The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include pharmacokinetics, dosage analysis, or drug administration analysis.
The use of computers for designing and/or manufacturing of anything, including drugs, surgical procedures, orthotics, and prosthetics.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
A quantitative prediction of the biological, ecotoxicological or pharmaceutical activity of a molecule. It is based upon structure and activity information gathered from a series of similar compounds.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
The process of finding chemicals for potential therapeutic use.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A plan for collecting and utilizing data so that desired information can be obtained with sufficient precision or so that an hypothesis can be tested properly.
Amino acid sequence in which two disulfide bonds (DISULFIDES) and their connecting backbone form a ring that is penetrated by a third disulfide bond. Members include CYCLOTIDES and agouti-related protein.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The characteristic three-dimensional shape of a molecule.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A computer simulation developed to study the motion of molecules over a period of time.
A structurally-related family of small proteins that form a stable tertiary fold pattern which is supported by a series of disulfide bonds. The arrangement of disulfide bonds between the CYSTEINE moieties results in a knotted structure which is unique to this family of proteins.
The degree of 3-dimensional shape similarity between proteins. It can be an indication of distant AMINO ACID SEQUENCE HOMOLOGY and used for rational DRUG DESIGN.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form.
Computer-based representation of physical systems and phenomena such as chemical processes.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Large collections of small molecules (molecular weight about 600 or less), of similar or diverse nature which are used for high-throughput screening analysis of the gene function, protein interaction, cellular processing, biochemical pathways, or other chemical interactions.
A continuous circle of peptide bonds, typically of 2-3 dozen AMINO ACIDS, so there is no free N- or C-terminus. They are further characterized by six conserved CYSTEINE residues that form CYSTINE KNOT MOTIFS.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications.
A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.
A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.
The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed)
Sequential operating programs and data which instruct the functioning of a digital computer.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
Databases devoted to knowledge about PHARMACEUTICAL PRODUCTS.
Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity.
Databases containing information about PROTEINS such as AMINO ACID SEQUENCE; PROTEIN CONFORMATION; and other properties.
Methods of creating machines and devices.
Chemistry dealing with the composition and preparation of agents having PHARMACOLOGIC ACTIONS or diagnostic use.
The collective name for the boron hydrides, which are analogous to the alkanes and silanes. Numerous boranes are known. Some have high calorific values and are used in high-energy fuels. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Dioxygenases that catalyze the peroxidation of methylene-interrupted UNSATURATED FATTY ACIDS.
The field of information science concerned with the analysis and dissemination of data through the application of computers.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A class of organic compounds containing two ring structures, one of which is made up of more than one kind of atom, usually carbon plus another atom. The heterocycle may be either aromatic or nonaromatic.
The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The concentration of a compound needed to reduce population growth of organisms, including eukaryotic cells, by 50% in vitro. Though often expressed to denote in vitro antibacterial activity, it is also used as a benchmark for cytotoxicity to eukaryotic cells in culture.
NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope.
Inorganic derivatives of phosphorus trihydroxide (P(OH)3) and its tautomeric form dihydroxyphosphine oxide (HP=O(OH)2). Note that organic derivatives of phosphonic acids are listed under are ORGANOPHOSPHONATES.
Enzyme of the human immunodeficiency virus that is required for post-translational cleavage of gag and gag-pol precursor polyproteins into functional products needed for viral assembly. HIV protease is an aspartic protease encoded by the amino terminus of the pol gene.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Inhibitors of HIV INTEGRASE, an enzyme required for integration of viral DNA into cellular DNA.
The portion of an interactive computer program that issues messages to and receives commands from a user.
Rapid methods of measuring the effects of an agent in a biological or chemical assay. The assay usually involves some form of automation or a way to conduct multiple assays at the same time using sample arrays.
The thermodynamic interaction between a substance and WATER.
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Protein modules with conserved ligand-binding surfaces which mediate specific interaction functions in SIGNAL TRANSDUCTION PATHWAYS and the specific BINDING SITES of their cognate protein LIGANDS.
Substances that inhibit or prevent the proliferation of NEOPLASMS.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes.
A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Government ARPAnet project and was designed to facilitate information exchange.
A technology, in which sets of reactions for solution or solid-phase synthesis, is used to create molecular libraries for analysis of compounds on a large scale.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
Methods for determining interaction between PROTEINS.
A site on an enzyme which upon binding of a modulator, causes the enzyme to undergo a conformational change that may alter its catalytic or binding properties.
The characteristic 3-dimensional shape and arrangement of multimeric proteins (aggregates of more than one polypeptide chain).
The rate dynamics in chemical or physical systems.
The accumulation of an electric charge on a object
The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified.
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.
Extensive collections, reputedly complete, of facts and data garnered from material of a specialized subject area and made available for analysis and application. The collection can be automated by various contemporary methods for retrieval. The concept should be differentiated from DATABASES, BIBLIOGRAPHIC which is restricted to collections of bibliographic references.
The quality or state of being able to be bent or creased repeatedly. (From Webster, 3d ed)
Agents destructive to the protozoal organisms belonging to the suborder TRYPANOSOMATINA.
The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Higher-order DNA and RNA structures formed from guanine-rich sequences. They are formed around a core of at least 2 stacked tetrads of hydrogen-bonded GUANINE bases. They can be formed from one two or four separate strands of DNA (or RNA) and can display a wide variety of topologies, which are a consequence of various combinations of strand direction, length, and sequence. (From Nucleic Acids Res. 2006;34(19):5402-15)
Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A process that includes the determination of AMINO ACID SEQUENCE of a protein (or peptide, oligopeptide or peptide fragment) and the information analysis of the sequence.
The measure of that part of the heat or energy of a system which is not available to perform work. Entropy increases in all natural (spontaneous and irreversible) processes. (From Dorland, 28th ed)
Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed)
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Proteins prepared by recombinant DNA technology.
Agents that inhibit PROTEIN KINASES.
Learning algorithms which are a set of related supervised computer learning methods that analyze data and recognize patterns, and used for classification and regression analysis.
The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Drugs used to treat or prevent parasitic infections.
Inorganic or organic oxy acids of sulfur which contain the RSO2(OH) radical.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals.
Substances that are destructive to protozoans.
The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed)
An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992)
Peptides composed of between two and twelve amino acids.
The agent of South American trypanosomiasis or CHAGAS DISEASE. Its vertebrate hosts are man and various domestic and wild animals. Insects of several species are vectors.
Treatments with drugs which interact with or block synthesis of specific cellular components characteristic of the individual's disease in order to stop or interrupt the specific biochemical dysfunction involved in progression of the disease.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
The application of scientific knowledge or technology to pharmacy and the pharmaceutical industry. It includes methods, techniques, and instrumentation in the manufacture, preparation, compounding, dispensing, packaging, and storing of drugs and other preparations used in diagnostic and determinative procedures, and in the treatment of patients.
Elements of limited time intervals, contributing to particular results or situations.
Enzyme of the HUMAN IMMUNODEFICIENCY VIRUS that is required to integrate viral DNA into cellular DNA in the nucleus of a host cell. HIV integrase is a DNA nucleotidyltransferase encoded by the pol gene.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The theory that the radiation and absorption of energy take place in definite quantities called quanta (E) which vary in size and are defined by the equation E=hv in which h is Planck's constant and v is the frequency of the radiation.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Inhibitors of HIV PROTEASE, an enzyme required for production of proteins needed for viral assembly.
The process by which two molecules of the same chemical composition form a condensation product or polymer.
Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033)
The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES.
Thiophenes are aromatic heterocyclic organic compounds containing a five-membered ring with four carbon atoms and one sulfur atom, which are found in various natural substances and synthesized for use in pharmaceuticals and agrochemicals.
The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.
The plan and delineation of prostheses in general or a specific prosthesis.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES).
That segment of commercial enterprise devoted to the design, development, and manufacture of chemical products for use in the diagnosis and treatment of disease, disability, or other dysfunction, or to improve function.
The ability of a protein to retain its structural conformation or its activity when subjected to physical or chemical manipulations.
The facilitation of biochemical reactions with the aid of naturally occurring catalysts such as ENZYMES.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Proteins found in any species of bacterium.
Complex pharmaceutical substances, preparations, or matter derived from organisms usually obtained by biological methods or assay.
Specifications and instructions applied to the software.
A cell line derived from cultured tumor cells.
Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585)
Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language.
A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Proteins found in any species of protozoan.
An enzyme of the transferase class that catalyzes the reaction 5,10-methylenetetrahydrofolate and dUMP to dihydrofolate and dTMP in the synthesis of thymidine triphosphate. (From Dorland, 27th ed) EC 2.1.1.45.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).

Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. (1/5661)

In this study we used TEPITOPE, a new epitope prediction software, to identify sequence segments on the MAGE-3 protein with promiscuous binding to histocompatibility leukocyte antigen (HLA)-DR molecules. Synthetic peptides corresponding to the identified sequences were synthesized and used to propagate CD4(+) T cells from the blood of a healthy donor. CD4(+) T cells strongly recognized MAGE-3281-295 and, to a lesser extent, MAGE-3141-155 and MAGE-3146-160. Moreover, CD4(+) T cells proliferated in the presence of recombinant MAGE-3 after processing and presentation by autologous antigen presenting cells, demonstrating that the MAGE-3 epitopes recognized are naturally processed. CD4(+) T cells, mostly of the T helper 1 type, showed specific lytic activity against HLA-DR11/MAGE-3-positive melanoma cells. Cold target inhibition experiments demonstrated indeed that the CD4(+) T cells recognized MAGE-3281-295 in association with HLA-DR11 on melanoma cells. This is the first evidence that a tumor-specific shared antigen forms CD4(+) T cell epitopes. Furthermore, we validated the use of algorithms for the prediction of promiscuous CD4(+) T cell epitopes, thus opening the possibility of wide application to other tumor-associated antigens. These results have direct implications for cancer immunotherapy in the design of peptide-based vaccines with tumor-specific CD4(+) T cell epitopes.  (+info)

Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. (2/5661)

The development of a malignant tumor involves the progressive acquisition of mutations and epigenetic abnormalities in multiple genes that have highly diverse functions. Some of these genes code for pathways of signal transduction that mediate the action of growth factors. The enzyme protein kinase C plays an important role in these events and in the process of tumor promotion. Therefore, we examined the effects of three inhibitors of protein kinase C, CGP 41251, RO 31-8220, and calphostin C, on human glioblastoma cells. These compounds inhibited growth and induced apoptosis; these activities were associated with a decrease in the level of CDC2 and cyclin B1/CDC2-associated kinase activity. This may explain why the treated cells accumulated in G2-M. In a separate series of studies, we examined abnormalities in cell cycle control genes in human cancer. We have found that cyclin D1 is frequently overexpressed in a variety of human cancers. Mechanistic studies indicate that cyclin D1 can play a critical role in carcinogenesis because: overexpression enhances cell transformation and tumorigenesis; introduction of an antisense cyclin D1 cDNA into either human esophageal or colon cancer cells reverts their malignant phenotype; and overexpression of cyclin D1 can enhance the amplification of other genes. The latter finding suggests that cyclin D1 can enhance genomic instability and, thereby, the process of tumor progression. Therefore, inhibitors of the function of cyclin D1 may be useful in both cancer chemoprevention and therapy. We obtained evidence for the existence of homeostatic feedback loops between cyclins D1 or E and the cell cycle inhibitory protein p27Kip1. On the basis of these and other findings, we hypothesize that, because of their disordered circuitry, cancer cells suffer from "gene addiction" and "gene hypersensitivity," disorders that might be exploited in both cancer prevention and therapy.  (+info)

Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. (3/5661)

Cathepsins have been implicated in the degradation of proteins destined for the MHC class II processing pathway and in the proteolytic removal of invariant chain (Ii), a critical regulator of MHC class II function. Mice lacking the lysosomal cysteine proteinase cathepsin S (catS) demonstrated a profound inhibition of Ii degradation in professional APC in vivo. A marked variation in the generation of MHC class II-bound Ii fragments and presentation of exogenous proteins was observed between B cells, dendritic cells, and macrophages lacking catS. CatS-deficient mice showed diminished susceptibility to collagen-induced arthritis, suggesting a potential therapeutic target for regulation of immune responsiveness.  (+info)

A transfection compound series based on a versatile Tris linkage. (4/5661)

The family of cationic lipid transfection reagents described here demonstrates a modular design that offers potential for the ready synthesis of a wide variety of molecular variants. The key feature of these new molecules is the use of Tris as a linker for joining the hydrophobic domain to a cationic head group. The molecular design offers the opportunity to conveniently synthesise compounds differing in charge, the number and nature of hydrophobic groups in the hydrophobic domain and the characteristics of the spacer between the cationic and hydrophobic moieties. We show that prototype reagents of this design can deliver reporter genes into cultured cells with efficiencies rivaling those of established cationic lipid transfection reagents. A feature of these reagents is that they are not dependent on formulation with a neutral lipid for activity.  (+info)

Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. (5/5661)

In a systematic effort to design potent inhibitors of the anti-apoptotic tyrosine kinase BTK (Bruton's tyrosine kinase) as anti-leukemic agents with apoptosis-promoting and chemosensitizing properties, we have constructed a three-dimensional homology model of the BTK kinase domain. Our modeling studies revealed a distinct rectangular binding pocket near the hinge region of the BTK kinase domain with Leu460, Tyr476, Arg525, and Asp539 residues occupying the corners of the rectangle. The dimensions of this rectangle are approximately 18 x 8 x 9 x 17 A, and the thickness of the pocket is approximately 7 A. Advanced docking procedures were employed for the rational design of leflunomide metabolite (LFM) analogs with a high likelihood to bind favorably to the catalytic site within the kinase domain of BTK. The lead compound LFM-A13, for which we calculated a Ki value of 1.4 microM, inhibited human BTK in vitro with an IC50 value of 17.2 +/- 0.8 microM. Similarly, LFM-A13 inhibited recombinant BTK expressed in a baculovirus expression vector system with an IC50 value of 2.5 microM. The energetically favorable position of LFM-A13 in the binding pocket is such that its aromatic ring is close to Tyr476, and its substituent group is sandwiched between residues Arg525 and Asp539. In addition, LFM-A13 is capable of favorable hydrogen bonding interactions with BTK via Asp539 and Arg525 residues. Besides its remarkable potency in BTK kinase assays, LFM-A13 was also discovered to be a highly specific inhibitor of BTK. Even at concentrations as high as 100 micrograms/ml (approximately 278 microM), this novel inhibitor did not affect the enzymatic activity of other protein tyrosine kinases, including JAK1, JAK3, HCK, epidermal growth factor receptor kinase, and insulin receptor kinase. In accordance with the anti-apoptotic function of BTK, treatment of BTK+ B-lineage leukemic cells with LFM-A13 enhanced their sensitivity to ceramide- or vincristine-induced apoptosis. To our knowledge, LFM-A13 is the first BTK-specific tyrosine kinase inhibitor and the first anti-leukemic agent targeting BTK.  (+info)

Design of highly specific cytotoxins by using trans-splicing ribozymes. (6/5661)

We have designed ribozymes based on a self-splicing group I intron that can trans-splice exon sequences into a chosen RNA target to create a functional chimeric mRNA and provide a highly specific trigger for gene expression. We have targeted ribozymes against the coat protein mRNA of a widespread plant pathogen, cucumber mosaic virus. The ribozymes were designed to trans-splice the coding sequence of the diphtheria toxin A chain in frame with the viral initiation codon of the target sequence. Diphtheria toxin A chain catalyzes the ADP ribosylation of elongation factor 2 and can cause the cessation of protein translation. In a Saccharomyces cerevisiae model system, ribozyme expression was shown to specifically inhibit the growth of cells expressing the virus mRNA. A point mutation at the target splice site alleviated this ribozyme-mediated toxicity. Increasing the extent of base pairing between the ribozyme and target dramatically increased specific expression of the cytotoxin and reduced illegitimate toxicity in vivo. Trans-splicing ribozymes may provide a new class of agents for engineering virus resistance and therapeutic cytotoxins.  (+info)

A cytosine analog that confers enhanced potency to antisense oligonucleotides. (7/5661)

Antisense technology is based on the ability to design potent, sequence-specific inhibitors. The G-clamp heterocycle modification, a cytosine analog that clamps on to guanine by forming an additional hydrogen bond, was rationally designed to enhance oligonucleotide/RNA hybrid affinity. A single, context-dependent substitution of a G-clamp heterocycle into a 15-mer phosphorothioate oligodeoxynucleotide (S-ON) targeting the cyclin-dependent kinase inhibitor, p27(kip1), enhanced antisense activity as compared with a previously optimized C5-propynyl-modified p27(kip1) S-ON and functionally replaced 11 C5-propynyl modifications. Dose-dependent, sequence-specific antisense inhibition was observed at nanomolar concentrations of the G-clamp S-ONs. A single nucleotide mismatch between the G-clamp S-ON and the p27(kip1) mRNA reduced the potency of the antisense ON by five-fold. A 2-base-mismatch S-ON eliminated antisense activity, confirming the sequence specificity of G-clamp-modified S-ONs. The G-clamp-substituted p27(kip1) S-ON activated RNase H-mediated cleavage and demonstrated increased in vitro binding affinity for its RNA target compared with conventional 15-mer S-ONs. Furthermore, incorporation of a single G-clamp modification into a previously optimized 20-mer phosphorothioate antisense S-ON targeting c-raf increased the potency of the S-ON 25-fold. The G-clamp heterocycle is a potent, mismatch-sensitive, automated synthesizer-compatible antisense S-ON modification that will have important applications in the elucidation of gene function, the validation of gene targets, and the development of more potent antisense-based pharmaceuticals.  (+info)

Crystal structure of human type II inosine monophosphate dehydrogenase: implications for ligand binding and drug design. (8/5661)

Inosine monophosphate dehydrogenase (IMPDH) controls a key metabolic step in the regulation of cell growth and differentiation. This step is the NAD-dependent oxidation of inosine 5' monophosphate (IMP) to xanthosine 5' monophosphate, the rate-limiting step in the synthesis of the guanine nucleotides. Two isoforms of IMPDH have been identified, one of which (type II) is significantly up- regulated in neoplastic and differentiating cells. As such, it has been identified as a major target in antitumor and immunosuppressive drug design. We present here the 2.9-A structure of a ternary complex of the human type II isoform of IMPDH. The complex contains the substrate analogue 6-chloropurine riboside 5'-monophosphate (6-Cl-IMP) and the NAD analogue selenazole-4-carboxamide adenine dinucleotide, the selenium derivative of the active metabolite of the antitumor drug tiazofurin. The enzyme forms a homotetramer, with the dinucleotide binding at the monomer-monomer interface. The 6 chloro-substituted purine base is dehalogenated, forming a covalent adduct at C6 with Cys-331. The dinucleotide selenazole base is stacked against the 6-Cl-IMP purine ring in an orientation consistent with the B-side stereochemistry of hydride transfer seen with NAD. The adenosine end of the ligand interacts with residues not conserved between the type I and type II isoforms, suggesting strategies for the design of isoform-specific agents.  (+info)

"Drug design" is the process of creating and developing a new medication or therapeutic agent to treat or prevent a specific disease or condition. It involves identifying potential targets within the body, such as proteins or enzymes that are involved in the disease process, and then designing small molecules or biologics that can interact with these targets to produce a desired effect.

The drug design process typically involves several stages, including:

1. Target identification: Researchers identify a specific molecular target that is involved in the disease process.
2. Lead identification: Using computational methods and high-throughput screening techniques, researchers identify small molecules or biologics that can interact with the target.
3. Lead optimization: Researchers modify the chemical structure of the lead compound to improve its ability to interact with the target, as well as its safety and pharmacokinetic properties.
4. Preclinical testing: The optimized lead compound is tested in vitro (in a test tube or petri dish) and in vivo (in animals) to evaluate its safety and efficacy.
5. Clinical trials: If the preclinical testing is successful, the drug moves on to clinical trials in humans to further evaluate its safety and efficacy.

The ultimate goal of drug design is to create a new medication that is safe, effective, and can be used to improve the lives of patients with a specific disease or condition.

Computer-Aided Design (CAD) is the use of computer systems to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to create and manage designs in a variety of fields, such as architecture, engineering, and manufacturing. It allows designers to visualize their ideas in 2D or 3D, simulate how the design will function, and make changes quickly and easily. This can help to improve the efficiency and accuracy of the design process, and can also facilitate collaboration and communication among team members.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Molecular docking simulation is a computational method used in structural molecular biology and drug design to predict the binding orientation and affinity of two molecules, such as a protein (receptor) and a ligand (drug). It involves modeling the three-dimensional structures of the molecules and simulating their interaction using physical forces and energies. The goal is to identify the most stable and favorable binding conformation(s) between the two molecules, which can provide insights into how they interact at the molecular level and help in the design and optimization of new drugs or therapeutic agents.

Molecular docking simulations typically involve several steps, including:

1. Preparation of the receptor and ligand structures, such as adding hydrogen atoms, assigning charges, and optimizing the geometry.
2. Defining a search space or grid around the binding site of the receptor where the ligand is likely to bind.
3. Generating multiple conformations of the ligand using various algorithms, such as systematic, stochastic, or genetic algorithms.
4. Docking each ligand conformation into the receptor's binding site and scoring its binding affinity based on various energy functions, such as van der Waals forces, electrostatic interactions, hydrogen bonding, and desolvation effects.
5. Analyzing the docking results to identify the most promising binding modes and refining them using molecular dynamics simulations or other methods.

Molecular docking simulations have become an essential tool in drug discovery and development, as they can help predict the activity and selectivity of potential drugs, reduce the time and cost of experimental screening, and guide the optimization of lead compounds for further development.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Quantitative Structure-Activity Relationship (QSAR) is a method used in toxicology and medicinal chemistry that attempts to establish mathematical relationships between the chemical structure of a compound and its biological activity. QSAR models are developed using statistical methods to analyze a set of compounds with known biological activities and their structural properties, which are represented as numerical or categorical descriptors. These models can then be used to predict the biological activity of new, structurally similar compounds.

QSAR models have been widely used in drug discovery and development, as well as in chemical risk assessment, to predict the potential toxicity of chemicals based on their structural properties. The accuracy and reliability of QSAR predictions depend on various factors, including the quality and diversity of the data used to develop the models, the choice of descriptors and statistical methods, and the applicability domain of the models.

In summary, QSAR is a quantitative method that uses mathematical relationships between chemical structure and biological activity to predict the potential toxicity or efficacy of new compounds based on their structural properties.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Drug discovery is the process of identifying new chemical entities or biological agents that have the potential to be used as therapeutic or preventive treatments for diseases. This process involves several stages, including target identification, lead identification, hit-to-lead optimization, lead optimization, preclinical development, and clinical trials.

Target identification is the initial stage of drug discovery, where researchers identify a specific molecular target, such as a protein or gene, that plays a key role in the disease process. Lead identification involves screening large libraries of chemical compounds or natural products to find those that interact with the target molecule and have potential therapeutic activity.

Hit-to-lead optimization is the stage where researchers optimize the chemical structure of the lead compound to improve its potency, selectivity, and safety profile. Lead optimization involves further refinement of the compound's structure to create a preclinical development candidate. Preclinical development includes studies in vitro (in test tubes or petri dishes) and in vivo (in animals) to evaluate the safety, efficacy, and pharmacokinetics of the drug candidate.

Clinical trials are conducted in human volunteers to assess the safety, tolerability, and efficacy of the drug candidate in treating the disease. If the drug is found to be safe and effective in clinical trials, it may be approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) for use in patients.

Overall, drug discovery is a complex and time-consuming process that requires significant resources, expertise, and collaboration between researchers, clinicians, and industry partners.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

A research design in medical or healthcare research is a systematic plan that guides the execution and reporting of research to address a specific research question or objective. It outlines the overall strategy for collecting, analyzing, and interpreting data to draw valid conclusions. The design includes details about the type of study (e.g., experimental, observational), sampling methods, data collection techniques, data analysis approaches, and any potential sources of bias or confounding that need to be controlled for. A well-defined research design helps ensure that the results are reliable, generalizable, and relevant to the research question, ultimately contributing to evidence-based practice in medicine and healthcare.

Cystine knot motifs are a type of protein structure characterized by the formation of a unique knotted pattern through the linking of three conserved cysteine residues. In this structure, two of the cysteines form a disulfide bond, while the third crosses under and forms an additional disulfide bond with one of the first pair, creating a knot-like shape. This motif is found in a variety of proteins, including some that are involved in important biological processes such as cell signaling, wound healing, and tumor suppression. The cystine knot motif confers stability to these proteins and helps them maintain their function even under harsh conditions.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Molecular conformation, also known as spatial arrangement or configuration, refers to the specific three-dimensional shape and orientation of atoms that make up a molecule. It describes the precise manner in which bonds between atoms are arranged around a molecular framework, taking into account factors such as bond lengths, bond angles, and torsional angles.

Conformational isomers, or conformers, are different spatial arrangements of the same molecule that can interconvert without breaking chemical bonds. These isomers may have varying energies, stability, and reactivity, which can significantly impact a molecule's biological activity and function. Understanding molecular conformation is crucial in fields such as drug design, where small changes in conformation can lead to substantial differences in how a drug interacts with its target.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Molecular Dynamics (MD) simulation is a computational method used in the field of molecular modeling and molecular physics. It involves simulating the motions and interactions of atoms and molecules over time, based on classical mechanics or quantum mechanics. In MD simulations, the equations of motion for each atom are repeatedly solved, allowing researchers to study the dynamic behavior of molecular systems, such as protein folding, ligand-protein binding, and chemical reactions. These simulations provide valuable insights into the structural and functional properties of biological macromolecules at the atomic level, and have become an essential tool in modern drug discovery and development.

Cystine-knot miniproteins, also known as "cyclic peptides" or "constrained peptides," are a class of small protein molecules that contain a unique structural motif called a cystine knot. This motif is formed by the presence of three intramolecular disulfide bonds that create a knotted structure, which confers stability and resistance to proteolytic degradation on these miniproteins.

Cystine-knot miniproteins are found in various organisms, including plants, animals, and microorganisms, and have diverse biological functions. Some cystine-knot miniproteins act as toxins or hormones, while others have been shown to have therapeutic potential as drugs or drug delivery agents.

Due to their small size, stability, and specificity, cystine-knot miniproteins are attractive candidates for the development of new drugs and diagnostic tools. They can be engineered to bind to specific targets with high affinity and selectivity, making them useful for a variety of applications in medicine and biotechnology.

'Structural homology' in the context of proteins refers to the similarity in the three-dimensional structure of proteins that are not necessarily related by sequence. This similarity arises due to the fact that these proteins have a common evolutionary ancestor or because they share a similar function and have independently evolved to adopt a similar structure. The structural homology is often identified using bioinformatics tools, such as fold recognition algorithms, that compare the three-dimensional structures of proteins to identify similarities. This concept is important in understanding protein function and evolution, as well as in the design of new drugs and therapeutic strategies.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

Hydrogen bonding is not a medical term per se, but it is a fundamental concept in chemistry and biology that is relevant to the field of medicine. Here's a general definition:

Hydrogen bonding is a type of attractive force between molecules or within a molecule, which occurs when a hydrogen atom is bonded to a highly electronegative atom (like nitrogen, oxygen, or fluorine) and is then attracted to another electronegative atom. This attraction results in the formation of a partially covalent bond known as a "hydrogen bond."

In biological systems, hydrogen bonding plays a crucial role in the structure and function of many biomolecules, such as DNA, proteins, and carbohydrates. For example, the double helix structure of DNA is stabilized by hydrogen bonds between complementary base pairs (adenine-thymine and guanine-cytosine). Similarly, the three-dimensional structure of proteins is maintained by a network of hydrogen bonds that help to determine their function.

In medical contexts, hydrogen bonding can be relevant in understanding drug-receptor interactions, where hydrogen bonds between a drug molecule and its target protein can enhance the binding affinity and specificity of the interaction, leading to more effective therapeutic outcomes.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Pharmaceutical preparations refer to the various forms of medicines that are produced by pharmaceutical companies, which are intended for therapeutic or prophylactic use. These preparations consist of an active ingredient (the drug) combined with excipients (inactive ingredients) in a specific formulation and dosage form.

The active ingredient is the substance that has a therapeutic effect on the body, while the excipients are added to improve the stability, palatability, bioavailability, or administration of the drug. Examples of pharmaceutical preparations include tablets, capsules, solutions, suspensions, emulsions, ointments, creams, and injections.

The production of pharmaceutical preparations involves a series of steps that ensure the quality, safety, and efficacy of the final product. These steps include the selection and testing of raw materials, formulation development, manufacturing, packaging, labeling, and storage. Each step is governed by strict regulations and guidelines to ensure that the final product meets the required standards for use in medical practice.

A computer simulation is a process that involves creating a model of a real-world system or phenomenon on a computer and then using that model to run experiments and make predictions about how the system will behave under different conditions. In the medical field, computer simulations are used for a variety of purposes, including:

1. Training and education: Computer simulations can be used to create realistic virtual environments where medical students and professionals can practice their skills and learn new procedures without risk to actual patients. For example, surgeons may use simulation software to practice complex surgical techniques before performing them on real patients.
2. Research and development: Computer simulations can help medical researchers study the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone. By creating detailed models of cells, tissues, organs, or even entire organisms, researchers can use simulation software to explore how these systems function and how they respond to different stimuli.
3. Drug discovery and development: Computer simulations are an essential tool in modern drug discovery and development. By modeling the behavior of drugs at a molecular level, researchers can predict how they will interact with their targets in the body and identify potential side effects or toxicities. This information can help guide the design of new drugs and reduce the need for expensive and time-consuming clinical trials.
4. Personalized medicine: Computer simulations can be used to create personalized models of individual patients based on their unique genetic, physiological, and environmental characteristics. These models can then be used to predict how a patient will respond to different treatments and identify the most effective therapy for their specific condition.

Overall, computer simulations are a powerful tool in modern medicine, enabling researchers and clinicians to study complex systems and make predictions about how they will behave under a wide range of conditions. By providing insights into the behavior of biological systems at a level of detail that would be difficult or impossible to achieve through experimental methods alone, computer simulations are helping to advance our understanding of human health and disease.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

A Small Molecule Library is a collection of a large number of chemically synthesized, low molecular weight (typically under 900 daltons) compounds, which are used in drug discovery and development research. These libraries contain diverse structures and chemical properties, allowing researchers to screen them against specific targets, such as proteins or genes, to identify potential lead compounds that can be further optimized for therapeutic use. The use of small molecule libraries enables high-throughput screening, which is a rapid and efficient method to identify potential drug candidates.

Cyclotides are a group of naturally occurring cyclic peptides that contain a head-to-tail cyclized structure and a conserved cystine knot motif. They are produced by plants, particularly those in the Rubiaceae family, as a defense mechanism against herbivores and pathogens.

Cyclotides have unique structural features, including a circular arrangement of amino acids and a knotted pattern of disulfide bonds, which contribute to their stability and resistance to degradation. These properties make them attractive candidates for drug development and therapeutic applications.

In addition to their potential use as drugs, cyclotides have also been studied for their potential as insecticides, antimicrobial agents, and anti-cancer therapies. They have been shown to have potent activity against a variety of targets, including cancer cells, bacteria, fungi, and viruses.

Overall, the unique structural and functional properties of cyclotides make them an exciting area of research in the fields of medicinal chemistry, pharmacology, and drug discovery.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Preclinical drug evaluation refers to a series of laboratory tests and studies conducted to determine the safety and effectiveness of a new drug before it is tested in humans. These studies typically involve experiments on cells and animals to evaluate the pharmacological properties, toxicity, and potential interactions with other substances. The goal of preclinical evaluation is to establish a reasonable level of safety and understanding of how the drug works, which helps inform the design and conduct of subsequent clinical trials in humans. It's important to note that while preclinical studies provide valuable information, they may not always predict how a drug will behave in human subjects.

An algorithm is not a medical term, but rather a concept from computer science and mathematics. In the context of medicine, algorithms are often used to describe step-by-step procedures for diagnosing or managing medical conditions. These procedures typically involve a series of rules or decision points that help healthcare professionals make informed decisions about patient care.

For example, an algorithm for diagnosing a particular type of heart disease might involve taking a patient's medical history, performing a physical exam, ordering certain diagnostic tests, and interpreting the results in a specific way. By following this algorithm, healthcare professionals can ensure that they are using a consistent and evidence-based approach to making a diagnosis.

Algorithms can also be used to guide treatment decisions. For instance, an algorithm for managing diabetes might involve setting target blood sugar levels, recommending certain medications or lifestyle changes based on the patient's individual needs, and monitoring the patient's response to treatment over time.

Overall, algorithms are valuable tools in medicine because they help standardize clinical decision-making and ensure that patients receive high-quality care based on the latest scientific evidence.

Computational biology is a branch of biology that uses mathematical and computational methods to study biological data, models, and processes. It involves the development and application of algorithms, statistical models, and computational approaches to analyze and interpret large-scale molecular and phenotypic data from genomics, transcriptomics, proteomics, metabolomics, and other high-throughput technologies. The goal is to gain insights into biological systems and processes, develop predictive models, and inform experimental design and hypothesis testing in the life sciences. Computational biology encompasses a wide range of disciplines, including bioinformatics, systems biology, computational genomics, network biology, and mathematical modeling of biological systems.

Secondary protein structure refers to the local spatial arrangement of amino acid chains in a protein, typically described as regular repeating patterns held together by hydrogen bonds. The two most common types of secondary structures are the alpha-helix (α-helix) and the beta-pleated sheet (β-sheet). In an α-helix, the polypeptide chain twists around itself in a helical shape, with each backbone atom forming a hydrogen bond with the fourth amino acid residue along the chain. This forms a rigid rod-like structure that is resistant to bending or twisting forces. In β-sheets, adjacent segments of the polypeptide chain run parallel or antiparallel to each other and are connected by hydrogen bonds, forming a pleated sheet-like arrangement. These secondary structures provide the foundation for the formation of tertiary and quaternary protein structures, which determine the overall three-dimensional shape and function of the protein.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

I'm sorry for any confusion, but "thermodynamics" is not a term that has a specific medical definition. It is a branch of physics that deals with the relationships between heat and other forms of energy. However, the principles of thermodynamics can be applied to biological systems, including those in the human body, such as in the study of metabolism or muscle function. But in a medical context, "thermodynamics" would not be a term used independently as a diagnosis, treatment, or any medical condition.

I am not aware of a widely accepted medical definition for the term "software," as it is more commonly used in the context of computer science and technology. Software refers to programs, data, and instructions that are used by computers to perform various tasks. It does not have direct relevance to medical fields such as anatomy, physiology, or clinical practice. If you have any questions related to medicine or healthcare, I would be happy to try to help with those instead!

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Pharmaceutical databases are collections of information related to pharmaceuticals and medications. These databases can contain a variety of data types, including:

1. Drug information: This includes details about the chemical properties, therapeutic uses, dosages, side effects, interactions, and contraindications of medications.
2. Clinical trials data: Information on ongoing or completed clinical trials, including study design, participant demographics, outcomes, and safety data.
3. Prescription data: Data related to prescribing patterns, medication utilization, and adherence.
4. Pharmacoeconomic data: Cost-effectiveness analyses, budget impact models, and other economic evaluations of medications.
5. Regulatory information: Details about drug approvals, labeling changes, and safety alerts from regulatory agencies such as the US Food and Drug Administration (FDA) or the European Medicines Agency (EMA).
6. Pharmacovigilance data: Information on adverse events, medication errors, and other safety concerns reported to pharmacovigilance databases.
7. Literature databases: Citations and abstracts from medical literature related to pharmaceuticals and medications.

Pharmaceutical databases can be used by healthcare professionals, researchers, regulatory agencies, and the pharmaceutical industry for a variety of purposes, including drug development, clinical decision making, post-marketing surveillance, and health policy planning.

Drug delivery systems (DDS) refer to techniques or technologies that are designed to improve the administration of a pharmaceutical compound in terms of its efficiency, safety, and efficacy. A DDS can modify the drug release profile, target the drug to specific cells or tissues, protect the drug from degradation, and reduce side effects.

The goal of a DDS is to optimize the bioavailability of a drug, which is the amount of the drug that reaches the systemic circulation and is available at the site of action. This can be achieved through various approaches, such as encapsulating the drug in a nanoparticle or attaching it to a biomolecule that targets specific cells or tissues.

Some examples of DDS include:

1. Controlled release systems: These systems are designed to release the drug at a controlled rate over an extended period, reducing the frequency of dosing and improving patient compliance.
2. Targeted delivery systems: These systems use biomolecules such as antibodies or ligands to target the drug to specific cells or tissues, increasing its efficacy and reducing side effects.
3. Nanoparticle-based delivery systems: These systems use nanoparticles made of polymers, lipids, or inorganic materials to encapsulate the drug and protect it from degradation, improve its solubility, and target it to specific cells or tissues.
4. Biodegradable implants: These are small devices that can be implanted under the skin or into body cavities to deliver drugs over an extended period. They can be made of biodegradable materials that gradually break down and release the drug.
5. Inhalation delivery systems: These systems use inhalers or nebulizers to deliver drugs directly to the lungs, bypassing the digestive system and improving bioavailability.

Overall, DDS play a critical role in modern pharmaceutical research and development, enabling the creation of new drugs with improved efficacy, safety, and patient compliance.

A protein database is a type of biological database that contains information about proteins and their structures, functions, sequences, and interactions with other molecules. These databases can include experimentally determined data, such as protein sequences derived from DNA sequencing or mass spectrometry, as well as predicted data based on computational methods.

Some examples of protein databases include:

1. UniProtKB: a comprehensive protein database that provides information about protein sequences, functions, and structures, as well as literature references and links to other resources.
2. PDB (Protein Data Bank): a database of three-dimensional protein structures determined by experimental methods such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy.
3. BLAST (Basic Local Alignment Search Tool): a web-based tool that allows users to compare a query protein sequence against a protein database to identify similar sequences and potential functional relationships.
4. InterPro: a database of protein families, domains, and functional sites that provides information about protein function based on sequence analysis and other data.
5. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins): a database of known and predicted protein-protein interactions, including physical and functional associations.

Protein databases are essential tools in proteomics research, enabling researchers to study protein function, evolution, and interaction networks on a large scale.

Equipment design, in the medical context, refers to the process of creating and developing medical equipment and devices, such as surgical instruments, diagnostic machines, or assistive technologies. This process involves several stages, including:

1. Identifying user needs and requirements
2. Concept development and brainstorming
3. Prototyping and testing
4. Design for manufacturing and assembly
5. Safety and regulatory compliance
6. Verification and validation
7. Training and support

The goal of equipment design is to create safe, effective, and efficient medical devices that meet the needs of healthcare providers and patients while complying with relevant regulations and standards. The design process typically involves a multidisciplinary team of engineers, clinicians, designers, and researchers who work together to develop innovative solutions that improve patient care and outcomes.

Pharmaceutical chemistry is a branch of chemistry that deals with the design, synthesis, and development of chemical entities used as medications. It involves the study of drugs' physical, chemical, and biological properties, as well as their interactions with living organisms. This field also encompasses understanding the absorption, distribution, metabolism, and excretion (ADME) of drugs in the body, which are critical factors in drug design and development. Pharmaceutical chemists often work closely with biologists, medical professionals, and engineers to develop new medications and improve existing ones.

Boranes are a group of chemical compounds that contain only boron and hydrogen. The most well-known borane is BH3, also known as diborane. These compounds are highly reactive and have unusual structures, with the boron atoms bonded to each other in three-center, two-electron bonds. Boranes are used in research and industrial applications, including as reducing agents and catalysts. They are highly flammable and toxic, so they must be handled with care.

Lipoxygenases (LOX) are a group of enzymes that catalyze the dioxygenation of polyunsaturated fatty acids, forming hydroperoxides. These enzymes play a role in various physiological and pathophysiological processes, including inflammation, immunity, and cancer. They are widely distributed in nature and can be found in animals, plants, and microorganisms. In humans, LOXs are involved in the biosynthesis of leukotrienes and lipoxins, which are important mediators of inflammation and resolution of inflammation, respectively.

Informatics, in the context of medicine and healthcare, is the scientific discipline that deals with the systematic processing, transmission, and manipulation of biomedical data, information, and knowledge. It involves the application of computer and information science principles, methods, and systems to improve healthcare delivery, research, and education.

Health Informatics, also known as Healthcare Informatics or Medical Informatics, encompasses various areas such as clinical informatics, public health informatics, nursing informatics, dental informatics, and biomedical informatics. These fields focus on developing and using information systems, technologies, and tools to support healthcare professionals in their decision-making processes, improve patient care, enhance clinical outcomes, and promote evidence-based practice.

Health Informatics plays a crucial role in facilitating the integration of data from different sources, such as electronic health records (EHRs), medical imaging systems, genomic databases, and wearable devices, to create comprehensive and longitudinal patient records. It also supports research and education by providing access to large-scale biomedical data repositories and advanced analytical tools for knowledge discovery and evidence generation.

In summary, Informatics in healthcare is a multidisciplinary field that combines information technology, communication, and healthcare expertise to optimize the health and well-being of individuals and populations.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Heterocyclic compounds are organic molecules that contain a ring structure made up of at least one atom that is not carbon, known as a heteroatom. These heteroatoms can include nitrogen, oxygen, sulfur, or other elements. In the case of "2-ring" heterocyclic compounds, the molecule contains two separate ring structures, each of which includes at least one heteroatom.

The term "heterocyclic compound" is used to describe a broad class of organic molecules that are found in many natural and synthetic substances. They play important roles in biology, medicine, and materials science. Heterocyclic compounds can be classified based on the number of rings they contain, as well as the types and arrangements of heteroatoms within those rings.

Two-ring heterocyclic compounds can exhibit a wide range of chemical and physical properties, depending on the nature of the rings and the heteroatoms present. Some examples of two-ring heterocyclic compounds include quinoline, isoquinoline, benzothiazole, and benzoxazole, among many others. These compounds have important applications in pharmaceuticals, dyes, pigments, and other industrial products.

Crystallization is a process in which a substance transitions from a liquid or dissolved state to a solid state, forming a crystal lattice. In the medical context, crystallization can refer to the formation of crystals within the body, which can occur under certain conditions such as changes in pH, temperature, or concentration of solutes. These crystals can deposit in various tissues and organs, leading to the formation of crystal-induced diseases or disorders.

For example, in patients with gout, uric acid crystals can accumulate in joints, causing inflammation, pain, and swelling. Similarly, in nephrolithiasis (kidney stones), minerals in the urine can crystallize and form stones that can obstruct the urinary tract. Crystallization can also occur in other medical contexts, such as in the formation of dental calculus or plaque, and in the development of cataracts in the eye.

Inhibitory Concentration 50 (IC50) is a measure used in pharmacology, toxicology, and virology to describe the potency of a drug or chemical compound. It refers to the concentration needed to reduce the biological or biochemical activity of a given substance by half. Specifically, it is most commonly used in reference to the inhibition of an enzyme or receptor.

In the context of infectious diseases, IC50 values are often used to compare the effectiveness of antiviral drugs against a particular virus. A lower IC50 value indicates that less of the drug is needed to achieve the desired effect, suggesting greater potency and potentially fewer side effects. Conversely, a higher IC50 value suggests that more of the drug is required to achieve the same effect, indicating lower potency.

It's important to note that IC50 values can vary depending on the specific assay or experimental conditions used, so they should be interpreted with caution and in conjunction with other measures of drug efficacy.

Nuclear Magnetic Resonance (NMR) Biomolecular is a research technique that uses magnetic fields and radio waves to study the structure and dynamics of biological molecules, such as proteins and nucleic acids. This technique measures the magnetic properties of atomic nuclei within these molecules, specifically their spin, which can be influenced by the application of an external magnetic field.

When a sample is placed in a strong magnetic field, the nuclei absorb and emit electromagnetic radiation at specific frequencies, known as resonance frequencies, which are determined by the molecular structure and environment of the nuclei. By analyzing these resonance frequencies and their interactions, researchers can obtain detailed information about the three-dimensional structure, dynamics, and interactions of biomolecules.

NMR spectroscopy is a non-destructive technique that allows for the study of biological molecules in solution, which makes it an important tool for understanding the function and behavior of these molecules in their natural environment. Additionally, NMR can be used to study the effects of drugs, ligands, and other small molecules on biomolecular structure and dynamics, making it a valuable tool in drug discovery and development.

I believe there might be a slight confusion in your question. Phosphoric acid is the correct term, and it is a mineral acid with the chemical formula H3PO4. It is a weak acid that is used in various industrial applications, such as food additives, fertilizers, and rust removal agents. In the context of medical definitions, phosphoric acid is not typically classified as a 'phosphorous acid.'

Here's the definition of phosphoric acid:

Phosphoric acid, also known as orthophosphoric acid, is a mineral acid with the chemical formula H3PO4. It is a colorless, odorless, and hygroscopic liquid that is highly soluble in water. Phosphoric acid is a weak acid, meaning it does not dissociate completely in water, and has a pKa of 2.15 at 25°C.

It's important to note that phosphoric acid should not be confused with phosphorous acids, which are organic compounds containing phosphorus-hydrogen bonds. Phosphorous acids include phosphinic acid (H2PO3) and phosphonic acid (H3PO3), among others. These compounds have different chemical properties and uses than phosphoric acid.

HIV Protease is a crucial enzyme that plays a significant role in the replication cycle of the Human Immunodeficiency Virus (HIV). It is responsible for cleaving or cutting specific long protein chains, produced during the translation of viral RNA, into smaller functional proteins. These proteins are essential for the formation of new virus particles.

The HIV Protease enzyme functions like a pair of molecular scissors, recognizing and cutting particular amino acid sequences in these polyprotein chains. By inhibiting this enzyme's activity with antiretroviral drugs known as protease inhibitors, the production of mature, infectious viral particles can be effectively prevented, which is a crucial component of highly active antiretroviral therapy (HAART) for managing HIV infection and reducing the risk of transmitting the virus to others.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

HIV integrase inhibitors are a class of antiretroviral medications used in the treatment and management of HIV infection. They work by blocking the action of integrase, an enzyme that the human immunodeficiency virus (HIV) uses to insert its genetic material into the DNA of host cells. By preventing this integration, HIV inhibitors help to stop the replication of the virus and reduce the viral load in the body.

Integrase inhibitors are often used in combination with other antiretroviral drugs as part of a highly active antiretroviral therapy (HAART) regimen. This approach has been shown to be effective in suppressing HIV replication, reducing the risk of disease progression, and improving the overall health and well-being of people living with HIV.

Some examples of integrase inhibitors include raltegravir (Isentress), elvitegravir (Vitekta), dolutegravir (Tivicay), and bictegravir (Biktarvy). These medications are usually taken orally, once or twice daily, and may be prescribed as part of a single-tablet regimen or in combination with other antiretroviral drugs.

It's important to note that while integrase inhibitors can be highly effective in managing HIV infection, they are not a cure for the disease. People living with HIV will need to continue taking their medications as prescribed, under the guidance of a healthcare provider, to maintain viral suppression and prevent drug resistance.

A User-Computer Interface (also known as Human-Computer Interaction) refers to the point at which a person (user) interacts with a computer system. This can include both hardware and software components, such as keyboards, mice, touchscreens, and graphical user interfaces (GUIs). The design of the user-computer interface is crucial in determining the usability and accessibility of a computer system for the user. A well-designed interface should be intuitive, efficient, and easy to use, minimizing the cognitive load on the user and allowing them to effectively accomplish their tasks.

High-throughput screening (HTS) assays are a type of biochemical or cell-based assay that are designed to quickly and efficiently identify potential hits or active compounds from large libraries of chemicals or biological molecules. In HTS, automated equipment is used to perform the assay in a parallel or high-throughput format, allowing for the screening of thousands to millions of compounds in a relatively short period of time.

HTS assays typically involve the use of robotics, liquid handling systems, and detection technologies such as microplate readers, imagers, or flow cytometers. These assays are often used in drug discovery and development to identify lead compounds that modulate specific biological targets, such as enzymes, receptors, or ion channels.

HTS assays can be used to measure a variety of endpoints, including enzyme activity, binding affinity, cell viability, gene expression, and protein-protein interactions. The data generated from HTS assays are typically analyzed using statistical methods and bioinformatics tools to prioritize and optimize hit compounds for further development.

Overall, high-throughput screening assays are a powerful tool in modern drug discovery and development, enabling researchers to rapidly identify and characterize potential therapeutic agents with improved efficiency and accuracy.

Hydrophobic interactions: These are the interactions that occur between non-polar molecules or groups of atoms in an aqueous environment, leading to their association or aggregation. The term "hydrophobic" means "water-fearing" and describes the tendency of non-polar substances to repel water. When non-polar molecules or groups are placed in water, they tend to clump together to minimize contact with the polar water molecules. These interactions are primarily driven by the entropy increase of the system as a whole, rather than energy minimization. Hydrophobic interactions play crucial roles in various biological processes, such as protein folding, membrane formation, and molecular self-assembly.

Hydrophilic interactions: These are the interactions that occur between polar molecules or groups of atoms and water molecules. The term "hydrophilic" means "water-loving" and describes the attraction of polar substances to water. When polar molecules or groups are placed in water, they can form hydrogen bonds with the surrounding water molecules, which helps solvate them. Hydrophilic interactions contribute to the stability and functionality of various biological systems, such as protein structure, ion transport across membranes, and enzyme catalysis.

Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic technique that provides information about the biochemical composition of tissues, including their metabolic state. It is often used in conjunction with Magnetic Resonance Imaging (MRI) to analyze various metabolites within body tissues, such as the brain, heart, liver, and muscles.

During MRS, a strong magnetic field, radio waves, and a computer are used to produce detailed images and data about the concentration of specific metabolites in the targeted tissue or organ. This technique can help detect abnormalities related to energy metabolism, neurotransmitter levels, pH balance, and other biochemical processes, which can be useful for diagnosing and monitoring various medical conditions, including cancer, neurological disorders, and metabolic diseases.

There are different types of MRS, such as Proton (^1^H) MRS, Phosphorus-31 (^31^P) MRS, and Carbon-13 (^13^C) MRS, each focusing on specific elements or metabolites within the body. The choice of MRS technique depends on the clinical question being addressed and the type of information needed for diagnosis or monitoring purposes.

Protein interaction domains and motifs refer to specific regions or sequences within proteins that are involved in mediating interactions between two or more proteins. These elements can be classified into two main categories: domains and motifs.

Domains are structurally conserved regions of a protein that can fold independently and perform specific functions, such as binding to other molecules like DNA, RNA, or other proteins. They typically range from 25 to 500 amino acids in length and can be found in multiple copies within a single protein or shared among different proteins.

Motifs, on the other hand, are shorter sequences of 3-10 amino acids that mediate more localized interactions with other molecules. Unlike domains, motifs may not have well-defined structures and can be found in various contexts within a protein.

Together, these protein interaction domains and motifs play crucial roles in many biological processes, including signal transduction, gene regulation, enzyme function, and protein complex formation. Understanding the specificity and dynamics of these interactions is essential for elucidating cellular functions and developing therapeutic strategies.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Protein engineering is a branch of molecular biology that involves the modification of proteins to achieve desired changes in their structure and function. This can be accomplished through various techniques, including site-directed mutagenesis, gene shuffling, directed evolution, and rational design. The goal of protein engineering may be to improve the stability, activity, specificity, or other properties of a protein for therapeutic, diagnostic, industrial, or research purposes. It is an interdisciplinary field that combines knowledge from genetics, biochemistry, structural biology, and computational modeling.

I'm sorry for any confusion, but "Internet" is a term that pertains to the global network of interconnected computers and servers that enable the transmission and reception of data via the internet protocol (IP). It is not a medical term and does not have a specific medical definition. If you have any questions related to medicine or health, I'd be happy to try to help answer them for you!

Combinatorial chemistry techniques are a group of methods used in the field of chemistry to synthesize and optimize large libraries of chemical compounds in a rapid and efficient manner. These techniques involve the systematic combination of different building blocks, or reagents, in various arrangements to generate a diverse array of molecules. This approach allows chemists to quickly explore a wide chemical space and identify potential lead compounds for drug discovery, materials science, and other applications.

There are several common combinatorial chemistry techniques, including:

1. **Split-Pool Synthesis:** In this method, a large collection of starting materials is divided into smaller groups, and each group undergoes a series of chemical reactions with different reagents. The resulting products from each group are then pooled together and redistributed for additional rounds of reactions. This process creates a vast number of unique compounds through the iterative combination of building blocks.
2. **Parallel Synthesis:** In parallel synthesis, multiple reactions are carried out simultaneously in separate reaction vessels. Each vessel contains a distinct set of starting materials and reagents, allowing for the efficient generation of a series of related compounds. This method is particularly useful when exploring structure-activity relationships (SAR) or optimizing lead compounds.
3. **Encoded Libraries:** To facilitate the rapid identification of active compounds within large libraries, encoded library techniques incorporate unique tags or barcodes into each molecule. These tags allow for the simultaneous synthesis and screening of compounds, as the identity of an active compound can be determined by decoding its corresponding tag.
4. **DNA-Encoded Libraries (DELs):** DELs are a specific type of encoded library that uses DNA molecules to encode and track chemical compounds. In this approach, each unique compound is linked to a distinct DNA sequence, enabling the rapid identification of active compounds through DNA sequencing techniques.
5. **Solid-Phase Synthesis:** This technique involves the attachment of starting materials to a solid support, such as beads or resins, allowing for the stepwise addition of reagents and building blocks. The solid support facilitates easy separation, purification, and screening of compounds, making it an ideal method for combinatorial chemistry applications.

Combinatorial chemistry techniques have revolutionized drug discovery and development by enabling the rapid synthesis, screening, and optimization of large libraries of chemical compounds. These methods continue to play a crucial role in modern medicinal chemistry and materials science research.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Protein interaction mapping is a research approach used to identify and characterize the physical interactions between different proteins within a cell or organism. This process often involves the use of high-throughput experimental techniques, such as yeast two-hybrid screening, mass spectrometry-based approaches, or protein fragment complementation assays, to detect and quantify the binding affinities of protein pairs. The resulting data is then used to construct a protein interaction network, which can provide insights into functional relationships between proteins, help elucidate cellular pathways, and inform our understanding of biological processes in health and disease.

An allosteric site is a distinct and separate binding site on a protein (usually an enzyme) other than the active site where the substrate binds. The binding of a molecule (known as an allosteric modulator or effector) to this site can cause a conformational change in the protein's structure, which in turn affects its activity, either by enhancing (allosteric activation) or inhibiting (allosteric inhibition) its function. This allosteric regulation allows for complex control mechanisms in biological systems and is crucial for many cellular processes.

Quaternary protein structure refers to the arrangement and interaction of multiple folded protein molecules in a multi-subunit complex. These subunits can be identical or different forms of the same protein or distinctly different proteins that associate to form a functional complex. The quaternary structure is held together by non-covalent interactions, such as hydrogen bonds, ionic bonds, and van der Waals forces. Understanding quaternary structure is crucial for comprehending the function, regulation, and assembly of many protein complexes involved in various cellular processes.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

I'm sorry for any confusion, but static electricity is not a term that has a specific medical definition. Static electricity is an electrical charge that builds up on the surface of objects. This occurs when there is an imbalance of electric charges within or on the surface of a material. It can be caused by certain conditions, such as friction, which can build up an electric charge.

While not a medical term, static electricity can have various effects in different settings, including medical ones. For instance, it can cause issues with electronic equipment used in healthcare settings. Additionally, some people may experience a shock or spark when they touch a conductive object that has been charged with static electricity. However, these occurrences are not typically considered medical conditions or issues.

G-protein-coupled receptors (GPCRs) are a family of membrane receptors that play an essential role in cellular signaling and communication. These receptors possess seven transmembrane domains, forming a structure that spans the lipid bilayer of the cell membrane. They are called "G-protein-coupled" because they interact with heterotrimeric G proteins upon activation, which in turn modulate various downstream signaling pathways.

When an extracellular ligand binds to a GPCR, it causes a conformational change in the receptor's structure, leading to the exchange of guanosine diphosphate (GDP) for guanosine triphosphate (GTP) on the associated G protein's α subunit. This exchange triggers the dissociation of the G protein into its α and βγ subunits, which then interact with various effector proteins to elicit cellular responses.

There are four main families of GPCRs, classified based on their sequence similarities and downstream signaling pathways:

1. Gq-coupled receptors: These receptors activate phospholipase C (PLC), which leads to the production of inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces calcium release from intracellular stores, while DAG activates protein kinase C (PKC).
2. Gs-coupled receptors: These receptors activate adenylyl cyclase, which increases the production of cyclic adenosine monophosphate (cAMP) and subsequently activates protein kinase A (PKA).
3. Gi/o-coupled receptors: These receptors inhibit adenylyl cyclase, reducing cAMP levels and modulating PKA activity. Additionally, they can activate ion channels or regulate other signaling pathways through the βγ subunits.
4. G12/13-coupled receptors: These receptors primarily activate RhoGEFs, which in turn activate RhoA and modulate cytoskeletal organization and cellular motility.

GPCRs are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and sensory perception. Dysregulation of GPCR function has been implicated in numerous diseases, making them attractive targets for drug development.

Protein folding is the process by which a protein molecule naturally folds into its three-dimensional structure, following the synthesis of its amino acid chain. This complex process is determined by the sequence and properties of the amino acids, as well as various environmental factors such as temperature, pH, and the presence of molecular chaperones. The final folded conformation of a protein is crucial for its proper function, as it enables the formation of specific interactions between different parts of the molecule, which in turn define its biological activity. Protein misfolding can lead to various diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's disease.

Enzymes are complex proteins that act as catalysts to speed up chemical reactions in the body. They help to lower activation energy required for reactions to occur, thereby enabling the reaction to happen faster and at lower temperatures. Enzymes work by binding to specific molecules, called substrates, and converting them into different molecules, called products. This process is known as catalysis.

Enzymes are highly specific and will only catalyze one particular reaction with a specific substrate. The shape of the enzyme's active site, where the substrate binds, determines this specificity. Enzymes can be regulated by various factors such as temperature, pH, and the presence of inhibitors or activators. They play a crucial role in many biological processes, including digestion, metabolism, and DNA replication.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

A factual database in the medical context is a collection of organized and structured data that contains verified and accurate information related to medicine, healthcare, or health sciences. These databases serve as reliable resources for various stakeholders, including healthcare professionals, researchers, students, and patients, to access evidence-based information for making informed decisions and enhancing knowledge.

Examples of factual medical databases include:

1. PubMed: A comprehensive database of biomedical literature maintained by the US National Library of Medicine (NLM). It contains citations and abstracts from life sciences journals, books, and conference proceedings.
2. MEDLINE: A subset of PubMed, MEDLINE focuses on high-quality, peer-reviewed articles related to biomedicine and health. It is the primary component of the NLM's database and serves as a critical resource for healthcare professionals and researchers worldwide.
3. Cochrane Library: A collection of systematic reviews and meta-analyses focused on evidence-based medicine. The library aims to provide unbiased, high-quality information to support clinical decision-making and improve patient outcomes.
4. OVID: A platform that offers access to various medical and healthcare databases, including MEDLINE, Embase, and PsycINFO. It facilitates the search and retrieval of relevant literature for researchers, clinicians, and students.
5. ClinicalTrials.gov: A registry and results database of publicly and privately supported clinical studies conducted around the world. The platform aims to increase transparency and accessibility of clinical trial data for healthcare professionals, researchers, and patients.
6. UpToDate: An evidence-based, physician-authored clinical decision support resource that provides information on diagnosis, treatment, and prevention of medical conditions. It serves as a point-of-care tool for healthcare professionals to make informed decisions and improve patient care.
7. TRIP Database: A search engine designed to facilitate evidence-based medicine by providing quick access to high-quality resources, including systematic reviews, clinical guidelines, and practice recommendations.
8. National Guideline Clearinghouse (NGC): A database of evidence-based clinical practice guidelines and related documents developed through a rigorous review process. The NGC aims to provide clinicians, healthcare providers, and policymakers with reliable guidance for patient care.
9. DrugBank: A comprehensive, freely accessible online database containing detailed information about drugs, their mechanisms, interactions, and targets. It serves as a valuable resource for researchers, healthcare professionals, and students in the field of pharmacology and drug discovery.
10. Genetic Testing Registry (GTR): A database that provides centralized information about genetic tests, test developers, laboratories offering tests, and clinical validity and utility of genetic tests. It serves as a resource for healthcare professionals, researchers, and patients to make informed decisions regarding genetic testing.

In the context of medicine, particularly in physical therapy and rehabilitation, "pliability" refers to the quality or state of being flexible or supple. It describes the ability of tissues, such as muscles or fascia (connective tissue), to stretch, deform, and adapt to forces applied upon them without resistance or injury. Improving pliability can help enhance range of motion, reduce muscle stiffness, promote circulation, and alleviate pain. Techniques like soft tissue mobilization, myofascial release, and stretching are often used to increase pliability in clinical settings.

Trypanocidal agents are a type of medication specifically used for the treatment and prevention of trypanosomiasis, which is a group of diseases caused by various species of protozoan parasites belonging to the genus Trypanosoma. These agents work by killing or inhibiting the growth of the parasites in the human body.

There are two main types of human trypanosomiasis: African trypanosomiasis, also known as sleeping sickness, which is caused by Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense; and American trypanosomiasis, also known as Chagas disease, which is caused by Trypanosoma cruzi.

Trypanocidal agents can be divided into two categories:

1. Drugs used to treat African trypanosomiasis: These include pentamidine, suramin, melarsoprol, and eflornithine. Pentamidine and suramin are used for the early stages of the disease, while melarsoprol and eflornithine are used for the later stages.
2. Drugs used to treat American trypanosomiasis: The main drug used for Chagas disease is benznidazole, which is effective in killing the parasites during the acute phase of the infection. Another drug, nifurtimox, can also be used, although it has more side effects than benznidazole.

It's important to note that trypanocidal agents have limited availability and are often associated with significant toxicity, making their use challenging in some settings. Therefore, prevention measures such as avoiding insect vectors and using vector control methods remain crucial in controlling the spread of these diseases.

Protein multimerization refers to the process where multiple protein subunits assemble together to form a complex, repetitive structure called a multimer or oligomer. This can involve the association of identical or similar protein subunits through non-covalent interactions such as hydrogen bonding, ionic bonding, and van der Waals forces. The resulting multimeric structures can have various shapes, sizes, and functions, including enzymatic activity, transport, or structural support. Protein multimerization plays a crucial role in many biological processes and is often necessary for the proper functioning of proteins within cells.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

G-Quadruplexes are higher-order DNA or RNA structures that can form in guanine-rich sequences through the stacking of multiple G-tetrads, which are planar arrangements of four guanine bases held together by Hoogsteen hydrogen bonds. These structures are stabilized by monovalent cations, such as potassium, and can play a role in various cellular processes, including transcription, translation, and genome stability. They have been studied as potential targets for the development of new therapeutic strategies in cancer and other diseases.

Antiviral agents are a class of medications that are designed to treat infections caused by viruses. Unlike antibiotics, which target bacteria, antiviral agents interfere with the replication and infection mechanisms of viruses, either by inhibiting their ability to replicate or by modulating the host's immune response to the virus.

Antiviral agents are used to treat a variety of viral infections, including influenza, herpes simplex virus (HSV) infections, human immunodeficiency virus (HIV) infection, hepatitis B and C, and respiratory syncytial virus (RSV) infections.

These medications can be administered orally, intravenously, or topically, depending on the type of viral infection being treated. Some antiviral agents are also used for prophylaxis, or prevention, of certain viral infections.

It is important to note that antiviral agents are not effective against all types of viruses and may have significant side effects. Therefore, it is essential to consult with a healthcare professional before starting any antiviral therapy.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Protein sequence analysis is the systematic examination and interpretation of the amino acid sequence of a protein to understand its structure, function, evolutionary relationships, and other biological properties. It involves various computational methods and tools to analyze the primary structure of proteins, which is the linear arrangement of amino acids along the polypeptide chain.

Protein sequence analysis can provide insights into several aspects, such as:

1. Identification of functional domains, motifs, or sites within a protein that may be responsible for its specific biochemical activities.
2. Comparison of homologous sequences from different organisms to infer evolutionary relationships and determine the degree of similarity or divergence among them.
3. Prediction of secondary and tertiary structures based on patterns of amino acid composition, hydrophobicity, and charge distribution.
4. Detection of post-translational modifications that may influence protein function, localization, or stability.
5. Identification of protease cleavage sites, signal peptides, or other sequence features that play a role in protein processing and targeting.

Some common techniques used in protein sequence analysis include:

1. Multiple Sequence Alignment (MSA): A method to align multiple protein sequences to identify conserved regions, gaps, and variations.
2. BLAST (Basic Local Alignment Search Tool): A widely-used tool for comparing a query protein sequence against a database of known sequences to find similarities and infer function or evolutionary relationships.
3. Hidden Markov Models (HMMs): Statistical models used to describe the probability distribution of amino acid sequences in protein families, allowing for more sensitive detection of remote homologs.
4. Protein structure prediction: Methods that use various computational approaches to predict the three-dimensional structure of a protein based on its amino acid sequence.
5. Phylogenetic analysis: The construction and interpretation of evolutionary trees (phylogenies) based on aligned protein sequences, which can provide insights into the historical relationships among organisms or proteins.

Entropy, in the context of thermodynamics, is a measure of the number of specific ways in which a system may be arranged, often taken to be a measure of disorder or randomness. The entropy of a system increases as the number of possible arrangements of its particles increases. It is usually denoted by the letter S and measured in units of joules per kelvin (J/K).

However, I must clarify that 'Entropy' is not a medical term. It is a concept from the field of thermodynamics, which is a branch of physics. Entropy has been applied to various fields including information theory and statistical mechanics but it does not have a specific medical definition.

Solvents, in a medical context, are substances that are capable of dissolving or dispersing other materials, often used in the preparation of medications and solutions. They are commonly organic chemicals that can liquefy various substances, making it possible to administer them in different forms, such as oral solutions, topical creams, or injectable drugs.

However, it is essential to recognize that solvents may pose health risks if mishandled or misused, particularly when they contain volatile organic compounds (VOCs). Prolonged exposure to these VOCs can lead to adverse health effects, including respiratory issues, neurological damage, and even cancer. Therefore, it is crucial to handle solvents with care and follow safety guidelines to minimize potential health hazards.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Calorimetry is the measurement and study of heat transfer, typically using a device called a calorimeter. In the context of medicine and physiology, calorimetry can be used to measure heat production or dissipation in the body, which can provide insight into various bodily functions and metabolic processes.

There are different types of calorimeters used for medical research and clinical applications, including direct and indirect calorimeters. Direct calorimetry measures the heat produced directly by the body, while indirect calorimetry estimates heat production based on oxygen consumption and carbon dioxide production rates. Indirect calorimetry is more commonly used in clinical settings to assess energy expenditure and metabolic rate in patients with various medical conditions or during specific treatments, such as critical illness, surgery, or weight management programs.

In summary, calorimetry in a medical context refers to the measurement of heat exchange within the body or between the body and its environment, which can offer valuable information for understanding metabolic processes and developing personalized treatment plans.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Protein kinase inhibitors (PKIs) are a class of drugs that work by interfering with the function of protein kinases. Protein kinases are enzymes that play a crucial role in many cellular processes by adding a phosphate group to specific proteins, thereby modifying their activity, localization, or interaction with other molecules. This process of adding a phosphate group is known as phosphorylation and is a key mechanism for regulating various cellular functions, including signal transduction, metabolism, and cell division.

In some diseases, such as cancer, protein kinases can become overactive or mutated, leading to uncontrolled cell growth and division. Protein kinase inhibitors are designed to block the activity of these dysregulated kinases, thereby preventing or slowing down the progression of the disease. These drugs can be highly specific, targeting individual protein kinases or families of kinases, making them valuable tools for targeted therapy in cancer and other diseases.

Protein kinase inhibitors can work in various ways to block the activity of protein kinases. Some bind directly to the active site of the enzyme, preventing it from interacting with its substrates. Others bind to allosteric sites, changing the conformation of the enzyme and making it inactive. Still, others target upstream regulators of protein kinases or interfere with their ability to form functional complexes.

Examples of protein kinase inhibitors include imatinib (Gleevec), which targets the BCR-ABL kinase in chronic myeloid leukemia, and gefitinib (Iressa), which inhibits the EGFR kinase in non-small cell lung cancer. These drugs have shown significant clinical benefits in treating these diseases and have become important components of modern cancer therapy.

Support Vector Machines (SVM) is not a medical term, but a concept in machine learning, a branch of artificial intelligence. SVM is used in various fields including medicine for data analysis and pattern recognition. Here's a brief explanation of SVM:

Support Vector Machines is a supervised learning algorithm which analyzes data and recognizes patterns, used for classification and regression analysis. The goal of SVM is to find the optimal boundary or hyperplane that separates data into different classes with the maximum margin. This margin is the distance between the hyperplane and the nearest data points, also known as support vectors. By finding this optimal boundary, SVM can effectively classify new data points.

In the context of medical research, SVM has been used for various applications such as:

* Classifying medical images (e.g., distinguishing between cancerous and non-cancerous tissues)
* Predicting patient outcomes based on clinical or genetic data
* Identifying biomarkers associated with diseases
* Analyzing electronic health records to predict disease risk or treatment response

Therefore, while SVM is not a medical term per se, it is an important tool in the field of medical informatics and bioinformatics.

Crystallography is a branch of science that deals with the geometric properties, internal arrangement, and formation of crystals. It involves the study of the arrangement of atoms, molecules, or ions in a crystal lattice and the physical properties that result from this arrangement. Crystallographers use techniques such as X-ray diffraction to determine the structure of crystals at the atomic level. This information is important for understanding the properties of various materials and can be used in fields such as materials science, chemistry, and biology.

Antiparasitic agents are a type of medication used to treat parasitic infections. These agents include a wide range of drugs that work to destroy, inhibit the growth of, or otherwise eliminate parasites from the body. Parasites are organisms that live on or inside a host and derive nutrients at the host's expense.

Antiparasitic agents can be divided into several categories based on the type of parasite they target. Some examples include:

* Antimalarial agents: These drugs are used to treat and prevent malaria, which is caused by a parasite that is transmitted through the bites of infected mosquitoes.
* Antiprotozoal agents: These drugs are used to treat infections caused by protozoa, which are single-celled organisms that can cause diseases such as giardiasis, amoebic dysentery, and sleeping sickness.
* Antihelminthic agents: These drugs are used to treat infections caused by helminths, which are parasitic worms that can infect various organs of the body, including the intestines, lungs, and skin. Examples include roundworms, tapeworms, and flukes.

Antiparasitic agents work in different ways to target parasites. Some disrupt the parasite's metabolism or interfere with its ability to reproduce. Others damage the parasite's membrane or exoskeleton, leading to its death. The specific mechanism of action depends on the type of antiparasitic agent and the parasite it is targeting.

It is important to note that while antiparasitic agents can be effective in treating parasitic infections, they can also have side effects and potential risks. Therefore, it is essential to consult with a healthcare provider before starting any antiparasitic medication to ensure safe and appropriate use.

I'm sorry for any confusion, but "sulfonic acids" are not a medical term. They are a type of compound in chemistry, specifically strong organic acids that contain the functional group -SO3H. Sulfonic acids are widely used in industry and research, including the production of detergents, dyes, and pharmaceuticals.

If you have any questions related to medical terminology or concepts, please don't hesitate to ask!

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

Drug screening assays for antitumor agents are laboratory tests used to identify and evaluate the effectiveness of potential drugs or compounds that can inhibit the growth of tumor cells or induce their death. These assays are typically performed in vitro (in a test tube or petri dish) using cell cultures of various types of cancer cells.

The assays measure different parameters such as cell viability, proliferation, apoptosis (programmed cell death), and cytotoxicity to determine the ability of the drug to kill or inhibit the growth of tumor cells. The results of these assays can help researchers identify promising antitumor agents that can be further developed for clinical use in cancer treatment.

There are different types of drug screening assays for antitumor agents, including high-throughput screening (HTS) assays, which allow for the rapid and automated testing of a large number of compounds against various cancer cell lines. Other types of assays include phenotypic screening assays, target-based screening assays, and functional screening assays, each with its own advantages and limitations.

Overall, drug screening assays for antitumor agents play a critical role in the development of new cancer therapies by providing valuable information on the activity and safety of potential drugs, helping to identify effective treatments and reduce the time and cost associated with bringing new drugs to market.

Antiprotozoal agents are a type of medication used to treat protozoal infections, which are infections caused by microscopic single-celled organisms called protozoa. These agents work by either killing the protozoa or inhibiting their growth and reproduction. They can be administered through various routes, including oral, topical, and intravenous, depending on the type of infection and the severity of the illness.

Examples of antiprotozoal agents include:

* Metronidazole, tinidazole, and nitazoxanide for treating infections caused by Giardia lamblia and Entamoeba histolytica.
* Atovaquone, clindamycin, and pyrimethamine-sulfadoxine for treating malaria caused by Plasmodium falciparum or other Plasmodium species.
* Pentamidine and suramin for treating African trypanosomiasis (sleeping sickness) caused by Trypanosoma brucei gambiense or T. b. rhodesiense.
* Nitroimidazoles, such as benznidazole and nifurtimox, for treating Chagas disease caused by Trypanosoma cruzi.
* Sodium stibogluconate and paromomycin for treating leishmaniasis caused by Leishmania species.

Antiprotozoal agents can have side effects, ranging from mild to severe, depending on the drug and the individual patient's response. It is essential to follow the prescribing physician's instructions carefully when taking these medications and report any adverse reactions promptly.

In the context of medical terminology, "solutions" refers to a homogeneous mixture of two or more substances, in which one substance (the solute) is uniformly distributed within another substance (the solvent). The solvent is typically the greater component of the solution and is capable of dissolving the solute.

Solutions can be classified based on the physical state of the solvent and solute. For instance, a solution in which both the solvent and solute are liquids is called a liquid solution or simply a solution. A solid solution is one where the solvent is a solid and the solute is either a gas, liquid, or solid. Similarly, a gas solution refers to a mixture where the solvent is a gas and the solute can be a gas, liquid, or solid.

In medical applications, solutions are often used as vehicles for administering medications, such as intravenous (IV) fluids, oral rehydration solutions, eye drops, and topical creams or ointments. The composition of these solutions is carefully controlled to ensure the appropriate concentration and delivery of the active ingredients.

Neuraminidase is an enzyme that occurs on the surface of influenza viruses. It plays a crucial role in the life cycle of the virus by helping it to infect host cells and to spread from cell to cell within the body. Neuraminidase works by cleaving sialic acid residues from glycoproteins, allowing the virus to detach from infected cells and to move through mucus and other bodily fluids. This enzyme is a major target of antiviral drugs used to treat influenza, such as oseltamivir (Tamiflu) and zanamivir (Relenza). Inhibiting the activity of neuraminidase can help to prevent the spread of the virus within the body and reduce the severity of symptoms.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, also known as American trypanosomiasis. It's transmitted to humans and other mammals through the feces of triatomine bugs, often called "kissing bugs." The parasite can also be spread through contaminated food, drink, or from mother to baby during pregnancy or birth.

The life cycle of Trypanosoma cruzi involves two main forms: the infective metacyclic trypomastigote that is found in the bug's feces and the replicative intracellular amastigote that resides within host cells. The metacyclic trypomastigotes enter the host through mucous membranes or skin lesions, where they invade various types of cells and differentiate into amastigotes. These amastigotes multiply by binary fission and then differentiate back into trypomastigotes, which are released into the bloodstream when the host cell ruptures. The circulating trypomastigotes can then infect other cells or be taken up by another triatomine bug during a blood meal, continuing the life cycle.

Clinical manifestations of Chagas disease range from an acute phase with non-specific symptoms like fever, swelling, and fatigue to a chronic phase characterized by cardiac and gastrointestinal complications, which can develop decades after the initial infection. Early detection and treatment of Chagas disease are crucial for preventing long-term health consequences.

Molecular targeted therapy is a type of treatment that targets specific molecules involved in the growth, progression, and spread of cancer. These molecules can be proteins, genes, or other molecules that contribute to the development of cancer. By targeting these specific molecules, molecular targeted therapy aims to block the abnormal signals that promote cancer growth and progression, thereby inhibiting or slowing down the growth of cancer cells while minimizing harm to normal cells.

Examples of molecular targeted therapies include monoclonal antibodies, tyrosine kinase inhibitors, angiogenesis inhibitors, and immunotherapies that target specific immune checkpoints. These therapies can be used alone or in combination with other cancer treatments such as chemotherapy, radiation therapy, or surgery. The goal of molecular targeted therapy is to improve the effectiveness of cancer treatment while reducing side effects and improving quality of life for patients.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

Medical technology, also known as health technology, refers to the use of medical devices, medicines, vaccines, procedures, and systems for the purpose of preventing, diagnosing, or treating disease and disability. This can include a wide range of products and services, from simple devices like tongue depressors and bandages, to complex technologies like MRI machines and artificial organs.

Pharmaceutical technology, on the other hand, specifically refers to the application of engineering and scientific principles to the development, production, and control of pharmaceutical drugs and medical devices. This can include the design and construction of manufacturing facilities, the development of new drug delivery systems, and the implementation of quality control measures to ensure the safety and efficacy of pharmaceutical products.

Both medical technology and pharmaceutical technology play crucial roles in modern healthcare, helping to improve patient outcomes, reduce healthcare costs, and enhance the overall quality of life for individuals around the world.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

HIV Integrase is an enzyme that is produced by the human immunodeficiency virus (HIV). It plays a critical role in the life cycle of the virus, enabling it to integrate its genetic material into the DNA of the host cell. This process is essential for the virus to replicate and infect other cells.

The integrase enzyme works by cutting the viral DNA at specific sites, creating a break that allows the viral DNA to be inserted into the host cell's DNA. Once integrated, the viral DNA can use the host cell's machinery to produce new viruses, which can then infect other cells and continue the cycle of infection.

Inhibitors of HIV integrase are an important class of antiretroviral drugs used in the treatment of HIV infection. These drugs work by binding to the integrase enzyme and preventing it from functioning properly, thereby blocking the virus's ability to integrate its genetic material into host cells. This can help to reduce viral load and slow the progression of the disease.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

I'm sorry for any confusion, but "Quantum Theory" is not a term that is typically used in medical definitions. Quantum theory, also known as quantum mechanics, is a branch of physics that deals with phenomena on a very small scale, such as molecules, atoms, and subatomic particles like electrons and photons (which are particles of light).

Quantum theory introduces the concept of wave-particle duality, where particles can exhibit both wave-like and particle-like properties. It also includes principles like superposition, which suggests that a physical system—such as an electron in an atom—can exist in multiple states or places at the same time until it is measured.

While quantum mechanics has had profound implications for our understanding of the physical world, its concepts are not directly applicable to medical definitions or human health. If you have any questions related to medicine or health, I'd be happy to help with those instead!

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

HIV Protease Inhibitors are a class of antiretroviral medications used in the treatment of HIV infection. They work by blocking the activity of the HIV protease enzyme, which is necessary for the virus to replicate and infect new cells. By inhibiting this enzyme, the medication prevents the virus from maturing and assembling into new infectious particles.

HIV protease inhibitors are often used in combination with other antiretroviral drugs as part of a highly active antiretroviral therapy (HAART) regimen. This approach has been shown to effectively suppress viral replication, reduce the amount of virus in the bloodstream (viral load), and improve the health and longevity of people living with HIV.

Examples of HIV protease inhibitors include saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, fosamprenavir, atazanavir, darunavir, and tipranavir. These medications are usually taken orally in the form of tablets or capsules, and may be prescribed alone or in combination with other antiretroviral drugs.

It is important to note that HIV protease inhibitors can have significant side effects, including gastrointestinal symptoms such as nausea, diarrhea, and abdominal pain, as well as metabolic changes such as increased cholesterol and triglyceride levels. Therefore, regular monitoring of liver function, lipid levels, and other health parameters is necessary to ensure safe and effective use of these medications.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Folic acid antagonists are a class of medications that work by inhibiting the action of folic acid or its metabolic pathways. These drugs are commonly used in the treatment of various types of cancer and certain other conditions, such as rheumatoid arthritis. They include drugs such as methotrexate, pemetrexed, and trimetrexate.

Folic acid is a type of B vitamin that is essential for the production of DNA and RNA, the genetic material found in cells. Folic acid antagonists work by interfering with the enzyme responsible for converting folic acid into its active form, tetrahydrofolate. This interference prevents the formation of new DNA and RNA, which is necessary for cell division and growth. As a result, these drugs can inhibit the proliferation of rapidly dividing cells, such as cancer cells.

It's important to note that folic acid antagonists can also affect normal, non-cancerous cells in the body, particularly those that divide quickly, such as cells in the bone marrow and digestive tract. This can lead to side effects such as anemia, mouth sores, and diarrhea. Therefore, these drugs must be used carefully and under the close supervision of a healthcare provider.

Allosteric regulation is a process that describes the way in which the binding of a molecule (known as a ligand) to an enzyme or protein at one site affects the ability of another molecule to bind to a different site on the same enzyme or protein. This interaction can either enhance (positive allosteric regulation) or inhibit (negative allosteric regulation) the activity of the enzyme or protein, depending on the nature of the ligand and its effect on the shape and/or conformation of the enzyme or protein.

In an allosteric regulatory system, the binding of the first molecule to the enzyme or protein causes a conformational change in the protein structure that alters the affinity of the second site for its ligand. This can result in changes in the activity of the enzyme or protein, allowing for fine-tuning of biochemical pathways and regulatory processes within cells.

Allosteric regulation is a fundamental mechanism in many biological systems, including metabolic pathways, signal transduction cascades, and gene expression networks. Understanding allosteric regulation can provide valuable insights into the mechanisms underlying various physiological and pathological processes, and can inform the development of novel therapeutic strategies for the treatment of disease.

Thiophenes are organic compounds that contain a heterocyclic ring made up of four carbon atoms and one sulfur atom. The structure of thiophene is similar to benzene, with the benzene ring being replaced by a thiophene ring. Thiophenes are aromatic compounds, which means they have a stable, planar ring structure and delocalized electrons.

Thiophenes can be found in various natural sources such as coal tar, crude oil, and some foods like onions and garlic. They also occur in certain medications, dyes, and pesticides. Some thiophene derivatives have been synthesized and studied for their potential therapeutic uses, including anti-inflammatory, antiviral, and antitumor activities.

In the medical field, thiophenes are used in some pharmaceuticals as building blocks to create drugs with various therapeutic effects. For example, tipepidine, a cough suppressant, contains a thiophene ring. Additionally, some anesthetics and antipsychotic medications also contain thiophene moieties.

It is important to note that while thiophenes themselves are not typically considered medical terms, they play a role in the chemistry of various pharmaceuticals and other medical-related compounds.

HIV-1 (Human Immunodeficiency Virus type 1) is a species of the retrovirus genus that causes acquired immunodeficiency syndrome (AIDS). It is primarily transmitted through sexual contact, exposure to infected blood or blood products, and from mother to child during pregnancy, childbirth, or breastfeeding. HIV-1 infects vital cells in the human immune system, such as CD4+ T cells, macrophages, and dendritic cells, leading to a decline in their numbers and weakening of the immune response over time. This results in the individual becoming susceptible to various opportunistic infections and cancers that ultimately cause death if left untreated. HIV-1 is the most prevalent form of HIV worldwide and has been identified as the causative agent of the global AIDS pandemic.

Prosthesis design is a specialized field in medical device technology that involves creating and developing artificial substitutes to replace a missing body part, such as a limb, tooth, eye, or internal organ. The design process typically includes several stages: assessment of the patient's needs, selection of appropriate materials, creation of a prototype, testing and refinement, and final fabrication and fitting of the prosthesis.

The goal of prosthesis design is to create a device that functions as closely as possible to the natural body part it replaces, while also being comfortable, durable, and aesthetically pleasing for the patient. The design process may involve collaboration between medical professionals, engineers, and designers, and may take into account factors such as the patient's age, lifestyle, occupation, and overall health.

Prosthesis design can be highly complex, particularly for advanced devices such as robotic limbs or implantable organs. These devices often require sophisticated sensors, actuators, and control systems to mimic the natural functions of the body part they replace. As a result, prosthesis design is an active area of research and development in the medical field, with ongoing efforts to improve the functionality, comfort, and affordability of these devices for patients.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Protease inhibitors are a class of antiviral drugs that are used to treat infections caused by retroviruses, such as the human immunodeficiency virus (HIV), which is responsible for causing AIDS. These drugs work by blocking the activity of protease enzymes, which are necessary for the replication and multiplication of the virus within infected cells.

Protease enzymes play a crucial role in the life cycle of retroviruses by cleaving viral polyproteins into functional units that are required for the assembly of new viral particles. By inhibiting the activity of these enzymes, protease inhibitors prevent the virus from replicating and spreading to other cells, thereby slowing down the progression of the infection.

Protease inhibitors are often used in combination with other antiretroviral drugs as part of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS. Common examples of protease inhibitors include saquinavir, ritonavir, indinavir, and atazanavir. While these drugs have been successful in improving the outcomes of people living with HIV/AIDS, they can also cause side effects such as nausea, diarrhea, headaches, and lipodystrophy (changes in body fat distribution).

The "drug industry" is also commonly referred to as the "pharmaceutical industry." It is a segment of the healthcare sector that involves the research, development, production, and marketing of medications or drugs. This includes both prescription and over-the-counter medicines used to treat, cure, or prevent diseases and medical conditions in humans and animals.

The drug industry comprises various types of organizations, such as:

1. Research-based pharmaceutical companies: These are large corporations that focus on the research and development (R&D) of new drugs, clinical trials, obtaining regulatory approvals, manufacturing, and marketing their products globally. Examples include Pfizer, Johnson & Johnson, Roche, and Merck.

2. Generic drug manufacturers: After the patent for a brand-name drug expires, generic drug manufacturers can produce and sell a similar version of the drug at a lower cost. These companies must demonstrate that their product is bioequivalent to the brand-name drug in terms of safety, quality, and efficacy.

3. Biotechnology companies: These firms specialize in developing drugs using biotechnological methods, such as recombinant DNA technology, gene therapy, or monoclonal antibodies. Many biotech companies focus on specific therapeutic areas, like oncology, immunology, or neurology.

4. Contract research organizations (CROs): CROs provide various services to the drug industry, including clinical trial management, data analysis, regulatory affairs support, and pharmacovigilance. They work with both large pharmaceutical companies and smaller biotech firms to help streamline the drug development process.

5. Drug delivery system companies: These organizations focus on developing innovative technologies for delivering drugs more effectively and safely to patients. Examples include transdermal patches, inhalers, or long-acting injectables.

6. Wholesalers and distributors: Companies that purchase drugs from manufacturers and distribute them to pharmacies, hospitals, and other healthcare providers.

The drug industry plays a crucial role in improving public health by discovering, developing, and delivering new treatments for various diseases and medical conditions. However, it is also subject to criticism and regulation due to concerns about high drug prices, marketing practices, and the potential for conflicts of interest between industry and healthcare professionals.

Protein stability refers to the ability of a protein to maintain its native structure and function under various physiological conditions. It is determined by the balance between forces that promote a stable conformation, such as intramolecular interactions (hydrogen bonds, van der Waals forces, and hydrophobic effects), and those that destabilize it, such as thermal motion, chemical denaturation, and environmental factors like pH and salt concentration. A protein with high stability is more resistant to changes in its structure and function, even under harsh conditions, while a protein with low stability is more prone to unfolding or aggregation, which can lead to loss of function or disease states, such as protein misfolding diseases.

Biocatalysis is the use of living organisms or their components, such as enzymes, to accelerate chemical reactions. In other words, it is the process by which biological systems, including cells, tissues, and organs, catalyze chemical transformations. Biocatalysts, such as enzymes, can increase the rate of a reaction by lowering the activation energy required for the reaction to occur. They are highly specific and efficient, making them valuable tools in various industries, including pharmaceuticals, food and beverage, and biofuels.

In medicine, biocatalysis is used in the production of drugs, such as antibiotics and hormones, as well as in diagnostic tests. Enzymes are also used in medical treatments, such as enzyme replacement therapy for genetic disorders that affect enzyme function. Overall, biocatalysis plays a critical role in many areas of medicine and healthcare.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

According to the United States Food and Drug Administration (FDA), biological products are "products that are made from or contain a living organism or its derivatives, such as vaccines, blood and blood components, cells, genes, tissues, and proteins." These products can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, and they can come from many sources, including humans, animals, microorganisms, or plants.

Biological products are often used to diagnose, prevent, or treat a wide range of medical conditions, and they can be administered in various ways, such as through injection, inhalation, or topical application. Because biological products are derived from living organisms, their manufacturing processes can be complex and must be tightly controlled to ensure the safety, purity, and potency of the final product.

It's important to note that biological products are not the same as drugs, which are chemically synthesized compounds. While drugs are designed to interact with specific targets in the body, such as enzymes or receptors, biological products can have more complex and varied mechanisms of action, making them potentially more difficult to characterize and regulate.

I must clarify that there is no specific medical definition for "Software Design." Software design is a term used in the field of software engineering and development, which includes the creation of detailed plans, schemas, and models that describe how a software system or application should be constructed and implemented. This process involves various activities such as defining the architecture, components, modules, interfaces, data structures, and algorithms required to build the software system.

However, in the context of medical software or healthcare applications, software design would still refer to the planning and structuring of the software system but with a focus on addressing specific needs and challenges within the medical domain. This might include considerations for data privacy and security, regulatory compliance (such as HIPAA or GDPR), integration with existing health IT systems, user experience (UX) design for healthcare professionals and patients, and evidence-based decision support features.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Antimalarials are a class of drugs that are used for the prevention, treatment, and elimination of malaria. They work by targeting the malaria parasite at various stages of its life cycle, particularly the erythrocytic stage when it infects red blood cells. Some commonly prescribed antimalarials include chloroquine, hydroxychloroquine, quinine, mefloquine, and artemisinin-based combinations. These drugs can be used alone or in combination with other antimalarial agents to increase their efficacy and prevent the development of drug resistance. Antimalarials are also being investigated for their potential use in treating other diseases, such as autoimmune disorders and cancer.

Artificial Intelligence (AI) in the medical context refers to the simulation of human intelligence processes by machines, particularly computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using the rules to reach approximate or definite conclusions), and self-correction.

In healthcare, AI is increasingly being used to analyze large amounts of data, identify patterns, make decisions, and perform tasks that would normally require human intelligence. This can include tasks such as diagnosing diseases, recommending treatments, personalizing patient care, and improving clinical workflows.

Examples of AI in medicine include machine learning algorithms that analyze medical images to detect signs of disease, natural language processing tools that extract relevant information from electronic health records, and robot-assisted surgery systems that enable more precise and minimally invasive procedures.

A prodrug is a pharmacologically inactive substance that, once administered, is metabolized into a drug that is active. Prodrugs are designed to improve the bioavailability or delivery of a drug, to minimize adverse effects, or to target the drug to specific sites in the body. The conversion of a prodrug to its active form typically occurs through enzymatic reactions in the liver or other tissues.

Prodrugs can offer several advantages over traditional drugs, including:

* Improved absorption: Some drugs have poor bioavailability due to their chemical properties, which make them difficult to absorb from the gastrointestinal tract. Prodrugs can be designed with improved absorption characteristics, allowing for more efficient delivery of the active drug to the body.
* Reduced toxicity: By masking the active drug's chemical structure, prodrugs can reduce its interactions with sensitive tissues and organs, thereby minimizing adverse effects.
* Targeted delivery: Prodrugs can be designed to selectively release the active drug in specific areas of the body, such as tumors or sites of infection, allowing for more precise and effective therapy.

Examples of prodrugs include:

* Aspirin (acetylsalicylic acid), which is metabolized to salicylic acid in the liver.
* Enalapril, an angiotensin-converting enzyme (ACE) inhibitor used to treat hypertension and heart failure, which is metabolized to enalaprilat in the liver.
* Codeine, an opioid analgesic, which is metabolized to morphine in the liver by the enzyme CYP2D6.

It's important to note that not all prodrugs are successful, and some may even have unintended consequences. For example, if a patient has a genetic variation that affects the activity of the enzyme responsible for converting the prodrug to its active form, the drug may not be effective or may produce adverse effects. Therefore, it's essential to consider individual genetic factors when prescribing prodrugs.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

I'm sorry for any confusion, but "Protozoan Proteins" is not a specific medical or scientific term. Protozoa are single-celled eukaryotic organisms, and proteins are large biological molecules consisting of one or more chains of amino acid residues. Therefore, "Protozoan Proteins" generally refers to the various types of proteins found in protozoa.

However, if you're looking for information about proteins specific to certain protozoan parasites with medical relevance (such as Plasmodium falciparum, which causes malaria), I would be happy to help! Please provide more context or specify the particular protozoan of interest.

Thymidylate synthase (TS) is an essential enzyme in the metabolic pathway for DNA synthesis and repair. It catalyzes the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP), which is a crucial building block for DNA replication and repair. This reaction also involves the methylation of dUMP using a methyl group donated by N5,N10-methylenetetrahydrofolate, resulting in the formation of dihydrofolate as a byproduct. The regeneration of dihydrofolate to tetrahydrofolate is necessary for TS to continue functioning, making it dependent on the folate cycle. Thymidylate synthase inhibitors are used in cancer chemotherapy to interfere with DNA synthesis and replication, leading to cytotoxic effects in rapidly dividing cells.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

... , often referred to as rational drug design or simply rational design, is the inventive process of finding new ... The phrase "drug design" is to some extent a misnomer. A more accurate term is ligand design (i.e., design of a molecule that ... Ligand-based drug design (or indirect drug design) relies on knowledge of other molecules that bind to the biological target of ... Structure-based drug design (or direct drug design) relies on knowledge of the three dimensional structure of the biological ...
In retrometabolic drug design, metabolic reaction information of drugs is used to design parent drugs whose metabolism and ... In the field of drug discovery, retrometabolic drug design is a strategy for the design of safer drugs either using predictable ... Soft drugs and site-specific chemical delivery systems". Adv. Drug Res. 13: 255-331. Retrometabolism-based drug design and ... The concept of retrometabolic drug design encompasses two distinct approaches. One approach is the design of soft drugs (SDs), ...
... is a peer-reviewed medical journal covering research on drug design and development ...
The drag coefficient is a common measure in automotive design as it pertains to aerodynamics. Drag is a force that acts ... A common way to measure the drag of the vehicle is through the drag area. The reduction of drag in road vehicles has led to ... The two main factors that impact drag are the frontal area of the vehicle and the drag coefficient. The drag coefficient is a ... The force F required to overcome drag is calculated with the drag equation: F = 1 2 × air density × drag coefficient × ...
... s or ADCs are a class of biopharmaceutical drugs designed as a targeted therapy for treating cancer. ... Beck A, Goetsch L, Dumontet C, Corvaïa N (March 2020). "Advances in Antibody-Drug Conjugate Design: Current Clinical Landscape ... "Ambrx Collaborates with Merck to Design and Develop Biologic Drug Conjugates". Archived from the original (Press Release) on ... "Approved Drugs > FDA Approves Gemtuzumab Ozogamicin for CD33-positive AML". fda.gov. Silver Spring, USA: U.S. Food and Drug ...
Boppe, C. W., "CFD Drag Prediction for Aerodynamic Design", Technical Status Review on Drag Prediction and Analysis from ... is the drag-divergence Mach number, c l , design {\displaystyle c_{l,{\text{design}}}} is the coefficient of lift of a specific ... have been able to reduce the factor of increase in drag to two or three for modern aircraft designs. Drag-divergence Mach ... The drag-divergence Mach number (not to be confused with critical Mach number) is the Mach number at which the aerodynamic drag ...
Drug Design, Development and Therapy. 15: 2921-2945. doi:10.2147/DDDT.S295224. PMC 8273751. PMID 34262259. S2CID 235820469. " ... A disease-modifying osteoarthritis drug (DMOAD) is a disease-modifying drug that would inhibit or even reverse the progression ... anti-diabetic drug: NCT04767841, NCT05034029), Zoledronic acid (anti-osteoporotic drug: NCT04303026), etc. Paroxetine has been ... Several approved drugs are being investigated as repurposed agents in the treatment of osteoarhritis such as liraglutide (anti- ...
"New spiral molecular drag stage design for high compression ratio, compact turbomolecular-drag pumps". Journal of Vacuum ... While the molecular drag pumps of Gaede, Holweck, and Siegbahn are functional designs, they have remained relatively uncommon ... A molecular drag pump is a type of vacuum pump that utilizes the drag of air molecules against a rotating surface. The most ... A. Bhatti, J; K. Aijazi, M; Q. Khan, A (2001). "Design characteristics of molecular drag pumps". Vacuum. Elsevier BV. 60 (1-2 ...
Another method for drug discovery is de novo drug design, in which a prediction is made of the sorts of chemicals that might (e ... "The drug development process. Step 4: FDA drug review". US Food and Drug Administration. 4 January 2018. Retrieved 18 December ... Antitarget Bioinformatics Biomedical informatics Cheminformatics Drug discovery hit to lead Drug metabolism Fragment-based drug ... Drug Interactions", Drug Design Using Machine Learning (1 ed.), Wiley, pp. 21-96, doi:10.1002/9781394167258.ch2, ISBN 978-1-394 ...
Hyneck, M (1990). Chirality in Drug Design and Synthesis. New York: Academic Press, New York. pp. 1-28. Cotzias, George C.; Van ... Hence "chiral drug" does not say whether the drug is racemic (racemic drug), single enantiomer (chiral specific drug) or some ... Drugs that exhibit handedness are referred to as chiral drugs. Chiral drugs that are equimolar (1:1) mixture of enantiomers are ... The table below list selected unichiral drugs used in drug therapy. A company may go in for developing a racemic drug against ...
The design of these drug delivery platforms is specific to each tissue type and its intended use. In the field of cancer, ... Several gene therapy drugs used in hydrogel-based drug delivery systems include CRISPR/Cas9, siRNA, and other RNA-based drugs. ... Future development of drug delivery systems will continue to incorporate ultrasound and smart hydrogel designs. Wichterle, O.; ... suggested that future hydrogel-based delivery platforms will be designed based on the drug payload to optimize the interaction ...
Hopkins, A; Mason, J; Overington, J (2006). "Can we rationally design promiscuous drugs?". Current Opinion in Structural ... In pharmacology, a dirty drug is an informal term for drugs that may bind to many different molecular targets or receptors in ... There may be instances of advantages to drugs that exhibit multi-receptor activity such as the anti-addictive drug ibogaine ... Selectively non-selective drugs for mood disorders and schizophrenia". Nature Reviews Drug Discovery. 3 (4): 353-9. doi:10.1038 ...
Retrometabolic drug design Neuroscience, Purves et al. Sinauer Associates, Inc. 2008. Rubin, L. L., & Staddon, J. M. (1999). ... Drugs can be disguised using more lipophilic elements or structures. This form of the drug will be inactive because of the ... The most promising drug delivery system is using nanoparticle delivery systems, these are systems where the drug is bound to a ... Once the drug cannot pass back through the barrier the drug can be concentrated and made effective for therapeutic use. However ...
Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9780120603084. Ojasoo T, Delettré J, Mornon JP, Turpin- ... Drugs missing an ATC code, Drugs with no legal status, Articles containing unverified chemical infoboxes, Tertiary alcohols, ... Unlisted Drugs. Pharmaceutical Section, Special Libraries Association. 1982. Batynid. C. Each dragee contains: normethandrone, ... Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. ...
90-. ISBN 978-1-84184-757-3. Lednicer D (4 March 2009). Strategies for Organic Drug Synthesis and Design. John Wiley & Sons. pp ... Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9781483216102. Raynaud JP (1970). "Metabolism of ... Norgestrienone is the generic name of the drug and its INNTooltip International Nonproprietary Name. It is also known by its ... Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. ...
... drug design; nanoparticle structure and energetics; and density functional theory, including the Minnesota Functionals. To date ...
Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9780120603084. Ojasoo T, Raynaud JP (November 1978). " ...
Raynaud, J.P.; Ojasoo, T.; Bouton, M.M.; Philibert, D. (1979). Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X ... Side Effects of Drugs Annual. Vol. 25. pp. 478-502. doi:10.1016/S0378-6080(02)80047-2. ISBN 9780444506740. ISSN 0378-6080. ... ISBN 978-3-642-60107-1. Stege R, Carlström K, Collste L, Eriksson A, Henriksson P, Pousette A (1988). "Single drug ... ISBN 978-0-12-137250-7. Stege R, Carlström K, Collste L, Eriksson A, Henriksson P, Pousette A (1988). "Single drug ...
PMID 14793878.{{cite journal}}: CS1 maint: untitled periodical (link) Martin-Smith M (1971), In: Ariens EJ (ed.), "Drug Design ... Drugs with no legal status, Drugboxes which contain changes to verified fields, Allyl compounds, Muscle relaxants, ... Drugs. 4 (3-4): 163-226. doi:10.2165/00003495-197204030-00002. PMID 4264763. S2CID 20303531. Thompson MA (1980). Br. J. Hosp. ...
Drug design; Biology of peptides, nucleoside derivatives and modified oligonucleotides Biopolym. Cell is issued bimonthly, with ...
Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9780120603084. v t e (Articles with short description, ... Drugs missing an ATC code, Drugs with no legal status, Articles containing unverified chemical infoboxes, ... It is a potent antagonist of the mineralocorticoid receptor and is more potent than the related drug SC-5233 (of which SC-8109 ...
Raynaud JP, Ojasoo T, Bouton MM, Philibert D (1979). Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN ... THG was banned by the Food and Drug Administration (FDA) in 2003. Gestrinone was introduced for medical use in 1986. Gestrinone ... 57-. ISBN 978-1-316-21414-5. "Helping athletes compete drug-free" (PDF). Canadian Centre for Ethics in Sport. May 2000. p. 34. ... Roy SN, Bhattacharya S (2004). "Benefits and risks of pharmacological agents used for the treatment of menorrhagia". Drug ...
Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9780120603084. García-Becerra R, Ordaz-Rosado D, Noé G, ... Drugs missing an ATC code, Drugs with no legal status, Articles containing unverified chemical infoboxes, Abandoned drugs, ... Secondary alcohols, Estranes, Human drug metabolites, Synthetic estrogens, All stub articles, Genito-urinary system drug stubs ...
... drug design; and technology, equipment and product design for the oil and gas and chemical industries. These fields were chosen ... This is designed to ensure that there is a demand for the research being undertaken and that the results will lead to products ... Each of these sectors tends to involve large companies equipped with design bureaux and laboratories. There are also ... such as poor-quality drugs. In the region, research spending has hovered around the 0.2-0.3% mark for the past decade but, in ...
Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9781483216102. Ojasoo T, Raynaud JP (November 1978). " ... Moxestrol is the generic name of the drug and its INNTooltip International Nonproprietary Name. It is also known by its ... 184-. ISBN 978-1-4613-9208-8. Elks J (14 November 2014). The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and ... 61-. ISBN 978-1-4831-5308-7. (Articles with short description, Short description matches Wikidata, Drugs with non-standard ...
Drug Design. New York, Academic Press. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9780120603084. Kohtz AS, Frye ... Drugs with no legal status, Articles containing unverified chemical infoboxes, Abandoned drugs, Tertiary alcohols, Estranes, ... The drug was under investigation by Roussel Uclaf for potential medical use, but was abandoned in favor of nonsteroidal ... The drug is a derivative of the extremely potent androgen/anabolic steroid metribolone (R-1881; 17α-methyltrenbolone), and has ...
Drug Design. pp. 169-214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN 9780120603084. Ojasoo T, Raynaud JP (November 1978). " ... Drugs missing an ATC code, Drugs with no legal status, Articles containing unverified chemical infoboxes, Anti-acne ... The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer. pp. 899-. ISBN 978-1-4757-2085- ...
van Dam, C. P. (2003). "Aircraft design and the importance of drag prediction". CFD-Based Aircraft Drag Prediction and ... A drag count is more user-friendly than the drag coefficient, as the latter is usually much less than 1. A drag count of 200 to ... 1 drag count is equal to a C d {\displaystyle C_{d}} of 0.0001. A drag count Δ C d {\displaystyle \Delta C_{\mathrm {d} }\,} is ... Drag coefficient Zero-lift drag coefficient v t e (CS1 German-language sources (de), Articles needing additional references ...
Bartran, D. (2018). "The Drag Crisis and Thermowell Design", J. Press. Ves. Tech. 140(4), 044501, Paper No: PVT-18-1002. DOI: ... In fluid dynamics, drag crisis (also known as the Eiffel paradox) is a phenomenon in which drag coefficient drops off suddenly ... The drag coefficient of a sphere will change rapidly from about 0.5 to 0.2 at a Reynolds number in the range of 300000. This ... The drag crisis was observed in 1905[citation needed] by Nikolay Zhukovsky, who guessed that this paradox can be explained by ...
Isomer Design. Drug Enforcement Administration. October 29, 1985. Archived (PDF) from the original on March 3, 2022. Retrieved ... It was temporarily scheduled by the Drug Enforcement Administration in 1985, due to fears it would be used as a designer drug. ... Drug Enforcement Administration. June 29, 2010. "Fentanyl Synthesis". GPTA India. June 18, 2020. Archived from the original on ... Infobox drug articles with non-default infobox title, Chemical pages without DrugBank identifier, Articles without KEGG source ...

No FAQ available that match "drug design"