The form and structure of analytic studies in epidemiologic and clinical research.
Studies designed to examine associations, commonly, hypothesized causal relations. They are usually concerned with identifying or measuring the effects of risk factors or exposures. The common types of analytic study are CASE-CONTROL STUDIES; COHORT STUDIES; and CROSS-SECTIONAL STUDIES.
Field of medicine concerned with the determination of causes, incidence, and characteristic behavior of disease outbreaks affecting human populations. It includes the interrelationships of host, agent, and environment as related to the distribution and control of disease.
Critical and exhaustive investigation or experimentation, having for its aim the discovery of new facts and their correct interpretation, the revision of accepted conclusions, theories, or laws in the light of newly discovered facts, or the practical application of such new or revised conclusions, theories, or laws. (Webster, 3d ed)
Research techniques that focus on study designs and data gathering methods in human and animal populations.
A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly.
The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals.
Any deviation of results or inferences from the truth, or processes leading to such deviation. Bias can result from several sources: one-sided or systematic variations in measurement from the true value (systematic error); flaws in study design; deviation of inferences, interpretations, or analyses based on flawed data or data collection; etc. There is no sense of prejudice or subjectivity implied in the assessment of bias under these conditions.
The term "United States" in a medical context often refers to the country where a patient or study participant resides, and is not a medical term per se, but relevant for epidemiological studies, healthcare policies, and understanding differences in disease prevalence, treatment patterns, and health outcomes across various geographic locations.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment.
The exposure to potentially harmful chemical, physical, or biological agents that occurs as a result of one's occupation.
Factors that can cause or prevent the outcome of interest, are not intermediate variables, and are not associated with the factor(s) under investigation. They give rise to situations in which the effects of two processes are not separated, or the contribution of causal factors cannot be separated, or the measure of the effect of exposure or risk is distorted because of its association with other factors influencing the outcome of the study.
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Systematic gathering of data for a particular purpose from various sources, including questionnaires, interviews, observation, existing records, and electronic devices. The process is usually preliminary to statistical analysis of the data.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc.
Predetermined sets of questions used to collect data - clinical data, social status, occupational group, etc. The term is often applied to a self-completed survey instrument.
Application of statistical procedures to analyze specific observed or assumed facts from a particular study.
A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.
Statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable. A common application is in epidemiology for estimating an individual's risk (probability of a disease) as a function of a given risk factor.
Glucose in blood.
Minor hemoglobin components of human erythrocytes designated A1a, A1b, and A1c. Hemoglobin A1c is most important since its sugar moiety is glucose covalently bound to the terminal amino acid of the beta chain. Since normal glycohemoglobin concentrations exclude marked blood glucose fluctuations over the preceding three to four weeks, the concentration of glycosylated hemoglobin A is a more reliable index of the blood sugar average over a long period of time.
Financial support of research activities.
Substances which lower blood glucose levels.
Research carried out by nurses, generally in clinical settings, in the areas of clinical practice, evaluation, nursing education, nursing administration, and methodology.
The moral obligations governing the conduct of research. Used for discussions of research ethics as a general topic.
A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
Those individuals engaged in research.
The integration of epidemiologic, sociological, economic, and other analytic sciences in the study of health services. Health services research is usually concerned with relationships between need, demand, supply, use, and outcome of health services. The aim of the research is evaluation, particularly in terms of structure, process, output, and outcome. (From Last, Dictionary of Epidemiology, 2d ed)
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg).
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
The application of discoveries generated by laboratory research and preclinical studies to the development of clinical trials and studies in humans. A second area of translational research concerns enhancing the adoption of best practices.
A pathological state in which BLOOD GLUCOSE level is less than approximately 140 mg/100 ml of PLASMA at fasting, and above approximately 200 mg/100 ml plasma at 30-, 60-, or 90-minute during a GLUCOSE TOLERANCE TEST. This condition is seen frequently in DIABETES MELLITUS, but also occurs with other diseases and MALNUTRITION.
A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
The number of new cases of a given disease during a given period in a specified population. It also is used for the rate at which new events occur in a defined population. It is differentiated from PREVALENCE, which refers to all cases, new or old, in the population at a given time.
A status with BODY WEIGHT that is grossly above the acceptable or desirable weight, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS.
Research into the cause, transmission, amelioration, elimination, or enhancement of inherited disorders and traits.
A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
The study of laws, theories, and hypotheses through a systematic examination of pertinent facts and their interpretation in the field of dentistry. (From Jablonski, Illustrated Dictionary of Dentistry, 1982, p674)
Maintenance of a constant blood glucose level by perfusion or infusion with glucose or insulin. It is used for the study of metabolic rates (e.g., in glucose, lipid, amino acid metabolism) at constant glucose concentration.
Abnormally high BLOOD GLUCOSE level.
The total number of cases of a given disease in a specified population at a designated time. It is differentiated from INCIDENCE, which refers to the number of new cases in the population at a given time.
Peripheral, autonomic, and cranial nerve disorders that are associated with DIABETES MELLITUS. These conditions usually result from diabetic microvascular injury involving small blood vessels that supply nerves (VASA NERVORUM). Relatively common conditions which may be associated with diabetic neuropathy include third nerve palsy (see OCULOMOTOR NERVE DISEASES); MONONEUROPATHY; mononeuropathy multiplex; diabetic amyotrophy; a painful POLYNEUROPATHY; autonomic neuropathy; and thoracoabdominal neuropathy. (From Adams et al., Principles of Neurology, 6th ed, p1325)
Abstaining from all food.
A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289)
The time period before the development of symptomatic diabetes. For example, certain risk factors can be observed in subjects who subsequently develop INSULIN RESISTANCE as in type 2 diabetes (DIABETES MELLITUS, TYPE 2).
Elements of limited time intervals, contributing to particular results or situations.
An indicator of body density as determined by the relationship of BODY WEIGHT to BODY HEIGHT. BMI=weight (kg)/height squared (m2). BMI correlates with body fat (ADIPOSE TISSUE). Their relationship varies with age and gender. For adults, BMI falls into these categories: below 18.5 (underweight); 18.5-24.9 (normal); 25.0-29.9 (overweight); 30.0 and above (obese). (National Center for Health Statistics, Centers for Disease Control and Prevention)
VASCULAR DISEASES that are associated with DIABETES MELLITUS.

Application of computer-assisted interviews to sexual behavior research. (1/461)

Collection of sensitive data with the use of video-enhanced, computer-assisted, self-administered interviews (V-CASI) has the potential to reduce interview bias and improve the validity of the study. The purpose of this study was to compare responses to sensitive questions elicited by V-CASI and by face-to-face interview (FTFI) methods. Women attending a New Orleans, Louisiana, public family planning or sexually transmitted disease clinic from July 1995 to July 1996, diagnosed with a Chlamydia trachomatis infection responded to eight close-ended behavioral questions (four socially undesirable, two socially desirable, and two neutral behaviors) using both FTFI and V-CASI techniques in a randomized crossover design. Of the 280 women included, the mean age was 23 years, 95 percent were African American, and 71 percent felt comfortable using computers. While kappa scores indicated good-to-excellent agreement between interview techniques, women tended to admit to socially undesirable behaviors more often on V-CASI compared with FTFI. Thirty percent of the women gave a discrepant response between V-CASI and FTFI toward social desirability. Women who reported a socially undesirable behavior in V-CASI (i.e., more than two sex partners and infrequent condom usage) were more likely to have a discrepant response. Utilization of the same logistic regression model to predict condom use yielded different results when data from V-CASI were used compared with data from FTFI. The V-CASI technique can reduce social desirability bias and improve validity in research requiring information on sensitive sexual behaviors.  (+info)

Introduction: Epidemiologic research and prevention of occupational cancer in Europe. (2/461)

Research on occupational cancer epidemiology has been an important area of occupational health in Europe since the early studies were conducted in the United Kingdom in the 1950s and 1960s. During the last decade, occupational cancer research in Europe has gained an international dimension and become increasingly interdisciplinary in nature. At present, occupational exposures might be responsible for 13 to 18% of lung cancers, 2 to 10% of bladder cancers, and 2 to 8% of laryngeal cancers in European men; among women these figures are 1 to 5%, 0 to 5%, and 0 to 1%, respectively. A notable aspect of current occupational cancer research in Europe is the decreasing importance of traditional circumstances of high exposure to recognized occupational carcinogens and the increasing importance of new industries, mainly in the service sector where possible cancer hazards are poorly known. In addition, the political changes in Central and Eastern Europe open new possibilities for the investigation of high-exposure circumstances and occupational cancer in women.  (+info)

Occupational cancer research in the Nordic countries. (3/461)

Occupational cancer research in the Nordic countries benefits from certain structural advantages, including the existence of computerized population registries, national cancer registries with high-quality data on cancer incidence, and a personal identification number for each inhabitant. This article outlines the utilization of this research infrastructure in Denmark, Finland, Iceland, Norway, and Sweden, together with research examples from the different countries. Future research on occupational cancer in this region requires that national legislation on electronic handling of sensitive personal information should not be stricter than the European Union Directive on individual protection with regard to personal data. A personal identification number is essential both for keeping up the high quality of data of the registers and for the high quality of the process of linking the different data sources together. Although previous occupational research has focused on male workers, a broader approach is needed in the future, including a study of how cancer risk in women may be affected by occupational activity and the question of possible cancer risk in offspring of men and women exposed to workplace carcinogens.  (+info)

Occupational cancer in France: epidemiology, toxicology, prevention, and compensation. (4/461)

This article is a description of the current situation in France with regard to occupational cancer: research, prevention, and occupation. Toxicologic experiments are carried out using (italic)in vitro(/italic) and (italic)in vivo(/italic) tests, particularly using transgenic mice. Several epidemiologic studies have been conducted over the last decades: population-based case-control studies; mortality studies and cancer incidence studies carried out in historical cohorts of workers employed in the industry; and case-control studies nested in occupational cohorts. French ethical aspects of toxicologic and epidemiologic studies are described. The results thus obtained are used to establish regulations for the prevention and the compensation of cancers attributable to occupational exposure. This French regulation for prevention of occupational cancer involves several partners: (italic)a(/italic)) the states authorities, including labor inspectors, responsible for preparing and implementing the labor legislation and for supervising its application, particularly in the fields of occupational health and safety and working conditions; (italic)b(/italic)) the Social Security Organisation for the analysis of present or potential occupational risks based on tests, visits in plants, complaints or requests from various sources, and statistics. These activities are performed within the framework of the general French policy for the prevention of occupational cancer. This organization includes the National Institute for Research and Safety, particularly involved in research in the various fields of occupational risks--animal toxicology, biologic monitoring, exposure measurements epidemiology, psychology, ergonomy, electronic systems and machineries, exposure to chemicals, noise, heat, vibration, and lighting; and (italic)c(/italic)) companies where the regulation defines the role of the plant manager, the occupational physician, and the Health, Safety and Working Conditions Committee (comprising the manager, employees' representatives, the occupational physician, and the safety department) in dealing with any problem regarding safety, occupational hygiene, and working conditions. These organizations along with medical practitioners are involved with the compensation of occupational cancers. The regulation for compensation includes the tables of occupational cancer, the possibility of recognition of a cancer case when the requirements of the tables are not met, and the postprofessional follow-up of workers exposed to a carcinogenic agent.  (+info)

Occupational cancer in Italy. (5/461)

This article is a discussion of occupational cancer in Italy. The introduction provides the necessary context of Italian industrialization and occupational health regulation. This is followed by a review of Italian epidemiologic studies of occupational cancer risks considered in terms of relative measures of risk and attributable risk of carcinogenic agents or exposure circumstances. We attempt to establish the number of workers exposed to carcinogens in Italy and the intensity of their exposures. Finally, the Italian system of compensation for occupational cancer is discussed. Several cohort and case-control studies have addressed the issue of occupational risks, mostly among male workers. The results of these studies suggest that the growing incidence of and mortality by mesothelioma is explained by the widespread and intense exposure to asbestos in some Italian industrial settings. A high attributable risk of lung tumors among male populations in industrial areas of northern Italy is explained by occupational exposures. However, insufficient data are available for clear definition of the extent and intensity of occupational exposure to carcinogenic substances. In Italy, we must prioritize and maximize resources in occupational cancer epidemiology and revitalize the role of national institutions. Recent legislation has established new regulations on the handling of carcinogenic substances in industrial settings, a new list of occupational diseases, and a national registry of mesothelioma linked to asbestos exposure. These legislative changes are expected to have positive effects.  (+info)

Occupational cancer in Spain. (6/461)

The knowledge of specific problems of occupational cancer in Spain is scarce. The environment of the workplace has improved over the last few years after a long period distinguished by bad working conditions, incomplete legislation, and insufficient safety measures and control. It has been estimated that 3,083,479 workers (25.4% of employees) were exposed to carcinogens. The most common occupational exposures to carcinogenic agents were solar radiation, environmental tobacco smoke, silica, and wood dust. The highest number of employees were exposed to silica crystalline (404,729), diesel engine exhaust (274,321), rubber products (99,804), benzene (89,932), ethylene dibromide (81,336), agents used in furniture and cabinet making (72,068), and formaldehyde (71,189). The percentage of total cancer deaths attributed to occupational exposure was 4% (6% in men, 0.9% in women). Compared with other European countries, the incidence of lung cancer and leukemia in Spain are one of the lowest, but it is rapidly increasing. The incidence of urinary bladder and larynx cancer, on the contrary, are one of the highest. Few studies on occupational cancer have been conducted in Spain. The main problems are the availability of death certificates and the quality of the information on occupation in mortality of statistics. It is necessary to improve methods of assessment of exposures using expert hygienists and biologic markers of exposure and diseases. Reduction of cancer by limiting or avoiding exposure to known occupational carcinogens is still necessary.  (+info)

Occupational cancer in the European part of the Commonwealth of Independent States. (7/461)

Precise information on the number of workers currently exposed to carcinogens in the Commonwealth of Independent States (CIS) is lacking. However, the large number of workers employed in high-risk industries such as the chemical and metal industries suggests that the number of workers potentially exposed to carcinogens may be large. In the CIS, women account for almost 50% of the industrial work force. Although no precise data are available on the number of cancers caused by occupational exposures, indirect evidence suggests that the magnitude of the problem is comparable to that observed in Western Europe, representing some 20,000 cases per year. The large number of women employed in the past and at present in industries that create potential exposure to carcinogens is a special characteristic of the CIS. In recent years an increasing amount of high-quality research has been conducted on occupational cancer in the CIS; there is, however, room for further improvement. International training programs should be established, and funds from international research and development programs should be devoted to this area. In recent years, following privatization of many large-scale industries, access to employment and exposure data is becoming increasingly difficult.  (+info)

Estimating the prevalence of multiple sclerosis in the United Kingdom by using capture-recapture methodology. (8/461)

The geographic distribution of multiple sclerosis is nonrandom, as the disease is more prevalent in temperate than in tropical regions. Surveys conducted between 1970 and 1996 suggest that multiple sclerosis is more prevalent in the northern part of the United Kingdom than in the southern part. This north-south gradient ("the latitudinal gradient") might be a methodological artifact, because high prevalence figures from serial surveys of the northern part of the United Kingdom might have been the result of better ascertainment. By using capture-recapture methods, the authors found that case ascertainment was similar in the northern and southern parts of the United Kingdom. When prevalence figures for multiple sclerosis in the southern United Kingdom were increased to account for the number of unobserved cases, the difference persisted: The prevalence of multiple sclerosis in the northern part of the United Kingdom appeared to be at least 180 cases per 100,000 persons, whereas the maximum prevalence in the southern part of the United Kingdom was less than 160 cases per 100,000 persons. The distribution of multiple sclerosis in the United Kingdom is not uniform and is consistent with the hypothesis that populations with a high prevalence of multiple sclerosis may be genetically predisposed to the disease.  (+info)

Epidemiologic research design refers to the plan and structure of an epidemiological study, which describes how data will be collected, analyzed, and interpreted. It includes specifying the research question, selecting the study population, choosing the study design (such as cohort, case-control, or cross-sectional), outlining the data collection methods, and describing the statistical analysis plan. A well-designed epidemiologic research study aims to establish a reliable association between exposures and health outcomes in a population, which can inform public health policies and interventions.

Epidemiologic studies are investigations that seek to understand the distribution, patterns, and determinants of health and disease within a population. These studies aim to identify the frequency and occurrence of diseases or health-related events, as well as the factors that contribute to their occurrence. This information is used to develop public health policies and interventions to prevent or control diseases and promote overall health.

There are several types of epidemiologic studies, including:

1. Descriptive studies: These studies describe the characteristics of a population and the distribution of a disease or health-related event within that population. They do not typically investigate causes or risk factors.
2. Analytical studies: These studies examine the relationship between exposures (risk factors) and outcomes (diseases or health-related events). There are two main types of analytical studies: observational studies and experimental studies.
3. Observational studies: In these studies, researchers observe and collect data on a population without intervening or manipulating any variables. There are several types of observational studies, including cohort studies, case-control studies, and cross-sectional studies.
4. Cohort studies: These studies follow a group of people (a cohort) over time to see if they develop a particular disease or health-related event. Researchers collect data on exposures and outcomes at multiple points in time.
5. Case-control studies: These studies compare people with a specific disease or health-related event (cases) to people without the disease or event (controls). Researchers then look back in time to see if there are any differences in exposures between the two groups.
6. Cross-sectional studies: These studies collect data on exposures and outcomes at a single point in time. They are useful for estimating the prevalence of a disease or health-related event, but they cannot establish causality.
7. Experimental studies: In these studies, researchers manipulate variables to see if they have an effect on a particular outcome. The most common type of experimental study is a randomized controlled trial (RCT), in which participants are randomly assigned to receive either the intervention being tested or a control group.

Epidemiologic studies can provide valuable insights into the causes and consequences of diseases and health-related events, as well as potential interventions to prevent or treat them. However, they must be carefully designed and conducted to minimize bias and confounding, and their results should be interpreted with caution.

Epidemiology is the study of how often and why diseases occur in different groups of people and places. It is a key discipline in public health and informs policy decisions and evidence-based practices by identifying risk factors for disease and targets for preventive healthcare. Epidemiologists use various study designs, including observational studies, experiments, and surveys, to collect and analyze data on the distribution and determinants of diseases in populations. They seek to understand the causes of health outcomes and develop strategies to control or prevent adverse health events. The ultimate goal of epidemiology is to improve population health and eliminate health disparities.

Research, in the context of medicine, is a systematic and rigorous process of collecting, analyzing, and interpreting information in order to increase our understanding, develop new knowledge, or evaluate current practices and interventions. It can involve various methodologies such as observational studies, experiments, surveys, or literature reviews. The goal of medical research is to advance health care by identifying new treatments, improving diagnostic techniques, and developing prevention strategies. Medical research is typically conducted by teams of researchers including clinicians, scientists, and other healthcare professionals. It is subject to ethical guidelines and regulations to ensure that it is conducted responsibly and with the best interests of patients in mind.

Epidemiologic methods are systematic approaches used to investigate and understand the distribution, determinants, and outcomes of health-related events or diseases in a population. These methods are applied to study the patterns of disease occurrence and transmission, identify risk factors and causes, and evaluate interventions for prevention and control. The core components of epidemiologic methods include:

1. Descriptive Epidemiology: This involves the systematic collection and analysis of data on the who, what, when, and where of health events to describe their distribution in a population. It includes measures such as incidence, prevalence, mortality, and morbidity rates, as well as geographic and temporal patterns.

2. Analytical Epidemiology: This involves the use of statistical methods to examine associations between potential risk factors and health outcomes. It includes observational studies (cohort, case-control, cross-sectional) and experimental studies (randomized controlled trials). The goal is to identify causal relationships and quantify the strength of associations.

3. Experimental Epidemiology: This involves the design and implementation of interventions or experiments to test hypotheses about disease prevention and control. It includes randomized controlled trials, community trials, and other experimental study designs.

4. Surveillance and Monitoring: This involves ongoing systematic collection, analysis, and interpretation of health-related data for early detection, tracking, and response to health events or diseases.

5. Ethical Considerations: Epidemiologic studies must adhere to ethical principles such as respect for autonomy, beneficence, non-maleficence, and justice. This includes obtaining informed consent, ensuring confidentiality, and minimizing harm to study participants.

Overall, epidemiologic methods provide a framework for investigating and understanding the complex interplay between host, agent, and environmental factors that contribute to the occurrence of health-related events or diseases in populations.

A research design in medical or healthcare research is a systematic plan that guides the execution and reporting of research to address a specific research question or objective. It outlines the overall strategy for collecting, analyzing, and interpreting data to draw valid conclusions. The design includes details about the type of study (e.g., experimental, observational), sampling methods, data collection techniques, data analysis approaches, and any potential sources of bias or confounding that need to be controlled for. A well-defined research design helps ensure that the results are reliable, generalizable, and relevant to the research question, ultimately contributing to evidence-based practice in medicine and healthcare.

Environmental exposure refers to the contact of an individual with any chemical, physical, or biological agent in the environment that can cause a harmful effect on health. These exposures can occur through various pathways such as inhalation, ingestion, or skin contact. Examples of environmental exposures include air pollution, water contamination, occupational chemicals, and allergens. The duration and level of exposure, as well as the susceptibility of the individual, can all contribute to the risk of developing an adverse health effect.

I'm sorry for any confusion, but "United States" is a geopolitical entity, specifically the name of the country consisting of 50 states, and it is not a medical term or concept. Therefore, I can't provide a medical definition for it. If you have any questions related to health, medicine, or biology, I would be happy to try to help answer those!

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Environmental monitoring is the systematic and ongoing surveillance, measurement, and assessment of environmental parameters, pollutants, or other stressors in order to evaluate potential impacts on human health, ecological systems, or compliance with regulatory standards. This process typically involves collecting and analyzing data from various sources, such as air, water, soil, and biota, and using this information to inform decisions related to public health, environmental protection, and resource management.

In medical terms, environmental monitoring may refer specifically to the assessment of environmental factors that can impact human health, such as air quality, water contamination, or exposure to hazardous substances. This type of monitoring is often conducted in occupational settings, where workers may be exposed to potential health hazards, as well as in community-based settings, where environmental factors may contribute to public health issues. The goal of environmental monitoring in a medical context is to identify and mitigate potential health risks associated with environmental exposures, and to promote healthy and safe environments for individuals and communities.

Occupational exposure refers to the contact of an individual with potentially harmful chemical, physical, or biological agents as a result of their job or occupation. This can include exposure to hazardous substances such as chemicals, heavy metals, or dusts; physical agents such as noise, radiation, or ergonomic stressors; and biological agents such as viruses, bacteria, or fungi.

Occupational exposure can occur through various routes, including inhalation, skin contact, ingestion, or injection. Prolonged or repeated exposure to these hazards can increase the risk of developing acute or chronic health conditions, such as respiratory diseases, skin disorders, neurological damage, or cancer.

Employers have a legal and ethical responsibility to minimize occupational exposures through the implementation of appropriate control measures, including engineering controls, administrative controls, personal protective equipment, and training programs. Regular monitoring and surveillance of workers' health can also help identify and prevent potential health hazards in the workplace.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Data collection in the medical context refers to the systematic gathering of information relevant to a specific research question or clinical situation. This process involves identifying and recording data elements, such as demographic characteristics, medical history, physical examination findings, laboratory results, and imaging studies, from various sources including patient interviews, medical records, and diagnostic tests. The data collected is used to support clinical decision-making, inform research hypotheses, and evaluate the effectiveness of treatments or interventions. It is essential that data collection is performed in a standardized and unbiased manner to ensure the validity and reliability of the results.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Statistical models are mathematical representations that describe the relationship between variables in a given dataset. They are used to analyze and interpret data in order to make predictions or test hypotheses about a population. In the context of medicine, statistical models can be used for various purposes such as:

1. Disease risk prediction: By analyzing demographic, clinical, and genetic data using statistical models, researchers can identify factors that contribute to an individual's risk of developing certain diseases. This information can then be used to develop personalized prevention strategies or early detection methods.

2. Clinical trial design and analysis: Statistical models are essential tools for designing and analyzing clinical trials. They help determine sample size, allocate participants to treatment groups, and assess the effectiveness and safety of interventions.

3. Epidemiological studies: Researchers use statistical models to investigate the distribution and determinants of health-related events in populations. This includes studying patterns of disease transmission, evaluating public health interventions, and estimating the burden of diseases.

4. Health services research: Statistical models are employed to analyze healthcare utilization, costs, and outcomes. This helps inform decisions about resource allocation, policy development, and quality improvement initiatives.

5. Biostatistics and bioinformatics: In these fields, statistical models are used to analyze large-scale molecular data (e.g., genomics, proteomics) to understand biological processes and identify potential therapeutic targets.

In summary, statistical models in medicine provide a framework for understanding complex relationships between variables and making informed decisions based on data-driven insights.

A questionnaire in the medical context is a standardized, systematic, and structured tool used to gather information from individuals regarding their symptoms, medical history, lifestyle, or other health-related factors. It typically consists of a series of written questions that can be either self-administered or administered by an interviewer. Questionnaires are widely used in various areas of healthcare, including clinical research, epidemiological studies, patient care, and health services evaluation to collect data that can inform diagnosis, treatment planning, and population health management. They provide a consistent and organized method for obtaining information from large groups or individual patients, helping to ensure accurate and comprehensive data collection while minimizing bias and variability in the information gathered.

Statistical data interpretation involves analyzing and interpreting numerical data in order to identify trends, patterns, and relationships. This process often involves the use of statistical methods and tools to organize, summarize, and draw conclusions from the data. The goal is to extract meaningful insights that can inform decision-making, hypothesis testing, or further research.

In medical contexts, statistical data interpretation is used to analyze and make sense of large sets of clinical data, such as patient outcomes, treatment effectiveness, or disease prevalence. This information can help healthcare professionals and researchers better understand the relationships between various factors that impact health outcomes, develop more effective treatments, and identify areas for further study.

Some common statistical methods used in data interpretation include descriptive statistics (e.g., mean, median, mode), inferential statistics (e.g., hypothesis testing, confidence intervals), and regression analysis (e.g., linear, logistic). These methods can help medical professionals identify patterns and trends in the data, assess the significance of their findings, and make evidence-based recommendations for patient care or public health policy.

Diabetes Mellitus, Type 2 is a metabolic disorder characterized by high blood glucose (or sugar) levels resulting from the body's inability to produce sufficient amounts of insulin or effectively use the insulin it produces. This form of diabetes usually develops gradually over several years and is often associated with older age, obesity, physical inactivity, family history of diabetes, and certain ethnicities.

In Type 2 diabetes, the body's cells become resistant to insulin, meaning they don't respond properly to the hormone. As a result, the pancreas produces more insulin to help glucose enter the cells. Over time, the pancreas can't keep up with the increased demand, leading to high blood glucose levels and diabetes.

Type 2 diabetes is managed through lifestyle modifications such as weight loss, regular exercise, and a healthy diet. Medications, including insulin therapy, may also be necessary to control blood glucose levels and prevent long-term complications associated with the disease, such as heart disease, nerve damage, kidney damage, and vision loss.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Diabetes Mellitus, Type 1 is a chronic autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas, leading to an absolute deficiency of insulin. This results in an inability to regulate blood glucose levels, causing hyperglycemia (high blood sugar). Type 1 diabetes typically presents in childhood or early adulthood, although it can develop at any age. It is usually managed with regular insulin injections or the use of an insulin pump, along with monitoring of blood glucose levels and adjustments to diet and physical activity. Uncontrolled type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, blindness, and cardiovascular disease.

Logistic models, specifically logistic regression models, are a type of statistical analysis used in medical and epidemiological research to identify the relationship between the risk of a certain health outcome or disease (dependent variable) and one or more independent variables, such as demographic factors, exposure variables, or other clinical measurements.

In contrast to linear regression models, logistic regression models are used when the dependent variable is binary or dichotomous in nature, meaning it can only take on two values, such as "disease present" or "disease absent." The model uses a logistic function to estimate the probability of the outcome based on the independent variables.

Logistic regression models are useful for identifying risk factors and estimating the strength of associations between exposures and health outcomes, adjusting for potential confounders, and predicting the probability of an outcome given certain values of the independent variables. They can also be used to develop clinical prediction rules or scores that can aid in decision-making and patient care.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Glycosylated Hemoglobin A, also known as Hemoglobin A1c or HbA1c, is a form of hemoglobin that is bound to glucose. It is formed in a non-enzymatic glycation reaction with glucose in the blood. The amount of this hemoglobin present in the blood is proportional to the average plasma glucose concentration over the previous 8-12 weeks, making it a useful indicator for monitoring long-term blood glucose control in people with diabetes mellitus.

In other words, HbA1c reflects the integrated effects of glucose regulation over time and is an important clinical marker for assessing glycemic control and risk of diabetic complications. The normal range for HbA1c in individuals without diabetes is typically less than 5.7%, while a value greater than 6.5% is indicative of diabetes.

"Research Support as Topic" is not a specific medical term or diagnosis. However, in the context of medical literature and research, "research support" refers to the resources, funding, and infrastructure that enable and facilitate the conduct of scientific research. This can include financial support from various sources such as government agencies, private organizations, or institutions; access to laboratory facilities, equipment, and databases; and technical assistance in study design, data collection and analysis, and manuscript preparation.

When "research support" is designated as a topic in medical literature, it typically refers to articles that discuss the various aspects of research funding, ethics, and management, including best practices for grant writing, financial conflict of interest disclosures, and responsible conduct of research. It may also include studies that examine the impact of research support on the quality, quantity, and outcomes of scientific research.

Hypoglycemic agents are a class of medications that are used to lower blood glucose levels in the treatment of diabetes mellitus. These medications work by increasing insulin sensitivity, stimulating insulin release from the pancreas, or inhibiting glucose production in the liver. Examples of hypoglycemic agents include sulfonylureas, meglitinides, biguanides, thiazolidinediones, DPP-4 inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists. It's important to note that the term "hypoglycemic" refers to a condition of abnormally low blood glucose levels, but in this context, the term is used to describe agents that are used to treat high blood glucose levels (hyperglycemia) associated with diabetes.

Nursing research is a scientific investigation that systematically studies nursing phenomena and related outcomes to establish best practices, improve patient care, and advance the profession of nursing. It utilizes various research methods and theories to address questions and problems relevant to nursing practice, education, administration, and policy-making. The ultimate goal of nursing research is to generate evidence-based knowledge that informs nursing interventions, enhances patient outcomes, and contributes to the development of nursing science.

Research ethics refers to the principles and guidelines that govern the conduct of research involving human participants or animals. The overarching goal of research ethics is to ensure that research is conducted in a way that respects the autonomy, dignity, and well-being of all those involved. Research ethics are designed to prevent harm, promote fairness, and maintain trust between researchers and study participants.

Some key principles of research ethics include:

1. Respect for Persons: This means treating all individuals with respect and dignity, and recognizing their autonomy and right to make informed decisions about participating in research.
2. Beneficence: Researchers have a duty to maximize the benefits of research while minimizing potential harms.
3. Justice: Research should be conducted fairly, without discrimination or bias, and should benefit all those who are affected by it.
4. Confidentiality: Researchers must protect the privacy and confidentiality of study participants, including their personal information and data.
5. Informed Consent: Participants must give their voluntary and informed consent to participate in research, after being fully informed about the nature of the study, its risks and benefits, and their rights as a participant.

Research ethics are typically overseen by institutional review boards (IRBs) or research ethics committees (RECs), which review research proposals and monitor ongoing studies to ensure that they comply with ethical guidelines. Researchers who violate these guidelines may face sanctions, including loss of funding, suspension or revocation of their research privileges, or legal action.

Diabetes Mellitus is a chronic metabolic disorder characterized by elevated levels of glucose in the blood (hyperglycemia) due to absolute or relative deficiency in insulin secretion and/or insulin action. There are two main types: Type 1 diabetes, which results from the autoimmune destruction of pancreatic beta cells leading to insulin deficiency, and Type 2 diabetes, which is associated with insulin resistance and relative insulin deficiency.

Type 1 diabetes typically presents in childhood or young adulthood, while Type 2 diabetes tends to occur later in life, often in association with obesity and physical inactivity. Both types of diabetes can lead to long-term complications such as damage to the eyes, kidneys, nerves, and cardiovascular system if left untreated or not well controlled.

The diagnosis of diabetes is usually made based on fasting plasma glucose levels, oral glucose tolerance tests, or hemoglobin A1c (HbA1c) levels. Treatment typically involves lifestyle modifications such as diet and exercise, along with medications to lower blood glucose levels and manage associated conditions.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Research personnel, in the context of medical and scientific research, refers to individuals who are involved in the design, conduct, or reporting of research studies. This can include, but is not limited to, principal investigators, co-investigators, research assistants, research coordinators, data managers, biostatisticians, and laboratory technicians. These individuals may have various levels of education, training, and expertise, and their roles and responsibilities will depend on the specific research study and their individual qualifications. It is important for research personnel to adhere to ethical guidelines and regulations in order to ensure the integrity and validity of research findings.

Health services research (HSR) is a multidisciplinary field of scientific investigation that studies how social factors, financing systems, organizational structures and processes, health technologies, and personal behaviors affect access to healthcare, the quality and cost of care, and ultimately, our health and well-being. The goal of HSR is to inform policy and practice, improve system performance, and enhance the health and well-being of individuals and communities. It involves the use of various research methods, including epidemiology, biostatistics, economics, sociology, management science, political science, and psychology, to answer questions about the healthcare system and how it can be improved.

Examples of HSR topics include:

* Evaluating the effectiveness and cost-effectiveness of different healthcare interventions and technologies
* Studying patient-centered care and patient experiences with the healthcare system
* Examining healthcare workforce issues, such as shortages of primary care providers or the impact of nurse-to-patient ratios on patient outcomes
* Investigating the impact of health insurance design and financing systems on access to care and health disparities
* Analyzing the organization and delivery of healthcare services in different settings, such as hospitals, clinics, and long-term care facilities
* Identifying best practices for improving healthcare quality and safety, reducing medical errors, and eliminating wasteful or unnecessary care.

"Drug design" is the process of creating and developing a new medication or therapeutic agent to treat or prevent a specific disease or condition. It involves identifying potential targets within the body, such as proteins or enzymes that are involved in the disease process, and then designing small molecules or biologics that can interact with these targets to produce a desired effect.

The drug design process typically involves several stages, including:

1. Target identification: Researchers identify a specific molecular target that is involved in the disease process.
2. Lead identification: Using computational methods and high-throughput screening techniques, researchers identify small molecules or biologics that can interact with the target.
3. Lead optimization: Researchers modify the chemical structure of the lead compound to improve its ability to interact with the target, as well as its safety and pharmacokinetic properties.
4. Preclinical testing: The optimized lead compound is tested in vitro (in a test tube or petri dish) and in vivo (in animals) to evaluate its safety and efficacy.
5. Clinical trials: If the preclinical testing is successful, the drug moves on to clinical trials in humans to further evaluate its safety and efficacy.

The ultimate goal of drug design is to create a new medication that is safe, effective, and can be used to improve the lives of patients with a specific disease or condition.

A Glucose Tolerance Test (GTT) is a medical test used to diagnose prediabetes, type 2 diabetes, and gestational diabetes. It measures how well your body is able to process glucose, which is a type of sugar.

During the test, you will be asked to fast (not eat or drink anything except water) for at least eight hours before the test. Then, a healthcare professional will take a blood sample to measure your fasting blood sugar level. After that, you will be given a sugary drink containing a specific amount of glucose. Your blood sugar levels will be measured again after two hours and sometimes also after one hour.

The results of the test will indicate how well your body is able to process the glucose and whether you have normal, impaired, or diabetic glucose tolerance. If your blood sugar levels are higher than normal but not high enough to be diagnosed with diabetes, you may have prediabetes, which means that you are at increased risk of developing type 2 diabetes in the future.

It is important to note that a Glucose Tolerance Test should be performed under the supervision of a healthcare professional, as high blood sugar levels can be dangerous if not properly managed.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Translational medical research, also known as "translational research," refers to the process of turning basic scientific discoveries into clinical interventions that improve human health and well-being. This type of research aims to "translate" findings from laboratory, animal, or cellular studies into practical applications for the prevention, diagnosis, and treatment of human diseases.

Translational medical research typically involves a multidisciplinary approach, bringing together researchers from various fields such as biology, chemistry, engineering, genetics, and medicine to work collaboratively on solving complex health problems. The process often includes several stages, including:

1. Identifying basic scientific discoveries that have the potential to be translated into clinical applications.
2. Developing and optimizing new diagnostic tools, drugs, or therapies based on these discoveries.
3. Conducting preclinical studies in the laboratory or with animal models to evaluate the safety and efficacy of these interventions.
4. Designing and implementing clinical trials to test the effectiveness and safety of the new interventions in human patients.
5. Disseminating research findings to the scientific community, healthcare providers, and the public to facilitate the adoption of new practices or treatments.

Translational medical research is essential for bridging the gap between basic scientific discoveries and clinical applications, ultimately improving patient care and outcomes.

Glucose intolerance is a condition in which the body has difficulty processing and using glucose, or blood sugar, effectively. This results in higher than normal levels of glucose in the blood after eating, particularly after meals that are high in carbohydrates. Glucose intolerance can be an early sign of developing diabetes, specifically type 2 diabetes, and it may also indicate other metabolic disorders such as prediabetes or insulin resistance.

In a healthy individual, the pancreas produces insulin to help regulate blood sugar levels by facilitating glucose uptake in muscles, fat tissue, and the liver. When someone has glucose intolerance, their body may not produce enough insulin, or their cells may have become less responsive to insulin (insulin resistance), leading to impaired glucose metabolism.

Glucose intolerance can be diagnosed through various tests, including the oral glucose tolerance test (OGTT) and hemoglobin A1c (HbA1c) test. Treatment for glucose intolerance often involves lifestyle modifications such as weight loss, increased physical activity, and a balanced diet with reduced sugar and refined carbohydrate intake. In some cases, medication may be prescribed to help manage blood sugar levels more effectively.

Insulin-secreting cells, also known as beta cells, are a type of cell found in the pancreas. They are responsible for producing and releasing insulin, a hormone that regulates blood glucose levels by allowing cells in the body to take in glucose from the bloodstream. Insulin-secreting cells are clustered together in the pancreatic islets, along with other types of cells that produce other hormones such as glucagon and somatostatin. In people with diabetes, these cells may not function properly, leading to an impaired ability to regulate blood sugar levels.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

Obesity is a complex disease characterized by an excess accumulation of body fat to the extent that it negatively impacts health. It's typically defined using Body Mass Index (BMI), a measure calculated from a person's weight and height. A BMI of 30 or higher is indicative of obesity. However, it's important to note that while BMI can be a useful tool for identifying obesity in populations, it does not directly measure body fat and may not accurately reflect health status in individuals. Other factors such as waist circumference, blood pressure, cholesterol levels, and blood sugar levels should also be considered when assessing health risks associated with weight.

Insulin resistance is a condition in which the body's cells become less responsive to insulin, a hormone produced by the pancreas that regulates blood sugar levels. In response to this decreased sensitivity, the pancreas produces more insulin to help glucose enter the cells. However, over time, the pancreas may not be able to keep up with the increased demand for insulin, leading to high levels of glucose in the blood and potentially resulting in type 2 diabetes, prediabetes, or other health issues such as metabolic syndrome, cardiovascular disease, and non-alcoholic fatty liver disease. Insulin resistance is often associated with obesity, physical inactivity, and genetic factors.

Genetic research is a branch of biomedical science that involves the study of genes, their functions, and heredity. It aims to understand how genetic variations contribute to human health and disease by using various scientific approaches such as genetics, genomics, molecular biology, biochemistry, and bioinformatics.

Genetic research can be conducted on humans, animals, or plants, and it can focus on a variety of areas including:

1. Identifying genes associated with specific diseases or traits
2. Understanding how genes are regulated and expressed
3. Investigating the role of genetic mutations in disease development
4. Developing new diagnostic tests and treatments based on genetic information
5. Exploring evolutionary relationships between species
6. Examining ethical, legal, and social implications of genetic research.

Genetic research has led to significant advances in our understanding of many diseases, including cancer, diabetes, heart disease, and neurological disorders. It also holds great promise for personalized medicine, which tailors treatments to individual patients based on their genetic makeup.

Hypoglycemia is a medical condition characterized by an abnormally low level of glucose (sugar) in the blood. Generally, hypoglycemia is defined as a blood glucose level below 70 mg/dL (3.9 mmol/L), although symptoms may not occur until the blood sugar level falls below 55 mg/dL (3.0 mmol/L).

Hypoglycemia can occur in people with diabetes who are taking insulin or medications that increase insulin production, as well as those with certain medical conditions such as hormone deficiencies, severe liver illnesses, or disorders of the adrenal glands. Symptoms of hypoglycemia include sweating, shaking, confusion, rapid heartbeat, and in severe cases, loss of consciousness or seizures.

Hypoglycemia is typically treated by consuming fast-acting carbohydrates such as fruit juice, candy, or glucose tablets to rapidly raise blood sugar levels. If left untreated, hypoglycemia can lead to serious complications, including brain damage and even death.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Dental research is a scientific discipline that focuses on the study of teeth, oral health, and related diseases. It involves various aspects of dental sciences such as oral biology, microbiology, biochemistry, genetics, epidemiology, biomaterials, and biotechnology. The main aim of dental research is to improve oral health care, develop new diagnostic tools, prevent dental diseases, and create better treatment options for various dental conditions. Dental researchers may study topics such as tooth development, oral cancer, periodontal disease, dental caries (cavities), saliva composition, and the effects of nutrition on oral health. The findings from dental research can help improve dental care practices, inform public health policies, and advance our understanding of overall human health.

The glucose clamp technique is a method used in medical research, particularly in the study of glucose metabolism and insulin action. It's a controlled procedure that aims to maintain a steady state of plasma glucose concentration in an individual for a specific period.

In this technique, a continuous infusion of glucose is administered intravenously at a variable rate to balance the amount of glucose being removed from the circulation (for example, by insulin-stimulated uptake in muscle and fat tissue). This creates a "clamp" of stable plasma glucose concentration.

The rate of glucose infusion is adjusted according to frequent measurements of blood glucose levels, typically every 5 to 10 minutes, to keep the glucose level constant. The glucose clamp technique allows researchers to study how different factors, such as various doses of insulin or other drugs, affect glucose metabolism under standardized conditions.

There are two primary types of glucose clamps: the hyperglycemic clamp and the euglycemic clamp. The former aims to raise and maintain plasma glucose at a higher-than-normal level, while the latter maintains plasma glucose at a normal, euglycemic level.

Hyperglycemia is a medical term that refers to an abnormally high level of glucose (sugar) in the blood. Fasting hyperglycemia is defined as a fasting blood glucose level greater than or equal to 126 mg/dL (milligrams per deciliter) on two separate occasions. Alternatively, a random blood glucose level greater than or equal to 200 mg/dL in combination with symptoms of hyperglycemia (such as increased thirst, frequent urination, blurred vision, and fatigue) can also indicate hyperglycemia.

Hyperglycemia is often associated with diabetes mellitus, a chronic metabolic disorder characterized by high blood glucose levels due to insulin resistance or insufficient insulin production. However, hyperglycemia can also occur in other conditions such as stress, surgery, infection, certain medications, and hormonal imbalances.

Prolonged or untreated hyperglycemia can lead to serious complications such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and long-term damage to various organs such as the eyes, kidneys, nerves, and blood vessels. Therefore, it is essential to monitor blood glucose levels regularly and maintain them within normal ranges through proper diet, exercise, medication, and lifestyle modifications.

Prevalence, in medical terms, refers to the total number of people in a given population who have a particular disease or condition at a specific point in time, or over a specified period. It is typically expressed as a percentage or a ratio of the number of cases to the size of the population. Prevalence differs from incidence, which measures the number of new cases that develop during a certain period.

Diabetic neuropathies refer to a group of nerve disorders that are caused by diabetes. High blood sugar levels can injure nerves throughout the body, but diabetic neuropathies most commonly affect the nerves in the legs and feet.

There are four main types of diabetic neuropathies:

1. Peripheral neuropathy: This is the most common type of diabetic neuropathy. It affects the nerves in the legs and feet, causing symptoms such as numbness, tingling, burning, or shooting pain.
2. Autonomic neuropathy: This type of neuropathy affects the autonomic nerves, which control involuntary functions such as heart rate, blood pressure, digestion, and bladder function. Symptoms may include dizziness, fainting, digestive problems, sexual dysfunction, and difficulty regulating body temperature.
3. Proximal neuropathy: Also known as diabetic amyotrophy, this type of neuropathy affects the nerves in the hips, thighs, or buttocks, causing weakness, pain, and difficulty walking.
4. Focal neuropathy: This type of neuropathy affects a single nerve or group of nerves, causing symptoms such as weakness, numbness, or pain in the affected area. Focal neuropathies can occur anywhere in the body, but they are most common in the head, torso, and legs.

The risk of developing diabetic neuropathies increases with the duration of diabetes and poor blood sugar control. Other factors that may contribute to the development of diabetic neuropathies include genetics, age, smoking, and alcohol consumption.

Fasting is defined in medical terms as the abstinence from food or drink for a period of time. This practice is often recommended before certain medical tests or procedures, as it helps to ensure that the results are not affected by recent eating or drinking.

In some cases, fasting may also be used as a therapeutic intervention, such as in the management of seizures or other neurological conditions. Fasting can help to lower blood sugar and insulin levels, which can have a variety of health benefits. However, it is important to note that prolonged fasting can also have negative effects on the body, including malnutrition, dehydration, and electrolyte imbalances.

Fasting is also a spiritual practice in many religions, including Christianity, Islam, Buddhism, and Hinduism. In these contexts, fasting is often seen as a way to purify the mind and body, to focus on spiritual practices, or to express devotion or mourning.

Metformin is a type of biguanide antihyperglycemic agent used primarily in the treatment of type 2 diabetes mellitus. It works by decreasing glucose production in the liver, reducing glucose absorption in the gut, and increasing insulin sensitivity in muscle and fat tissue. By lowering both basal and postprandial plasma glucose levels, metformin helps to control blood sugar levels and improve glycemic control. It is also used off-label for various other indications such as polycystic ovary syndrome (PCOS) and gestational diabetes. Common side effects include diarrhea, nausea, vomiting, and abdominal discomfort. Lactic acidosis is a rare but serious side effect that requires immediate medical attention.

A prediabetic state, also known as impaired glucose tolerance or prediabetes, is a metabolic condition where blood sugar levels are higher than normal but not high enough to meet the diagnostic criteria for diabetes. It is often characterized by insulin resistance and beta-cell dysfunction, which can lead to an increased risk of developing type 2 diabetes, cardiovascular disease, and other complications if left untreated.

In the prediabetic state, fasting plasma glucose levels are between 100 and 125 mg/dL (5.6-6.9 mmol/L), or hemoglobin A1c (HbA1c) levels are between 5.7% and 6.4%. Lifestyle modifications, such as regular exercise, healthy eating habits, and weight loss, can help prevent or delay the progression of prediabetes to diabetes.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Body Mass Index (BMI) is a measure used to assess whether a person has a healthy weight for their height. It's calculated by dividing a person's weight in kilograms by the square of their height in meters. Here is the medical definition:

Body Mass Index (BMI) = weight(kg) / [height(m)]^2

According to the World Health Organization, BMI categories are defined as follows:

* Less than 18.5: Underweight
* 18.5-24.9: Normal or healthy weight
* 25.0-29.9: Overweight
* 30.0 and above: Obese

It is important to note that while BMI can be a useful tool for identifying weight issues in populations, it does have limitations when applied to individuals. For example, it may not accurately reflect body fat distribution or muscle mass, which can affect health risks associated with excess weight. Therefore, BMI should be used as one of several factors when evaluating an individual's health status and risk for chronic diseases.

Diabetic angiopathies refer to a group of vascular complications that occur due to diabetes mellitus. Prolonged exposure to high blood sugar levels can damage the blood vessels, leading to various types of angiopathies such as:

1. Diabetic retinopathy: This is a condition where the small blood vessels in the retina get damaged due to diabetes, leading to vision loss or blindness if left untreated.
2. Diabetic nephropathy: In this condition, the kidneys' glomeruli (the filtering units) become damaged due to diabetes, leading to protein leakage and eventually kidney failure if not managed properly.
3. Diabetic neuropathy: This is a type of nerve damage caused by diabetes that can affect various parts of the body, including the legs, feet, and hands, causing numbness, tingling, or pain.
4. Diabetic cardiomyopathy: This is a condition where the heart muscle becomes damaged due to diabetes, leading to heart failure.
5. Diabetic peripheral arterial disease (PAD): In this condition, the blood vessels that supply the legs and feet become narrowed or blocked due to diabetes, leading to pain, cramping, or even gangrene in severe cases.

Overall, diabetic angiopathies are serious complications of diabetes that can significantly impact a person's quality of life and overall health. Therefore, it is crucial for individuals with diabetes to manage their blood sugar levels effectively and undergo regular check-ups to detect any early signs of these complications.

Epidemiologic Research Design * Equipment Design * Ergonomics * HIV Infections / etiology * HIV Infections / transmission ... Epidemiologic, economic, and quality of life issues AAOHN J. 2005 Mar;53(3):117-33. ...
Epidemiologic Research Design* * Health Services Accessibility * Health Status Disparities* * Human Rights * Humans ... The engagement extends from basic surveillance to etiologic research, from conceptualization and measurement of variables to ...
Designing clinical research: an epidemiologic approach. Baltimore: Williams and Wilkins, 1988:91-2. ... Statistical methods in cancer research. Volume 1. The analysis of case-control studies. Lyon: International Agency for Research ... Progress in Brain Research 1978; 48:277-90.. 36. Nau H, Scott WJ. Weak acids may act as teratogens by accumulating in the basic ... Hormone Research 1994; 42:207-14.. 35. Swaab DF, Boer GJ, Boer K, Dogterom J, van Leeuwen FW, Visser M. Fetal neuroendocrine ...
... epidemiologic research design; occupational exposure ... Radiation dose estimation for epidemiologic studies of flight ...
Categories: Epidemiologic Research Design Image Types: Photo, Illustrations, Video, Color, Black&White, PublicDomain, ...
Designing Clinical Research: An Epidemiologic Approach. 4th ed. Philadelphia: Lippincott, Williams & Wilkins; 2001:175-93. ... Designing studies of medical tests. In: Hulley SB, Cummings SR, Browner WS, et al., eds. ... Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003;34:e109- ... The evaluation comprised 3 parts, 2 by electronic surveys; the third evaluation was designed to resemble clinical work and to ...
Epidemiologic Methods [E05.318]. *Epidemiologic Research Design [E05.318.780]. *Lost to Follow-Up [E05.318.780.438] ...
These advisory committees work with CDC every step of the way as we design and conduct dosimetry, epidemiologic, and risk ... assessment research at these facilities.. Existing Citizen Advisory Committees:. * Oak Ridge Reservation Health Effects ...
His research focuses on the design and implementation of clinical, epidemiologic and translational studies in head and neck and ... Research. View Dr. Schoenfelds Publications Radiotherapy Dose in Patients Receiving Immunotherapy. Semin Radiat Oncol. 2023 07 ... He received his medical degree from Harvard Medical School after completing a research fellowship at the University of ... Head and Neck Cancer Clinical Research on ClinicalTrials.gov: An Opportunity for Radiation Oncologists. Adv Radiat Oncol. 2021 ...
... epidemiologic research design MeSH G03.850.520.445.150 - cross-over studies MeSH G03.850.520.445.300 - double-blind method MeSH ... epidemiologic study characteristics MeSH G03.850.520.450.500 - epidemiologic studies MeSH G03.850.520.450.500.500 - case- ...
keywords = "Epidemiologic research design, Health surveys, Healthcare disparities, Longitudinal studies, Population groups, ... Methods: We designed a multidisciplinary, community-based, prospective longitudinal epidemiologic study among socioeconomically ... Methods: We designed a multidisciplinary, community-based, prospective longitudinal epidemiologic study among socioeconomically ... Methods: We designed a multidisciplinary, community-based, prospective longitudinal epidemiologic study among socioeconomically ...
2. Conduct research on work-related illness, including epidemiologic analyses and field exposure assessments. 3. Design and ... 2. Entered into a formal partnership with Yale University Maritime Research Center to coordinate research, communication and ... What do we do? 1. Conduct research to identify and reduce risk factors for injuries, fatalities, and vessel casualties. ... The conference will include sessions discussing safety and health research success in commercial fishing, aquaculture, and ...
... be interpreted with caution and that the experience of these studies be used to develop better designed epidemiologic research ... the experience with these studies should be used to develop better designed epidemiological research. * Future research should ... The Working Group also recommends that future research designed to evaluate the efficacy of back belts in reducing and ... D. Epidemiologic Studies. The use of epidemiologic methods to evaluate the effectiveness of back belts in reducing and ...
EPI 225 Introduction to Epidemiologic and Clinical Research Methods* (3 units, fall). (*previously known as "Design and conduct ... Clinical Research is one of the seven Scholarly Concentration programs Foundations. Required course work is designed to ... clinical research projects. The projects may be descriptive (observational) or interventional in design. ... Research News. Stanford team stimulates neurons to induce particular perceptions in mices minds ...
... cutting-edge information designed to support the highest level of oral health care. ... Evidence-based research and epidemiologic studies drive the guidelines that are designed to protect all health care workers and ... While most of the research regarding the risk of artificial nails has been conducted with small numbers of employees in ... research evaluating hand hygiene practices in hospitals and other health care facilities estimates that fewer than 50% of that ...
Collaborative, pooled and harmonized study designs for epidemiologic research challenges and opportunities (2018). Lesko CR, ... This is the first in a series of educational videos on what research questions may be addressed with wearables, best practices ... A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors-implications for research on ... Combining Effect Estimates Across Cohorts and Sufficient Adjustment Sets for Collaborative Research: A Simulation Study (2021) ...
Validated guidelines for the reporting of survey-based clinical research should be developed and applied to improve the quality ... STUDY DESIGN AND METHODS: A systematic review of the literature was performed to identify studies evaluating clinical practices ... CONCLUSION: Our findings document quality deficiencies in the reporting of research conducted using surveys in TM. ... in TM that used a questionnaire as the research tool and were published between January 2001 and November 2017. Manuscripts ...
Social Care Research (CARe) & Professor of Clinical Epidemiology at Sheffield Hallam University ... designing and undertaking clinical, epidemiologic, and data-intensive research to understand and improve musculoskeletal health ... Research. * Health Research Institute Integrating enriched longitudinal multi-level data for local population musculoskeletal ... I supervise clinical and epidemiologic research by postgraduate students in the areas of musculoskeletal health and disease, ...
Berkowitz has moved from epidemiologic studies of food insecurity to designing and testing innovative interventions to address ... Office of the Vice Chancellor for Research. Office of Research Communications. Contact the webmaster of this site. ➠ STAFF ... and will deliver a presentation on their research during University Research Week. ... "Her research speaks decisively not only to specialists in her field but also to non-specialists and the general public." ...
Epidemiologic Studies, Humans, Mass Screening, Observation, Randomized Controlled Trials as Topic, Research Design ... The impact of study design on the results of medical research has long been an area of both substantial debate and a smaller ... More recently, we and others have evaluated the impact of design in medical and surgical research, and concluded that the mean ... Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco ...
Creation and adoption of innovative epidemiologic and statistical methodologies and study designs to further the understanding ... clinical trial designs, and uses comparative effectiveness research techniques. These pain research areas also cut across ICs ... research. Effective translational research is extremely important in pain research and is needed to bridge the inherent ... However, epidemiologic information concerning pain disorders is not well developed. Research is encouraged but not limited to ...
Epidemiologic research design, Clinical studies as Topic, Multicenter studies as Topic, and Evaluation studies as Topic. Papers ... Clinical research informatics, Biomedical research, Nursing research, Clinical research, Medical research, Pharmacovigilance, ... Objectives: To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to ... and researchers in the design, conduct, and advancement of patient-centered outcomes research", how it is constituted and the ...
Based on the identified research question, the appropriate epidemiologic design would be a cross-sectional observational design ... NURS 8310 Discussion 2: Epidemiologic Designs ANSWER. NURS 8310 Discussion 2: Epidemiologic Designs ANSWER. Post a cohesive ... While this epidemiologic design is easy and quick to conduct, it is also suitable to measure multiple exposures and outcomes. ... Explain which epidemiologic study design is most appropriate for your study, as well as the assumptions and tenets that support ...
Basic Research, Biomedical Research, Behavioral Research, Epidemiologic Research Design, Neoplasms, Medical Oncology, Internal ... AICR (American Institute for Cancer Research) Annual Research Conference on Food, Nutrion, Physical Activity and Cancer. ... Research, Biomedical Research, 50053, 35493, Molecular Biology, Surgical Procedures, Operative, General Surgery, Anesthesiology ... 3ª AACR (American Association for Cancer Research) Conference on the Science of Cancer Health Disparities in Racial/Ethnic ...
Designing Clinical Research: An Epidemiologic Approach. Baltimore, Md Williams & Wilkins1988;87- 97Google Scholar ... Designing Clinical Research: An Epidemiologic Approach. Baltimore, Md Williams & Wilkins1988;87- 97Google Scholar ... However, study design and small sample size limit the applicability of their results. Suarez et al28 compared results of ... Because it is quickly performed and relatively operator independent, PATHPAS is practical for clinical and research purposes. ...
B. M. Hanson and G. M. Weinstock, The importance of the microbiome in epidemiologic research, Ann. Epidemiol., 2016, 26(5), 301 ... Once research hypotheses are clearly defined, a suitable study design is selected that addresses the research hypotheses best. ... and the Novartis Institutes for Biomedical Research and its Genomics Institute of the Novartis Research Foundation to conduct a ... For example, when designing an RNA-Seq study the trade-off between the number of samples and sequencing depth will need to be ...
Epidemiologic studies and/or safety surveillance program: Leads the study design including generation of study concept sheets ... Proactively works with other groups to identify epidemiologic research needs for projects, works interactively to develop ... summarizes epidemiologic data; summarizes epidemiologic information and communicates appropriately to the requester. ... research studies to address such needs, and propose new study designs or effective ways of working. ...
Designed by Yhello. contact Yhello is a digital creation agency based in Paris, created by former scientists passionate about ... Research Structures. Teams Platforms Departments Transversal Research Centers Program Projects National Reference Centers ... Epidemiologic Trends in Malaria Incidence Among Travelers Returning to Metropolitan France, 1996-2016.. ... Better understanding of the epidemiologic context and evolution during the past 2 decades may help to define a better ...
Epidemiologic Research Management \u2013 practical methods for conducting epidemiologic research including study design, ... Epidemiologic Research Management - practical methods for conducting epidemiologic research including study design, regulations ... Epidemiologic Research Management \u2013 practical methods for conducting epidemiologic research including study design, ... Introduction to Social and Behavioral Health and Health Disparities Research - health behavior theory, research design and ...

No FAQ available that match "epidemiologic research design"

No images available that match "epidemiologic research design"