developmental changes of glycosphingolipids and expression ... However, cellular expression of gangliosides, which are sialic acid-containing glycosphingolipids, cannot be evaluated by these ... "Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells". ...
A high correlation was found between glycosphingolipid (GSL) production and caspase activity during the lytic stage in infected ... "Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton". Science. 326 (5954): 861-865. Bibcode: ...
For example glycosphingolipids become ceramides and phospholipids become free fatty acids. spinous layer (stratum spinosum) ... glycosphingolipids, free sterols, phospholipids and catabolic enzymes. Langerhans cells, immunologically active cells, are ...
It is usually considered to be the principal glycosphingolipid in plants. It is a major component of the outer layer of the ... Degradation of glycosphingolipids occurs in the lysosome, which contains digestive enzymes in animal cells. The lysosome breaks ... Cerebrosides is the common name for a group of glycosphingolipids called monoglycosylceramides which are important components ... Galactosylceramide is the principal glycosphingolipid in brain tissue. Galactosylceramides are present in all nervous tissues, ...
... , Gal(α1→3)Gal(β1→4)Glcβ(1→1)Cer, abbreviated as iGb3, is an iso-globo-series of glycosphingolipid, ... iGb3 was discovered in canine and rat intestines among iso-globo-series of glycosphingolipids. First NMR spectrums for standard ... 1983 Jan 7;750(1):214-6. Breimer ME, Hansson GC, Karlsson KA, Leffler H. Glycosphingolipids of rat tissues. Different ... Lysosomal glycosphingolipid recognition by NKT cells. Science. 2004 Dec 3;306(5702):1786-9. Zhou D. The immunological function ...
The lipid component of MFGM is rich in phospholipids, glycosphingolipids, and cholesterol. Phospholipids make up approximately ...
Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 is a protein that in humans is encoded by the PAG1 ... "Entrez Gene: PAG1 phosphoprotein associated with glycosphingolipid microdomains 1". Brdicková N, Brdicka T, Andera L, Spicka J ... "Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane ... "A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking ...
The Lewis histo-blood group system comprises a set of fucosylated glycosphingolipids that are synthesized by exocrine ... The glycosphingolipids function in embryogenesis, tissue differentiation, tumor metastasis, inflammation, and bacterial ...
Rearrangements of glycosphingolipids, phospholipids, as well as cholesterol explains changes in membrane fluidity. Some studies ...
This forms glycosphingolipids, which are important for the localisation of receptors in membranes. Incorrect breakdown of these ... Because both galactose and glucose sugars can be added to the ceramide lipid, we have two groups of glycosphingolipids. ...
This is thought to be due to accumulation of glucosylceramide and complex glycosphingolipids. The role of inflammatory ... "Alterations in the properties of the cell membrane due to glycosphingolipid accumulation in a model of Gaucher disease". ...
"Differentiation and Quantification of Diastereomeric Pairs of Glycosphingolipids using Gas-phase Ion Chemistry". Analytical ...
In general, glycosphingolipids can be categorized into two groups: neutral glycosphingolipids (also called glycosphingolipids) ... Glycosphingolipids are a group of lipids (more specifically, sphingolipids) and are a part of the cell membrane. They consist ... Neutral glycosphingolipids are also important, for example as blood type antigens. Inheritable enzyme defects can lead to ... Glycosphingolipids are a subtype of glycolipids containing the amino alcohol sphingosine. They may be considered as ...
Trail: Glycosphingolipid. This page is read-only View other revisions Administration. Last edited 2006-05-07 21:15 UTC by ... Glycosphingolipids are a subtype of glycolipids containing the amino alcohol sphingosine. Sphingolipids are ubiquitous ...
Gb3 glycosphingolipids are the specific receptors for bacterial Shiga toxin. Whereas the trisaccharidic head group of Gb3 ... Head group labelled glycosphingolipids eventually enabled us to address the question how the fatty acid of a glycosphingolipid ... Glycosphingolipids. Glycosphingolipids (GSLs) are a subclass of glycolipids that are found in cell membranes of various ... Synthetic strategies to obtain Gb3 glycosphingolipids. Our ultimate goal was to synthesize fluorescent Gb3 glycosphingolipids ...
Glycosphingolipid Antigens in Neural Tumor Cell Lines and Anti-Glycosphingolipid Antibodies in Sera of Patients with Neural ... Glycosphingolipid Antigens in Neural Tumor Cell Lines and Anti-Glycosphingolipid Antibodies in Sera of Patients with Neural ... These glycosphingolipids (GSLs) were expressed in all cell lines with concentrations ranging from 210 to 330 ng per 2 × 106 ... Sulfated glucuronosyl glycosphingolipids (SGGLs) are cell surface molecules that are endowed with the Human Natural Killer-1 ( ...
Sphingolipids - Glycosphingolipids PubMed MeSh Term *Overview. Overview. subject area of * 3 -azidothymidine significantly ... 3-AZIDOTHYMIDINE (ZIDOVUDINE) INHIBITS GLYCOSYLATION AND DRAMATICALLY ALTERS GLYCOSPHINGOLIPID SYNTHESIS IN WHOLE CELLS AT ... alters glycosphingolipid synthesis in melanoma cells and decreases the shedding of gangliosides Journal Article ...
... featuring eight Reviews and one Research article all centred on the topic of glycosphingolipids in human disease ... The September issue of FEBS Open Bio puts the involvement of glycosphingolipids in disease in the limelight. Glycosphingolipids ... Putting Glycosphingolipids in the Limelight. The latest In the Limelight issue of FEBS Open Bio is our largest ever, ... Putting Glycosphingolipids in the Limelight. The latest In the Limelight issue of FEBS Open Bio is our largest ever, ...
... iated with neurotoxin induced proteopathy following ...
Categorized as glycosphingolipid ceramide deacylase [PubMed] [CrossRef] [Google Scholar] 31. [PubMed] [CrossRef] [Google ... Categorized as glycosphingolipid ceramide deacylase This work was supported by CNRS, INSERM, University Nice Sophia-Antipolis ... Categorized as glycosphingolipid ceramide deacylase Notably, the physiological impact of this modification appears to be ... Category: glycosphingolipid ceramide deacylase. In addition, individual monocytes did not migrate for an irrelevant stimulus ...
Glycosphingolipids Bg3 and iGb3: In vivo roles in hemalotic-uremic syndrome and iNKT cell function ... Documents and Publications , report , journal article , Glycosphingolipids Bg3 and .... Glycosphingolipids Bg3 and iGb3: In ... The glycosphingolipids globotrihexosylceramide (Gb3, CD77) and isoglobotrihexosylceramide (iGb3) are isomers differing only in ...
B4galntltm1Rlp for the study of glycosphingolipid storage disorders. The glycosphingolipid (GSL) storage diseases are caused by ...
... including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early ... A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and ... Keywords: Embryogenesis; Embryonal carcinoma; Embryonic stem cell; Glycoconjugate; Glycosphingolipid; Stage-specific embryonic ...
Stem cells and cancer stem cells: therapeutic applications in disease and injury (New York : Springer ...
Cellular effects of deoxynojirimycin analogues: uptake, retention and inhibition of glycosphingolipid biosynthesis. ... Cellular effects of deoxynojirimycin analogues: uptake, retention and inhibition of glycosphingolipid biosynthesis. ... Glycosphingolipids, HL-60 Cells, Humans, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Staining and Labeling ...
Mucosal absorption of therapeutic peptides by harnessing the endogenous sorting of glycosphingolipids Garcia-Castillo, Maria ...
The apo E gene knockout mouse as a model to study the potential atherogenic properties of glycosphingolipids ... The apo E gene knockout mouse as a model to study the potential atherogenic properties of glycosphingolipids ...
Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C. elegans *Feng Wang ...
Glycosphingolipids are linked to elevated neurotransmission and neurodegeneration in a Dro Glycosphingolipids are linked to ... Glycosphingolipid synthesis mutants also had greatly heightened neurodegeneration, with similar neurodegeneration in Npc1a; brn ... Here, we employed a Drosophila model to test links between glycosphingolipids, neurotransmission and neurodegeneration. We ... These findings indicate causal links between glycosphingolipid-dependent neurotransmission and neurodegeneration in this NPC ...
New Deuterium-labeled Glycosphingolipids. Deuterated glycolipids are ideal for the identification and quantification of ...
D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds promise for ... N2 - D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds promise ... AB - D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds promise ... abstract = "D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds ...
GalNAc-T is the enzyme involved in the biosynthesis of G(M2) and G(D2) glycosphingolipids. GalNAc-T catalyzes the transfer of ... GM2 and GD2 gangliosides are sialic acid-containing glycosphingolipids. ...
glycosphingolipids. K Bock, Michael Breimer, A Brignole, Gunnar C. Hansson, K A Karlsson, G Larson, H Leffler, B E Samuelsson, ... Blood group glycosphingolipids of human gastrointestinal tissue. S Björk, Michael Breimer, Gunnar C. Hansson, K-A Karlsson, H ... Blood group glycosphingolipids of human kidney. Michael Breimer, Gunnar C. Hansson, G Larsson Glycoconjugates (eds Chester, A, ... The specific glycosphingolipid composition of human ureteral epithelial cells. Michael Breimer, Gunnar C. Hansson, H Leffler ...
glycosphingolipids. K Bock, Michael Breimer, A Brignole, Gunnar C. Hansson, K A Karlsson, G Larson, H Leffler, B E Samuelsson, ... Blood group glycosphingolipids of human gastrointestinal tissue. S Björk, Michael Breimer, Gunnar C. Hansson, K-A Karlsson, H ... Blood group glycosphingolipids of human kidney. Michael Breimer, Gunnar C. Hansson, G Larsson Glycoconjugates (eds Chester, A, ... Glycosphingolipids of human embryonic stem cells. Michael Breimer, Karin Säljö, Angela Barone, Susann Teneberg Glycoconjugate ...
Supplementary text from Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck ... An inhibitor of glycosphingolipid biosynthesis NB-DNJ attenuates invasive characteristics of FA-deficient HNSCC cells. Clin ... Supplementary text from Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck ... Elevation of glycosphingolipids including the ganglioside GM3 in response to FA loss stimulates invasive characteristics of ...
2011) Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res 36:1578-1586, doi:10.1007/s11064-011-0494 ... Gangliosides, complex glycosphingolipids on the plasma membrane containing one or more sialic acid residues, are key components ...
Glycosphingolipids. Ronald L. Schnaar, Roger Sandhoff, Michael Tiemeyer, and Taroh Kinoshita. Glycosylphosphatidylinositol ...
Glycosphingolipids. Ronald L. Schnaar, Roger Sandhoff, Michael Tiemeyer, and Taroh Kinoshita. Glycosylphosphatidylinositol ...
This inborn error of metabolism results in unremitting deposition of neural glycosphingolipids in the lysosomes of the vascular ... Deposition of glycosphingolipids can be attributed to both endogenous production and diffusion of material from the circulation ... Glycosphingolipid deposits in lysosomes of endothelial, perithelial, and smooth muscle cells of blood vessels cause swelling ... Progressive accumulation of glycosphingolipids accounts for the associated clinical abnormalities of skin, eye, kidney, heart, ...
Essentials of Glycobiology (first edition, 1999): Glycosphingolipid Degradation. *Grossi S, Regis S, Rosano C, Corsolini F, ...
Glycosphingolipids: This type of fat protects against gastrointestinal infections, especially in the very young and the elderly ...
  • Cellular effects of deoxynojirimycin analogues: uptake, retention and inhibition of glycosphingolipid biosynthesis. (ox.ac.uk)
  • These results establish that D-PDMP encapsulated in a biodegradable polymer provides a superior mode of delivery compared to unconjugated D-PDMP by way of increased gastrointestinal absorption and increased residence time thus providing this otherwise rapidly cleared compound with therapeutic relevance in interfering with atherosclerosis, cardiac hypertrophy, and probably other diseases associated with the deleterious effects of abnormally high glycosphingolipid biosynthesis or deficient catabolism. (johnshopkins.edu)
  • GalNAc-T is the enzyme involved in the biosynthesis of G(M2) and G(D2) glycosphingolipids. (nih.gov)
  • Induction of glycosphingolipid biosynthesis and neurite outgrowth of primary cultured neurons by L- threo -1-phenyl-2-decanoylamino-3-morpholino-1 propanol (L-PDMP). (or.jp)
  • Glycosphingolipids include: Cerebrosides Gangliosides Globosides Gangliosides are mainly found in the cell membranes of the central nervous system, where their carbohydrate group is responsible for the interaction between individual cells and for signaling. (wikipedia.org)
  • GM2 and GD2 gangliosides are sialic acid-containing glycosphingolipids. (nih.gov)
  • Gangliosides, complex glycosphingolipids on the plasma membrane containing one or more sialic acid residues, are key components of microdomains. (jneurosci.org)
  • It is phosphorylated by ceramide kinase (CK) to form ceramide-1-phosphate or it can be glycosylated by glucosylceramide synthase to form glycosphingolipids (cerebrosides, globosides, gangliosides). (frontiersin.org)
  • Gangliosides 1 are acidic glycosphingolipids that form lipid rafts in the outer leaflet of the cell plasma membrane, especially in neuronal cells in the central nervous system. (matreya.com)
  • Glycosphingolipids are a group of lipids (more specifically, sphingolipids) and are a part of the cell membrane. (wikipedia.org)
  • Glycosphingolipids (GSLs) are a subclass of glycolipids that are found in cell membranes of various organisms ranging from bacteria to humans. (springer.com)
  • These glycosphingolipids (GSLs) were expressed in all cell lines with concentrations ranging from 210 to 330 ng per 2 × 10 6 cells. (karger.com)
  • The glycosphingolipid (GSL) storage diseases are caused by genetic disruption in the lysosomal degradation pathway of GSLs, and include Tay-Sachs disease, Sandhoff's disease, Gaucher's disease, Fabry's disease, Krabbe's disease, and several others. (nih.gov)
  • A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early biochemical studies. (nih.gov)
  • In this review, strategies to synthesize these complex glycosphingolipids are presented. (springer.com)
  • While most studies use Gb 3 extracts, chemical synthesis provides a unique tool to access different tailor-made Gb 3 glycosphingolipids. (springer.com)
  • D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds promise for the treatment of atherosclerosis and cardiac hypertrophy but rapid invivo clearance has severely hindered translation to the clinic. (johnshopkins.edu)
  • Synthesis of Gb 3 glycosphingolipids with labeled head groups: Distribution in phase-separated giant unilamellar vesicles. (mpg.de)
  • Neutral glycosphingolipids are also important, for example as blood type antigens. (wikipedia.org)
  • Fabry disease (FD) is an X-linked lysosomal storage disease, affecting glycosphingolipid metabolism. (medscape.com)
  • Glycosphingolipids are a subtype of glycolipids containing the amino alcohol sphingosine. (wikipedia.org)
  • In general, glycosphingolipids can be categorized into two groups: neutral glycosphingolipids (also called glycosphingolipids) and negatively charged glycosphingolipids. (wikipedia.org)
  • Deficiency or absence of alpha-galactosidase A (α-GAL A) activity as a result of gene mutations in the GLA gene (Xq21.3-q22) leads to lysosomal accumulation of neutral glycosphingolipids, most notably globotriaosylceramide (G3b). (medscape.com)
  • Integrin-regulated Rac binding sites are in lipid rafts (membrane domains enriched in cholesterol and glycosphingolipids). (europa.eu)
  • Sulfated glucuronosyl glycosphingolipids (SGGLs) are cell surface molecules that are endowed with the Human Natural Killer-1 (HNK-1) carbohydrate epitope. (karger.com)
  • The addition of a phosphocholine group to ceramide yields sphingomyelin, but the addition of glucose or galactose to ceramide yields glycosphingolipids and sulfatides. (frontiersin.org)
  • Angiokeratoma corporis diffusum is the cutaneous hallmark of Fabry disease, an X-linked inherited disorder caused by a deficiency in the lysosomal enzyme alpha-galactosidase A. Decreased or absent enzyme activity causes uncleaved glycosphingolipids to accumulate in various cell types, particularly in the vascular endothelium, smooth muscle cells, and pericytes, causing ischemia and infarction of tissues. (medscape.com)
  • yet, the glycosphingolipid P antigen is considered its primary target. (medscape.com)
  • We have synthesized a series of DNJ analogues to study the contribution of N-alk(en)yl side chains (C4, C9 or C18) to the behaviour of these analogues in cultured HL60 cells. (ox.ac.uk)
  • The present study further characterizes the properties of N-alk(en)ylated DNJs, and demonstrates that increasing the length of the side chain is a simple way of improving imino sugar retention and therefore inhibitory efficacy for CGT in cultured cells. (ox.ac.uk)
  • These glycosphingolipids accumulate in many different types of cells. (medscape.com)
  • Glycosphingolipid deposits in lysosomes of endothelial, perithelial, and smooth muscle cells of blood vessels cause swelling into the blood vessel lumen. (medscape.com)
  • Deposition of glycosphingolipids can be attributed to both endogenous production and diffusion of material from the circulation. (medscape.com)
  • B4galntltm1Rlp for the study of glycosphingolipid storage disorders. (nih.gov)
  • Glycosphingolipids were once considered to play a purely structural role in cell membranes, but it has since become apparent that they play a key role in the nervous system and are associated with several diseases. (febs.org)
  • Guest editor Sandro Sonnino introduces the contents of the issue in a fascinating interview conducted by Ioannis Tsagakis, starting with eight Review articles that focus on the role of glycosphingolipids in diseases as diverse as Parkinson's disease, cystic fibrosis, infertility, and parasite infections. (febs.org)
  • Persons with Fabry disease who have type AB or B blood also accumulate blood group B glycosphingolipids (those with alpha-galactosyl-terminated residues) and can have more severe Fabry disease (related to greater body substrate mass) than patients with blood group A. This is because these blood groups have two additional terminal alpha-galactosyl moieties. (medscape.com)
  • Glycosphingolipids play also important role in oncogenesis and ontogenesis. (wikipedia.org)
  • Human embryonic stem cell differentiation: role of glycosphingolipid structure. (sinica.edu.tw)
  • Extended globo-series glycosphingolipids that mediate cell adhesion and signaling. (or.jp)
  • Here, we employed a Drosophila model to test links between glycosphingolipids , neurotransmission and neurodegeneration. (bvsalud.org)
  • These findings indicate causal links between glycosphingolipid -dependent neurotransmission and neurodegeneration in this NPC disease model. (bvsalud.org)
  • Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. (kegg.jp)
  • The September issue of FEBS Open Bio puts the involvement of glycosphingolipids in disease in the limelight. (febs.org)
  • Glycosphingolipids are linked to elevated neurotransmission and neurodegeneration in a Drosophila model of Niemann Pick type C. (bvsalud.org)