GLYCEROL esterified with FATTY ACIDS.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, and sweetening agent.
A group of 16-carbon fatty acids that contain no double bonds.
A triglyceride that is used as an antifungal agent.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3.
Any salt or ester of glycerophosphoric acid.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
Lengthy and continuous deprivation of food. (Stedman, 25th ed)
LIPOLYSIS of stored LIPIDS in the ADIPOSE TISSUE to release FREE FATTY ACIDS. Mobilization of stored lipids is under the regulation of lipolytic signals (CATECHOLAMINES) or anti-lipolytic signals (INSULIN) via their actions on the hormone-sensitive LIPASE. This concept does not include lipid transport.
(Z)-9-Octadecenoic acid 1,2,3-propanetriyl ester.
Unctuous combustible substances that are liquid or easily liquefiable on warming, and are soluble in ether but insoluble in water. Such substances, depending on their origin, are classified as animal, mineral, or vegetable oils. Depending on their behavior on heating, they are volatile or fixed. (Dorland, 28th ed)
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Colloids formed by the combination of two immiscible liquids such as oil and water. Lipid-in-water emulsions are usually liquid, like milk or lotion. Water-in-lipid emulsions tend to be creams. The formation of emulsions may be aided by amphiphatic molecules that surround one component of the system to form MICELLES.
Methods for assessing flow through a system by injection of a known quantity of an indicator, such as a dye, radionuclide, or chilled liquid, into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed)
Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.
A group of compounds that are derivatives of octadecanoic acid which is one of the most abundant fatty acids found in animal lipids. (Stedman, 25th ed)
Isomeric forms and derivatives of butanol (C4H9OH).
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
Diglycerides are a type of glyceride, specifically a form of lipid, that contains two fatty acid chains linked to a glycerol molecule by ester bonds.
FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
Tritium is an isotope of hydrogen (specifically, hydrogen-3) that contains one proton and two neutrons in its nucleus, making it radioactive with a half-life of about 12.3 years, and is used in various applications including nuclear research, illumination, and dating techniques due to its low energy beta decay.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.
Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use.
Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.
A series of steps taken in order to conduct research.
Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Treatment process involving the injection of fluid into an organ or tissue.
The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Uptake of substances through the lining of the INTESTINES.
Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed)
The process of cleaving a chemical compound by the addition of a molecule of water.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).

Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations. (1/1383)

It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.  (+info)

The glycerol phosphate, dihydroxyacetone phosphate and monoacylglycerol pathways of glycerolipid synthesis in rat adipose-tissue homogenates. (2/1383)

1. Fat-free homogenates from the epididymal fat-pads of rats were used to measure the rate of palmitate esterification with different substrates. The effectiveness of the acyl acceptors decreased in the order glycerol phosphate, dihydroxyacetone phosphate, 2-octadecenyl-glycerol and 2-hexadecylglycerol. 2. Glycerol phosphate and dihydroxyacetone phosphate inhibited their rates of esterification in a mutually competitive manner. 3. The esterification of glycerol phosphate was also inhibited in a partially competitive manner by 2-octadecenylglycerol and to a lesser extent by 2-hexadecylglycerol. However, glycerol phosphate did not inhibit the esterification of 2-octadecenylglycerol. 4. The esterification of dihydroxyacetone phosphate and 2-hexadecylglycerol was more sensitive to inhibition by clofenapate than was that of glycerol phosphate. Norfenfluramine was more effective in inhibiting the esterification of 2-hexadecylglycerol than that of glycerol phosphate or dihydroxyacetone phosphate. 5 It is concluded that rat adipose tissue can synthesize glycerolipids by three independent routes.  (+info)

The effects of diet on the esterification of glycerol phosphate, dihydroxyacetone phosphate and 2-hexadecylglycerol by homogenates of rat adipose tissue. (3/1383)

1. Male rats were fed for 5 weeks after weaning on a diet containing (by weight) 59% of starch or on diets that contained 39% of starch and 20% of either sucrose, beef tallow or corn oil. 2. The rats fed on the beef tallow consumed more energy than did the rats fed on the starch and sucrose diets. The rats fed on the corn oil drank less water than did the other groups of rats. 3. There were no significant differences between the four groups in terms of body-weight gain, epididymal-fat-pad weight and in the size, number and triacylglycerol content of the adipocytes in the fat-pads. 4. There was a significant correlation (P less than 0.001) between the activities of glycerol phosphate acyltransferase and monoacylglycerol acyltransferase in individual rats. Both of these activities were highest in the group fed on the high-starch diet and both correlated with the consumption of glucose by individual rats in the four groups. 5. The percentage of glycerol phosphate converted into diacylglycerol and triacylglycerol was positively correlated with the mean diameters, surface area and triacylglycerol content of the adipocytes for individual rats and was greates in the sucrose-fed rats. 6. The specific activity of dihydroxyacetone phosphate acyltransferase was highest in the rats fed on beef tallow. This activity was positively correlated with the energy intake for all dietary groups over the 5-week feeding period. 7. The results are discussed in terms of the functions of the three routes of glycerolipid synthesis in adipose tissue.  (+info)

Pancreatic lipase/colipase-mediated triacylglycerol hydrolysis is required for cholesterol transport from lipid emulsions to intestinal cells. (4/1383)

This study tested the hypothesis that dietary cholesterol uptake by intestinal cells is dependent on the structure and composition of the lipid carriers in the extracellular milieu. In in vivo experiments with female C57BL/6 mice, cholesterol absorption from phospholipid/triacylglycerol emulsions was significantly reduced by administration of tetrahydrolipstatin, an inhibitor of pancreatic lipase. This inhibitor had no effect on the absorption of cholesterol from phospholipid vesicles. The importance of pancreatic-lipase-mediated triacylglycerol hydrolysis for cholesterol transport from emulsions to intestinal cells was confirmed by in vitro experiments with rat IEC-6 intestinal cells. Cellular uptake of cholesterol from emulsions with a phospholipid/triacylglycerol molar ratio of <0.3 could be stimulated by pancreatic lipase/colipase hydrolysis of the core neutral lipids. However, pancreatic lipase/colipase was ineffective in hydrolysing triacylglycerols in emulsions with a phospholipid/triacylglycerol molar ratio of >0.3. Phospholipase A2-mediated hydrolysis of the surface phospholipids was necessary prior to triacylglycerol hydrolysis in these phospholipid-rich emulsions and to the stimulation of cholesterol transport from these particles to IEC-6 cells. The data also revealed that minimal triacylglycerol hydrolysis was sufficient to significantly increase cholesterol transport from lipid emulsions to the intestinal cells. Thus the products of triacylglycerol hydrolysis, namely monoacylglycerol and non-esterified fatty acids, are key determinants in mediating cholesterol transport from lipid emulsions to intestinal cells. Taken together, these results support the hypothesis that remodelling of the surface and core components of lipid carriers is necessary prior to absorption of dietary cholesterol from the gastrointestinal tract.  (+info)

Structural determinants for recognition and translocation by the anandamide transporter. (5/1383)

The biological actions of anandamide (arachidonylethanolamide), an endogenous cannabinoid lipid, are terminated by a two-step inactivation process consisting of carrier-mediated uptake and intracellular hydrolysis. Anandamide uptake in neurons and astrocytes is mediated by a high-affinity, Na+-independent transporter that is selectively inhibited by N-(4-hydroxyphenyl)-arachidonamide (AM404). In the present study, we examined the structural determinants governing recognition and translocation of substrates by the anandamide transporter constitutively expressed in a human astrocytoma cell line. Competition experiments with a select group of analogs suggest that substrate recognition by the transporter is favored by a polar nonionizable head group of defined stereochemical configuration containing a hydroxyl moiety at its distal end. The secondary carboxamide group interacts favorably with the transporter, but may be replaced with either a tertiary amide or an ester, suggesting that it may serve as hydrogen acceptor. Thus, 2-arachidonylglycerol, a putative endogenous cannabinoid ester, also may serve as a substrate for the transporter. Substrate recognition requires the presence of at least one cis double bond situated at the middle of the fatty acid carbon chain, indicating a preference for ligands whose hydrophobic tail can adopt a bent U-shaped conformation. On the other hand, uptake experiments with radioactively labeled substrates show that no fewer than four cis nonconjugated double bonds are required for optimal translocation across the cell membrane, suggesting that substrates are transported in a folded hairpin conformation. These results outline the general structural requisites for anandamide transport and may assist in the development of selective inhibitors with potential clinical applications.  (+info)

Comparison of metabolism of free fatty acid by isolated perfused livers from male and female rats. (6/1383)

Livers from normal, fed male and female rats were perfused with different amounts of [1-14C]oleate under steady state conditions, and the rates of uptake and utilization of free fatty acid (FFA) were measured. The uptake of FFA by livers from either male or female rats was proportional to the concentration of FFA in the medium. The rate of uptake of FFA, per g of liver, by livers from female rats exceeded that of the males for the same amount of FFA infused. The incorporation by the liver of exogenous oleic acid into triglyceride, phospholipid, and oxidation products was proportional to the uptake of FFA. Livers from female rats incorporated more oleate into triglyceride (TG) and less into phospholipid (PL) and oxidation products than did livers from male animals. Livers from female rats secreted more TG than did livers from male animals when infused with equal quantities of oleate. The incorporation of endogenous fatty acid into TG of the perfusate was inhibite) by exogenous oleate. At low concentrations of perfusate FFA, however, endogenous fatty acids contributed substantially to the increased output of TG by livers from female animals. Production of 14CO2 and radioactive ketone bodies increased with increasing uptake of FFA. The partition of oleate between oxidative pathways (CO2 production and ketogenesis) was modified by the availability of the fatty acid substrate with livers from either sex. The percent incorporation of radioactivity into CO2 reached a maximum, whereas incorporation into ketone bodies continued to increase. The output of ketone bodies was dependent on the uptake of FFA, and output by livers from female animals was less than by livers from male rats. The increase in rate of ketogenesis was dependent on the influx of exogenous FFA, while ketogenesis from endogenous sources remained relatively stable. The output of glucose by the liver increased with the uptake of FFA, but no difference due to sex was observed. The output of urea by livers from male rats was unaffected by oleate, while the output of urea by livers from females decreased as the uptake of FFA increased. A major conclusion to be derived from this work is that oleate is not metabolized identically by livers from the two sexes, but rather, per gram of liver, livers from female rats take up and esterify more fatty acid to TG and oxidize less than do livers from male animals; livers from female animals synthesize and secrete more triglyceride than do livers from male animals when provided with equal quantities of free fatty acid.  (+info)

Involvement of lipids in ferriprotoporphyrin IX polymerization in malaria. (7/1383)

Approximately 70% of the initial ferriprotoporphyrin IX polymerizing activity in cell-free preparations of erythrocytes infected with Plasmodium berghei was recovered in a chloroform extract. No polymerizing activity remained in the residue. In studies to identify substances that promote FP polymerization, arachidonic, linoleic, oleic, and palmitoleic acids, 1-mono- and di-oleoylglycerol, and the detergents, SDS, Tween 80, and n-octyl-glucopyranoside, were active. Tri-oleoylglycerol, cholesterol, di-oleoylphosphatidylethanolamine, and stearic and palmitic acids were inactive. The model lipid, mono-oleoylglycerol (250 nmol), co-precipitated with FP from a 0.09 M acetate medium at pH 5 and promoted the polymerization of 215 nmol (61%) of the ferriprotoporphyrin IX in the precipitate during a 24-h incubation at 37 degrees C. Polymerization was maximal at pH 5, it was approximately linear for 2 h, and it continued at a decreasing rate for 24 h. The polymer contained exclusively ferriprotoporphyrin IX (97+/-1.3%, mean+/-S.E., n=4) and exhibited the solubility and the electronic absorption and infrared spectral characteristics of the sequestered ferriprotoporphyrin IX of hemozoin. Detergents presumably promote polymerization in an acid medium by helping to dissolve monomeric FP. We suggest that unsaturated lipids co-precipitate with FP in the parasite's acidic food vacuole and also dissolve sufficient monomeric FP to allow polymerization.  (+info)

High intake of milk fat inhibits intestinal colonization of Listeria but not of Salmonella in rats. (8/1383)

During fat digestion, fatty acids and monoglycerides are liberated in the gastrointestinal tract. Generally, these lipids are potent inhibitors of gram-positive bacteria in vitro but have less effect on gram-negative microbes. Considering this, we hypothesized that increased intake of bovine milk fat would result in enhanced gastrointestinal killing of Listeria monocytogenes (gram-positive) but have little effect on infection with Salmonella enteritidis (gram-negative) in rats. To test this, rats were fed either low milk fat diets (10% of energy obtained from milk fat, corresponding to 4. 2 g fat/100 g diet) or high milk fat diets (40% of energy obtained from milk fat, corresponding to 19.6 g fat/100 g diet). After adaptation to these diets, rats were orally infected with Listeria or Salmonella. Greater milk fat consumption in Listeria-infected rats diminished intestinal colonization of Listeria (P < 0.05) and reduced diarrhea (P < 0.05). Analysis of gastrointestinal contents showed that killing of Listeria occurred predominantly in the stomach. High milk fat intake significantly augmented this gastric listericidal capacity (P < 0.05) and raised the concentration of medium-chain and saturated long-chain free fatty acids and of monoglycerides of C12:0, C14:0, C16:0, C18:0, and C18:1 in gastric chyme (P < 0.05). Considering the in vitro listericidal capacity of these agents, it was concluded that particularly the free fatty acids C10:0, C12:0 and C14:0 and the monoglycerides of C12:0, C14:0, and C16:0 seem to play a pivotal role in this enhanced Listeria killing. In contrast, Salmonella infection was not affected by milk fat consumption. In conclusion, high milk fat intake results in higher concentrations of gastric bactericidal lipids and thereby protects against Listeria infection but not against Salmonella.  (+info)

Glycerides are esters formed from glycerol and one, two, or three fatty acids. They include monoglycerides (one fatty acid), diglycerides (two fatty acids), and triglycerides (three fatty acids). Triglycerides are the main constituents of natural fats and oils, and they are a major form of energy storage in animals and plants. High levels of triglycerides in the blood, also known as hypertriglyceridemia, can increase the risk of heart disease and stroke.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

Glycerol, also known as glycerine or glycerin, is a simple polyol (a sugar alcohol) with a sweet taste and a thick, syrupy consistency. It is a colorless, odorless, viscous liquid that is slightly soluble in water and freely miscible with ethanol and ether.

In the medical field, glycerol is often used as a medication or supplement. It can be used as a laxative to treat constipation, as a source of calories and energy for people who cannot eat by mouth, and as a way to prevent dehydration in people with certain medical conditions.

Glycerol is also used in the production of various medical products, such as medications, skin care products, and vaccines. It acts as a humectant, which means it helps to keep things moist, and it can also be used as a solvent or preservative.

In addition to its medical uses, glycerol is also widely used in the food industry as a sweetener, thickening agent, and moisture-retaining agent. It is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced by the body. Its chemical formula is C16:0, indicating that it contains 16 carbon atoms and no double bonds. Palmitic acid is found in high concentrations in animal fats, such as butter, lard, and beef tallow, as well as in some vegetable oils, like palm kernel oil and coconut oil.

In the human body, palmitic acid can be synthesized from other substances or absorbed through the diet. It plays a crucial role in various biological processes, including energy storage, membrane structure formation, and signaling pathways regulation. However, high intake of palmitic acid has been linked to an increased risk of developing cardiovascular diseases due to its potential to raise low-density lipoprotein (LDL) cholesterol levels in the blood.

It is essential to maintain a balanced diet and consume palmitic acid-rich foods in moderation, along with regular exercise and a healthy lifestyle, to reduce the risk of chronic diseases.

Triacetin is not a medical term, but it is a chemical compound with the formula C9H14O6. It is also known as glycerol triacetate and is an ester formed from glycerin and acetic acid. Triacetin is used in various applications including as a food additive, plasticizer, solvent, and in the manufacture of explosives.

In the medical field, triacetin has been studied for its potential therapeutic uses, such as a topical agent to enhance the penetration of drugs through the skin, and as an excipient in pharmaceutical formulations. However, it is not commonly used as a medication or treatment.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Lipase is an enzyme that is produced by the pancreas and found in the digestive system of most organisms. Its primary function is to catalyze the hydrolysis of fats (triglycerides) into smaller molecules, such as fatty acids and glycerol, which can then be absorbed by the intestines and utilized for energy or stored for later use.

In medical terms, lipase levels in the blood are often measured to diagnose or monitor conditions that affect the pancreas, such as pancreatitis (inflammation of the pancreas), pancreatic cancer, or cystic fibrosis. Elevated lipase levels may indicate damage to the pancreas and its ability to produce digestive enzymes.

Glycerophosphates are esters of glycerol and phosphoric acid. In the context of biochemistry and medicine, glycerophosphates often refer to glycerol 3-phosphate (also known as glyceraldehyde 3-phosphate or glycerone phosphate) and its derivatives.

Glycerol 3-phosphate plays a crucial role in cellular metabolism, particularly in the process of energy production and storage. It is an important intermediate in both glycolysis (the breakdown of glucose to produce energy) and gluconeogenesis (the synthesis of glucose from non-carbohydrate precursors).

In addition, glycerophosphates are also involved in the formation of phospholipids, a major component of cell membranes. The esterification of glycerol 3-phosphate with fatty acids leads to the synthesis of phosphatidic acid, which is a key intermediate in the biosynthesis of other phospholipids.

Abnormalities in glycerophosphate metabolism have been implicated in various diseases, including metabolic disorders and neurological conditions.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

Starvation is a severe form of malnutrition, characterized by insufficient intake of calories and nutrients to meet the body's energy requirements. This leads to a catabolic state where the body begins to break down its own tissues for energy, resulting in significant weight loss, muscle wasting, and weakness. Prolonged starvation can also lead to serious medical complications such as organ failure, electrolyte imbalances, and even death. It is typically caused by a lack of access to food due to poverty, famine, or other social or economic factors, but can also be a result of severe eating disorders such as anorexia nervosa.

Lipid mobilization, also known as lipolysis, is the process by which fat cells (adipocytes) break down stored triglycerides into free fatty acids and glycerol, which can then be released into the bloodstream and used for energy by the body's cells. This process is regulated by hormones such as adrenaline, noradrenaline, glucagon, and cortisol, which activate enzymes in the fat cell that catalyze the breakdown of triglycerides. Lipid mobilization is an important physiological response to fasting, exercise, and stress, and plays a key role in maintaining energy homeostasis in the body.

Triolein is a type of triglyceride, which is a kind of fat molecule. More specifically, triolein is the triglyceride formed from three molecules of oleic acid, a common monounsaturated fatty acid. It is often used in scientific research and studies involving lipid metabolism, and it can be found in various vegetable oils and animal fats.

In the context of medicine and pharmacology, oils are typically defined as lipid-based substances that are derived from plants or animals. They are made up of molecules called fatty acids, which can be either saturated or unsaturated. Oils are often used in medical treatments and therapies due to their ability to deliver active ingredients through the skin, as well as their moisturizing and soothing properties. Some oils, such as essential oils, are also used in aromatherapy for their potential therapeutic benefits. However, it's important to note that some oils can be toxic or irritating if ingested or applied to the skin in large amounts, so they should always be used with caution and under the guidance of a healthcare professional.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

An emulsion is a type of stable mixture of two immiscible liquids, such as oil and water, which are normally unable to mix together uniformly. In an emulsion, one liquid (the dispersed phase) is broken down into small droplets and distributed throughout the other liquid (the continuous phase), creating a stable, cloudy mixture.

In medical terms, emulsions can be used in various pharmaceutical and cosmetic applications. For example, certain medications may be formulated as oil-in-water or water-in-oil emulsions to improve their absorption, stability, or palatability. Similarly, some skincare products and makeup removers contain emulsifiers that help create stable mixtures of water and oils, allowing for effective cleansing and moisturizing.

Emulsions can also occur naturally in the body, such as in the digestion of fats. The bile salts produced by the liver help to form small droplets of dietary lipids (oil) within the watery environment of the small intestine, allowing for efficient absorption and metabolism of these nutrients.

Indicator dilution techniques are a group of methods used in medicine and research to measure various physiological variables, such as cardiac output or cerebral blood flow. These techniques involve introducing a known quantity of an indicator substance (like a dye or a radioactive tracer) into the system being studied and then measuring its concentration over time at a specific location downstream.

The basic principle behind these techniques is that the concentration of the indicator substance will be inversely proportional to the flow rate of the fluid through which it is moving. By measuring the concentration of the indicator substance at different points in time, researchers can calculate the flow rate using mathematical formulas.

Indicator dilution techniques are widely used in clinical and research settings because they are relatively non-invasive and can provide accurate and reliable measurements of various physiological variables. Some common examples of indicator dilution techniques include thermodilution, dye dilution, and Fick principle-based methods.

Adipose tissue, also known as fatty tissue, is a type of connective tissue that is composed mainly of adipocytes (fat cells). It is found throughout the body, but is particularly abundant in the abdominal cavity, beneath the skin, and around organs such as the heart and kidneys.

Adipose tissue serves several important functions in the body. One of its primary roles is to store energy in the form of fat, which can be mobilized and used as an energy source during periods of fasting or exercise. Adipose tissue also provides insulation and cushioning for the body, and produces hormones that help regulate metabolism, appetite, and reproductive function.

There are two main types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is the more common form and is responsible for storing energy as fat. BAT, on the other hand, contains a higher number of mitochondria and is involved in heat production and energy expenditure.

Excessive accumulation of adipose tissue can lead to obesity, which is associated with an increased risk of various health problems such as diabetes, heart disease, and certain types of cancer.

Stearic acid is not typically considered a medical term, but rather a chemical compound. It is a saturated fatty acid with the chemical formula C18H36O2. Stearic acid is commonly found in various foods such as animal fats and vegetable oils, including cocoa butter and palm oil.

In a medical context, stearic acid might be mentioned in relation to nutrition or cosmetics. For example, it may be listed as an ingredient in some skincare products or medications where it is used as an emollient or thickening agent. It's also worth noting that while stearic acid is a saturated fat, some studies suggest that it may have a more neutral effect on blood cholesterol levels compared to other saturated fats. However, this is still a topic of ongoing research and debate in the medical community.

Butanols are a family of alcohols with four carbon atoms and a chemical formula of C4H9OH. They are commonly used as solvents, intermediates in chemical synthesis, and fuel additives. The most common butanol is n-butanol (normal butanol), which has a straight chain of four carbon atoms. Other forms include secondary butanols (such as isobutanol) and tertiary butanols (such as tert-butanol). These compounds have different physical and chemical properties due to the differences in their molecular structure, but they all share the common characteristic of being alcohols with four carbon atoms.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

The epididymis is a tightly coiled tube located on the upper and posterior portion of the testicle that serves as the site for sperm maturation and storage. It is an essential component of the male reproductive system. The epididymis can be divided into three parts: the head (where newly produced sperm enter from the testicle), the body, and the tail (where mature sperm exit and are stored). Any abnormalities or inflammation in the epididymis may lead to discomfort, pain, or infertility.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

Diacylglycerols (also known as diglycerides) are a type of glyceride, which is a compound that consists of glycerol and one or more fatty acids. Diacylglycerols contain two fatty acid chains bonded to a glycerol molecule through ester linkages. They are important intermediates in the metabolism of lipids and can be found in many types of food, including vegetable oils and dairy products. In the body, diacylglycerols can serve as a source of energy and can also play roles in cell signaling processes.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and grapeseed oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature. Oleic acid is an important component of human diet and has been shown to have potential health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other personal care products.

Tritium is not a medical term, but it is a term used in the field of nuclear physics and chemistry. Tritium (symbol: T or 3H) is a radioactive isotope of hydrogen with two neutrons and one proton in its nucleus. It is also known as heavy hydrogen or superheavy hydrogen.

Tritium has a half-life of about 12.3 years, which means that it decays by emitting a low-energy beta particle (an electron) to become helium-3. Due to its radioactive nature and relatively short half-life, tritium is used in various applications, including nuclear weapons, fusion reactors, luminous paints, and medical research.

In the context of medicine, tritium may be used as a radioactive tracer in some scientific studies or medical research, but it is not a term commonly used to describe a medical condition or treatment.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Acetates, in a medical context, most commonly refer to compounds that contain the acetate group, which is an functional group consisting of a carbon atom bonded to two hydrogen atoms and an oxygen atom (-COO-). An example of an acetate is sodium acetate (CH3COONa), which is a salt formed from acetic acid (CH3COOH) and is often used as a buffering agent in medical solutions.

Acetates can also refer to a group of medications that contain acetate as an active ingredient, such as magnesium acetate, which is used as a laxative, or calcium acetate, which is used to treat high levels of phosphate in the blood.

In addition, acetates can also refer to a process called acetylation, which is the addition of an acetyl group (-COCH3) to a molecule. This process can be important in the metabolism and regulation of various substances within the body.

Lipid metabolism is the process by which the body breaks down and utilizes lipids (fats) for various functions, such as energy production, cell membrane formation, and hormone synthesis. This complex process involves several enzymes and pathways that regulate the digestion, absorption, transport, storage, and consumption of fats in the body.

The main types of lipids involved in metabolism include triglycerides, cholesterol, phospholipids, and fatty acids. The breakdown of these lipids begins in the digestive system, where enzymes called lipases break down dietary fats into smaller molecules called fatty acids and glycerol. These molecules are then absorbed into the bloodstream and transported to the liver, which is the main site of lipid metabolism.

In the liver, fatty acids may be further broken down for energy production or used to synthesize new lipids. Excess fatty acids may be stored as triglycerides in specialized cells called adipocytes (fat cells) for later use. Cholesterol is also metabolized in the liver, where it may be used to synthesize bile acids, steroid hormones, and other important molecules.

Disorders of lipid metabolism can lead to a range of health problems, including obesity, diabetes, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). These conditions may be caused by genetic factors, lifestyle habits, or a combination of both. Proper diagnosis and management of lipid metabolism disorders typically involves a combination of dietary changes, exercise, and medication.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

Pharmaceutical chemistry is a branch of chemistry that deals with the design, synthesis, and development of chemical entities used as medications. It involves the study of drugs' physical, chemical, and biological properties, as well as their interactions with living organisms. This field also encompasses understanding the absorption, distribution, metabolism, and excretion (ADME) of drugs in the body, which are critical factors in drug design and development. Pharmaceutical chemists often work closely with biologists, medical professionals, and engineers to develop new medications and improve existing ones.

Dietary fats, also known as fatty acids, are a major nutrient that the body needs for energy and various functions. They are an essential component of cell membranes and hormones, and they help the body absorb certain vitamins. There are several types of dietary fats:

1. Saturated fats: These are typically solid at room temperature and are found in animal products such as meat, butter, and cheese, as well as tropical oils like coconut and palm oil. Consuming a high amount of saturated fats can raise levels of unhealthy LDL cholesterol and increase the risk of heart disease.
2. Unsaturated fats: These are typically liquid at room temperature and can be further divided into monounsaturated and polyunsaturated fats. Monounsaturated fats, found in foods such as olive oil, avocados, and nuts, can help lower levels of unhealthy LDL cholesterol while maintaining levels of healthy HDL cholesterol. Polyunsaturated fats, found in foods such as fatty fish, flaxseeds, and walnuts, have similar effects on cholesterol levels and also provide essential omega-3 and omega-6 fatty acids that the body cannot produce on its own.
3. Trans fats: These are unsaturated fats that have been chemically modified to be solid at room temperature. They are often found in processed foods such as baked goods, fried foods, and snack foods. Consuming trans fats can raise levels of unhealthy LDL cholesterol and lower levels of healthy HDL cholesterol, increasing the risk of heart disease.

It is recommended to limit intake of saturated and trans fats and to consume more unsaturated fats as part of a healthy diet.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

Lactates, also known as lactic acid, are compounds that are produced by muscles during intense exercise or other conditions of low oxygen supply. They are formed from the breakdown of glucose in the absence of adequate oxygen to complete the full process of cellular respiration. This results in the production of lactate and a hydrogen ion, which can lead to a decrease in pH and muscle fatigue.

In a medical context, lactates may be measured in the blood as an indicator of tissue oxygenation and metabolic status. Elevated levels of lactate in the blood, known as lactic acidosis, can indicate poor tissue perfusion or hypoxia, and may be seen in conditions such as sepsis, cardiac arrest, and severe shock. It is important to note that lactates are not the primary cause of acidemia (low pH) in lactic acidosis, but rather a marker of the underlying process.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Epinephrine, also known as adrenaline, is a hormone and a neurotransmitter that is produced in the body. It is released by the adrenal glands in response to stress or excitement, and it prepares the body for the "fight or flight" response. Epinephrine works by binding to specific receptors in the body, which causes a variety of physiological effects, including increased heart rate and blood pressure, improved muscle strength and alertness, and narrowing of the blood vessels in the skin and intestines. It is also used as a medication to treat various medical conditions, such as anaphylaxis (a severe allergic reaction), cardiac arrest, and low blood pressure.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Solvents, in a medical context, are substances that are capable of dissolving or dispersing other materials, often used in the preparation of medications and solutions. They are commonly organic chemicals that can liquefy various substances, making it possible to administer them in different forms, such as oral solutions, topical creams, or injectable drugs.

However, it is essential to recognize that solvents may pose health risks if mishandled or misused, particularly when they contain volatile organic compounds (VOCs). Prolonged exposure to these VOCs can lead to adverse health effects, including respiratory issues, neurological damage, and even cancer. Therefore, it is crucial to handle solvents with care and follow safety guidelines to minimize potential health hazards.

Hydrolysis is a chemical process, not a medical one. However, it is relevant to medicine and biology.

Hydrolysis is the breakdown of a chemical compound due to its reaction with water, often resulting in the formation of two or more simpler compounds. In the context of physiology and medicine, hydrolysis is a crucial process in various biological reactions, such as the digestion of food molecules like proteins, carbohydrates, and fats. Enzymes called hydrolases catalyze these hydrolysis reactions to speed up the breakdown process in the body.

Phosphatidylcholines (PtdCho) are a type of phospholipids that are essential components of cell membranes in living organisms. They are composed of a hydrophilic head group, which contains a choline moiety, and two hydrophobic fatty acid chains. Phosphatidylcholines are crucial for maintaining the structural integrity and function of cell membranes, and they also serve as important precursors for the synthesis of signaling molecules such as acetylcholine. They can be found in various tissues and biological fluids, including blood, and are abundant in foods such as soybeans, eggs, and meat. Phosphatidylcholines have been studied for their potential health benefits, including their role in maintaining healthy lipid metabolism and reducing the risk of cardiovascular disease.

Reference standards in a medical context refer to the established and widely accepted norms or benchmarks used to compare, evaluate, or measure the performance, accuracy, or effectiveness of diagnostic tests, treatments, or procedures. These standards are often based on extensive research, clinical trials, and expert consensus, and they help ensure that healthcare practices meet certain quality and safety thresholds.

For example, in laboratory medicine, reference standards may consist of well-characterized samples with known concentrations of analytes (such as chemicals or biological markers) that are used to calibrate instruments and validate testing methods. In clinical practice, reference standards may take the form of evidence-based guidelines or best practices that define appropriate care for specific conditions or patient populations.

By adhering to these reference standards, healthcare professionals can help minimize variability in test results, reduce errors, improve diagnostic accuracy, and ensure that patients receive consistent, high-quality care.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

PEG-16 macadamia glycerides is the polyethylene glycol derivative of the mono- and diglycerides derived from macadamia nut oil ... PEG-16 macadamia glycerides are commonly used in cosmetic formulations as an emollient, refatter, conditioner, solubilizer, and ...
antaron™ soja glyceride INCI/chemical name: maleated soybean oil glyceryl/octyldodecanol esters. SDS Link , *overview ... antaron™ soja glyceride is a nature derived, biodegradable film former that delivers water resistance and SPF boosting benefits ... Antaron™ soja glyceride enables the creation of more natural sun care creams, lotions, gels, and color cosmetics. ...
... Orig Life Evol Biosph ...
BHB Glyceride), bringing the benefits of ketones without the drawbacks ... Tecton Ketone Hydration Drink is a caffeine-free clean energy drink using Tectons beta-hydroxybutyrate glyceride ketone ester ...
Trilactic glyceride (TLG) obtains both excellences of lactic acid and SCFA. This study was to investigate the effects of ... These data suggested that supplementing trilactic glyceride had beneficial impacts on promoting nutrients’ metabolism, ... trilactic glyceride on growth performance, blood parameters, liver function, intestinal morphology and intestine function of ... trilactic glyceride; intestinal function; gut microbiota; weaned piglet Subject Biology and Life Sciences, Food Science and ...
Home / Product Ingredients / HYDROGENATED -PALM -GLYCERIDES. Filter Bestsellers. Top Rated. New In. Price Low to High. Price ...
Open Beauty Facts est développé par une association à but non lucratif indépendante de lindustrie. Open Food Facts est fait pour tous, par tous, et est financé par tous. Vous pouvez soutenir notre travail en donnant à Open Beauty Facts et aussi en utilisant le moteur de recherche Lilo ...
FeruliShield™ Feruloyl Glycerides are bio-based SPF boosters with antioxidant and photo-protection capacity. FeruliShield™ ...
... PEG-6 Caprylic Glycerides - Emulsifier, emollient, solubilizer, refatting, and ... Sorry, we have not researched any Hair Masks with PEG-6 Caprylic Glycerides yet… 🧐 ...
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience ...
Hydrogenated vegetable glycerides citrate is a hydrogenated blend of vegetable glycerides that functions chiefly as an ... Hydrogenated Vegetable Glycerides Citrate description A hydrogenated blend of vegetable glycerides that functions chiefly as an ... In this case, the vegetable glyceride component is mixed with citric acid, at which point it can also help to stabilise ... Hydrogenated Vegetable Glycerides Citrate references * https://www.parchem.com/chemical-supplier-distributor/Hydrogenated- ...
Manufacturing Process Phase A: Mix all ingredients together. Phase B: Slowly add Cosphaderm® X 34 to phase A under strong stirring. Continue stirring for approx. 15 min at 500 rpm until complete dissolution. Then heat to 80 °C. Phase C: Mix all ingredients together and heat to 80 °C. Phase C: Add phase C to phase A+B and homogenise for approx. 1 min using Ultra-Turrax. Cool down under medium stirringhas not ...
Glycerides (glycerolipids, such as triglycerides, diglycerides, monoglycerides and lecithin). * Cannot be used with free fatty ... Fatty Acid Methylation Kit for glycerides(100 tests). 13246-84. Room Temp.. 100 tests. 309.00. ... Methylate fatty acids from glycerides in your sample. *React at room temperature; suitable for volatile short-chain fatty acids ... Fatty Acid Methylation Kit for Glycerides. for Glycerides Features. * ...
Acme Hardesty is a marketer and distributor of Hydrogenated Tallow Glyceride and many other Oleochemicals for a variety of uses ... Hydrogenated Tallow Glyceride. Inci Name:. Hydrogenated Tallow Glyceride. Chemical Name:. Hydrogenated Tallow Glycerides. CAS#: ...
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice ...
Hydrogenated Palm Glycerides Citrate. Inci name. Hydrogenated palm glycerides citrate. French name. Hydrogenated Palm ... Glycerides Citrate. CAS number.. 91744-68-2. EC number.. 294-633-1 Other appellations. Hydrogenated palm glycerides citrate , ...
Mono- and di-glycerides remain due to the incomplete conversion of triglycerides to FAMEs during the transesterification ... Testing for Glycerin/Glyceride Contamination. ASTM D6751 outlines specifications that must be met for B100 biodiesel to be ... Specifications are set for free glycerin and also for total glycerin (bound in mono-, di-, and tri-glycerides). The need to ... The actual procedures for testing B100 biodiesel for glycerin/glycerides can be found in ASTM D6584 and DIN EN 14105. Both ...
GLP - Guideline study. According to the ECHA guidance document "Practical guide 6: How to report read-across and categories (March 2010)", the reliability was changed from RL1 to RL2 to reflect the fact that this study was conducted on a read-across substance ...
The stability of the substance glycerides, C12-18, di- and tri- (CAS 91744-28-4) is not considered to be critical. ...
The flash point for the substance glycerides, palm-oil mono-, hydrogenated, acetates (CAS 93572-32-8) was determined according ...
Hydrogenated Palm Glycerides. leaf2x.png. Helps keep the ingredients in our baby lotion from separating and gives it a ...
Water, Glycerin, Ethylhexyl Cocoate, Hydrogenated Coco-Glycerides, Stearyl Alcohol, Butylene Glycol, Cetyl Alcohol, Caprylic/ ...
vitamin C (ascorbic acid) although usually derived from corn, is probably not GM because it is not likely made in North America ...
Kartha, A. R. S. (1953). The glyceride structure of natural fats. II. The rule of glyceride type distribution of natural fats. ... I. Change of glyceride composition during the course of interesterification. Journal of the American Oil Chemists Society, 45 ... Lutton, E. S. (1950). Review of the polymorphism of saturated even glycerides. Journal of the American Oil Chemists Society, ... Kuksis, A. (1972). Newer developments in determination of structure of glycerides and phosphoglycerides. In R. T. Holman (Ed ...
Hydrogenated Coco-Glycerides. Hydrogenated coco-glycerides serve as an emulsifier. It leaves skin feeling smooth, soft and ... Glycerides such as c10-18 triglycerides are products of glycerol (esters) obtained by reaction with fats. They create a smooth ...
Synthesis and tribological investigation of lipoyl glycerides. -(Peer Reviewed Journal) Biresaw, G., Laszlo, J.A., Evans, K.O ... Pilot-scale bioreactor production and long term stability of feruloyl soy glycerides-(Abstract Only) Compton, D.L., Goodell, J. ... Long-term physical and oxidative stability of liposomes containing glycerides of lipoic acid-(Abstract Only) Laszlo, J.A., ... Characterization of alpha-Glucan and Feruloyl Soy Glyceride Glucan (FSGG) Nanoparticles-(Abstract Only) Evans, K.O., Compton, D ...
Glyceride and PRRSv shedding. To study the effect of the glyceride product on PRRSv shedding, a Poulpharm research team ... To understand the mode of action of glycerides of C12 against PRRSv better, an in vitro test is currently being executed. The ... Hence, glycerides of C12 seemed to have suppressed the susceptibility to secondary infections with S. suis. ... With glyceride and lysolecithin product applications, FRA®melco promotes animal health and performance in a sustainable manner ...

No FAQ available that match "glycerides"