Species of European house dust mite, in the family PYROGLYPHIDAE. It is the most commonly found house dust mite.
Antigens from the house dust mites (DERMATOPHAGOIDES), mainly D. farinae and D. pteronyssinus. They are proteins, found in mite feces or mite extracts, that can cause ASTHMA and other allergic diseases such as perennial rhinitis (RHINITIS, ALLERGIC, PERENNIAL) and atopic dermatitis (DERMATITIS, ATOPIC). More than 11 groups of Dermatophagoides ALLERGENS have been defined. Group I allergens, such as Der f I and Der p I from the above two species, are among the strongest mite immunogens in humans.
Any arthropod of the subclass ACARI except the TICKS. They are minute animals related to the spiders, usually having transparent or semitransparent bodies. They may be parasitic on humans and domestic animals, producing various irritations of the skin (MITE INFESTATIONS). Many mite species are important to human and veterinary medicine as both parasite and vector. Mites also infest plants.
Species of American house dust mite, in the family PYROGLYPHIDAE.
Proteins synthesized by organisms belonging to the phylum ARTHROPODA. Included in this heading are proteins from the subdivisions ARACHNIDA; CRUSTACEA; and HORSESHOE CRABS. Note that a separate heading for INSECT PROTEINS is listed under this heading.
Antigen-type substances that produce immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Family of house dust mites, in the superfamily Analgoidea, order Astigmata. They include the genera Dermatophagoides and Euroglyphus.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Epicutaneous or intradermal application of a sensitizer for demonstration of either delayed or immediate hypersensitivity. Used in diagnosis of hypersensitivity or as a test for cellular immunity.
Inflammation of the mucous membrane of the nose similar to that found in hay fever except that symptoms persist throughout the year. The causes are usually air-borne allergens, particularly dusts, feathers, molds, animal fur, etc.
Earth or other matter in fine, dry particles. (Random House Unabridged Dictionary, 2d ed)
Hypersensitivity reactions which occur within minutes of exposure to challenging antigen due to the release of histamine which follows the antigen-antibody reaction and causes smooth muscle contraction and increased vascular permeability.
Infestations with arthropods of the subclass ACARI, superorder Acariformes.
Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen.
Immunosuppression by the administration of increasing doses of antigen. Though the exact mechanism is not clear, the therapy results in an increase in serum levels of allergen-specific IMMUNOGLOBULIN G, suppression of specific IgE, and an increase in suppressor T-cell activity.
An in vitro allergen radioimmunoassay in which allergens are coupled to an immunosorbent. The coupled allergens bind the IgE in the sera of patients which in turn binds radioisotope-labeled anti-IMMUNOGLOBULIN E antibodies.
A species of mite that causes SCABIES in humans and sarcoptic mange in other animals. Specific variants of S. scabiei exist for humans and animals, but many have the ability to cross species and cause disease.
A contagious cutaneous inflammation caused by the bite of the mite SARCOPTES SCABIEI. It is characterized by pruritic papular eruptions and burrows and affects primarily the axillae, elbows, wrists, and genitalia, although it can spread to cover the entire body.
A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL).
Application of allergens to the nasal mucosa. Interpretation includes observation of nasal symptoms, rhinoscopy, and rhinomanometry. Nasal provocation tests are used in the diagnosis of nasal hypersensitivity, including RHINITIS, ALLERGIC, SEASONAL.
ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
A chronic inflammatory genetically determined disease of the skin marked by increased ability to form reagin (IgE), with increased susceptibility to allergic rhinitis and asthma, and hereditary disposition to a lowered threshold for pruritus. It is manifested by lichenification, excoriation, and crusting, mainly on the flexural surfaces of the elbow and knee. In infants it is known as infantile eczema.
Substances found in PLANTS that have antigenic activity.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Tests involving inhalation of allergens (nebulized or in dust form), nebulized pharmacologically active solutions (e.g., histamine, methacholine), or control solutions, followed by assessment of respiratory function. These tests are used in the diagnosis of asthma.
A form of hypersensitivity affecting the respiratory tract. It includes ASTHMA and RHINITIS, ALLERGIC, SEASONAL.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Family of MITES, in the superfamily Acaroidea, order Astigmata. They are frequently found in cereal-based foodstuffs including GRAIN and FLOUR.
Substances that are recognized by the immune system and induce an immune reaction.
Insects of the order Dictyoptera comprising several families including Blaberidae, BLATTELLIDAE, Blattidae (containing the American cockroach PERIPLANETA americana), Cryptocercidae, and Polyphagidae.
Skin tests in which the sensitizer is injected.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A plant genus of the family LAMIACEAE that contains pulegone. Do not confuse with 'American false pennyroyal' (HEDEOMA).
Chemical, biological, or medical measures designed to prevent the spread of ticks or the concomitant infestations which result in tick-borne diseases. It includes the veterinary as well as the public health aspects of tick and mite control.
Articles of cloth, usually cotton or rayon and other synthetic or cotton-blend fabrics, used in households, hospitals, physicians' examining rooms, nursing homes, etc., for sheets, pillow cases, toweling, gowns, drapes, and the like.

Role of IgG, IgA, and IgE antibodies in nasal polyp tissue: their relationships with eosinophilic infiltration and degranulation. (1/87)

To confirm local production of IgE, and evaluate role of immunoglobulins on eosinophil activation in nasal polyp (NP) tissue, we measured IgG, IgA, secretory IgA(sIgA), total (tIgE) and specific IgE (sIgE) to Dermatophagoides pteronyssinus(DP) by ELISA in NP tissue homogenates from 51 subjects. They were classified according to skin reactivity to DP: group I, 15 highly atopic subjects; group II, 18 weakly atopic subjects; and group III, 18 non-atopic subjects. Eosinophil cationic protein (ECP) level was measured by CAP system. Highest level of DP-sIgE was noted in group I, followed by group II and III (p<0.05). Nine (60%) of group I and 4 (22%) of group II subjects had detectable level of DP-sIgE with no significant differences in IgA, sIgA, and IgG. All of NP tissue had eosinophilic infiltration with no significant difference in activated eosinophil count or ECP level among 3 groups. A significant correlation was noted between EG2+ cell count and tIgE (r=0.55, p<0.05), and DP-sIgE level (r=0.60, p<0.05). A significant correlation was also noted between ECP and IgG (r=0.51, p<0.05) and DP-sIgE level (r=0.47, p<0.05) with no significant correlation with IgA or sIgA. These results suggest that DP-sIgE was detectable in NP tissue from weakly atopic subjects as well as highly atopic subjects. IgG and sIgE may have potential roles in eosinophil degranulation in NP tissue.  (+info)

House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. (2/87)

In previous studies, we demonstrated that allergenic house dust mite proteases are potent inducers of proinflammatory cytokines from the respiratory epithelium, although the precise mechanisms involved were unclear. In this study, we investigated whether this was achieved through activation of protease-activated receptor (PAR)-1 or -2. Pretreatment of A549 respiratory epithelial cells with the clinically important cysteine protease allergen, Der p 1, ablated subsequent PAR-1, but not PAR-2 agonist peptide-induced IL-6 and IL-8 release. HeLa cells transfected with the plasmid coding for PAR-2, in contrast to PAR-1, released significant concentration of IL-6 after exposure to Der p 1. Exposure of HeLa cells transfected with either PAR-1/enhanced yellow fusion protein or PAR-2/enhanced yellow fusion protein to Der p 1 caused receptor internalization in the latter cells only, as judged by confocal microscopy with re-expression of the receptor within 120-min postenzyme exposure. Der p 1-induced cytokine release from both A549 and transfected HeLa cells was accompanied by changes in intracellular Ca(2+) concentrations. Desensitization studies showed that Der p 1 pretreatment of the A549 cells resulted in the abolition of both trypsin- and PAR-2 agonist peptide-induced Ca(2+) release, but not that induced by subsequent exposure to either thrombin or PAR-1 agonist peptide. These data indicate for the first time that the house dust mite allergen Der p 1-induced cytokine release from respiratory epithelial cells is, in part, mediated by activation of PAR-2, but not PAR-1.  (+info)

Der p 1-pulsed myeloid and plasmacytoid dendritic cells from house dust mite-sensitized allergic patients dysregulate the T cell response. (3/87)

Although reports suggest that dendritic cells (DC) are involved in the allergic reaction characterized by a T helper cell type 2 (Th2) profile, the role of myeloid (M-DC) and plasmacytoid DC (P-DC), controlling the balance Th1/Th2, remains unknown. Here, we showed that in Dermatophagoides pteronyssinus (Dpt)-sensitized allergic patients and in healthy donors, M-DC displayed a higher capacity to capture Der p 1, a major allergen of Dpt, than did P-DC. However, Der p 1-pulsed M-DC from healthy subjects overexpressed CD80 and secreted interleukin (IL)-10, whereas M-DC from allergic patients did not. In contrast, with Der p 1-pulsed P-DC from both groups, no increase in human leukocyte antigen-DR, CD80, and CD86 and no IL-10 secretion were detected. When cocultured with allogeneic naive CD4(+) T cells from healthy donors, Der p 1-pulsed M-DC from allergic patients favored a Th1 profile [interferon (IFN)-gamma(high)/IL-4(low)] and Der p 1-pulsed P-DC, a Th2 profile (IFN-gamma(low)/IL-4(high)). In healthy donors, no T cell polarization (IFN-gamma(low)/IL-4(low)) was induced by Der p 1-pulsed M-DC or P-DC, but in response to Der p 1-pulsed M-DC, T cells secreted IL-10. The neutralization of IL-10 produced by Der p 1-pulsed M-DC from healthy donors led to an inhibition of IL-10 production by T cells and a polarization toward a type 1. Thus, IL-10 produced by M-DC might be an essential mediator controlling the balance between tolerance and allergic status. In addition, P-DC could contribute to the steady state in healthy donors or to the development of a Th2 response in allergic donors.  (+info)

Different antigens trigger different Th1/Th2 reactions in neonatal mononuclear cells (MNCs) relating to T-bet/GATA-3 expression. (4/87)

Neonates are known to have poor cellular immunity, especially poor Th1 response. We investigated how neonatal mononuclear cells raised different Th1/Th2 reactions in response to different antigens. Employing Dermatophagoides pteronyssinus (Der p) extract and varicella zoster virus (VZV) as antigens, we assessed Th1/Th2 reactions as demonstrated by IL-4/IFNgamma production and mRNA expression, and transcriptional factors T-bet/GATA-3 mRNA expression in mononuclear cells from human umbilical cord blood (CBMC). Results showed that VZV induced a dramatic increase of IFNgamma production by adult peripheral blood mononuclear cells (PBMC), whereas VZV did not drive CBMC to release significant IFNgamma production (1614.7+/-362.0 vs. 49.0+/-29.3,p<0.005). However, Der p induced higher IFNgamma production by CBMC than VZV (298.1+/-171.8 vs. 49.0+/-29.3, P=0.047). In contrast, VZV did not induce significant IL-4 production either by CBMC or by PBMC. Der p induced a comparative IL-4 production by CBMC and PBMC (2.58+/-0.84 vs. 2.04+/-0.37, p>0.05). A real-time RT-PCR analysis of IL-4 and IFNgamma mRNA expression showed that VZV induced a significantly higher IFNgamma, but not IL-4, mRNA expression in PBMC than CBMC. Der p did not induce significant difference of IFNgamma or IL-4 mRNA expression in PBMC and CBMC. VZV enhanced Th1-related transcription factor T-bet mRNA expression, in association with later down-regulation of Th2-related GATA-3 mRNA expression in PBMC. However, VZV did not up-regulate T-bet or down-regulate GATA-3 expression significantly in CBMC. In contrast, Der p induced an early GATA-3 expression and later T-bet expression in CBMC. These results suggest that different antigens trigger various Th1/Th2 reactions in PBMC and CBMC resulting from kinetic changes of T-bet/GATA-3 expression.  (+info)

A recombinant fragment of human SP-D reduces allergic responses in mice sensitized to house dust mite allergens. (5/87)

C57Bl6 mice sensitized to Dermatophagoides pteronyssinus and challenged with D. pteronyssinus allergen extract given intranasally followed by treatment with intranasal applications of a 60-kDa truncated, trimeric recombinant form of human SP-D (rfhSP-D) showed a significant reduction in serum IgE, IgG1, peripheral blood eosinophilia and airway hyperresponsiveness compared to saline or bovine serum albumin-treated controls. Intracellular cytokine staining of lung and spleen homogenates showed increases in interleukin (IL)-12 production in lung tissue and normalization of IL-12 and interferon (IFN)-gamma in spleen tissue. In previous studies we demonstrated the effectiveness of native SP-D and rfhSP-D in down-regulating allergic responses to allergens of Aspergillus fumigatus. The results reported here indicate that rfhSP-D can suppress the development of allergic symptoms in sensitized mice challenged with allergens of the common house dust mite.  (+info)

Randomised double masked trial comparing the efficacy and tolerance of 0.05% mequitazine eye drops versus 0.05% levocabastine and placebo in allergic conjunctivitis induced by a conjunctival provocation test with Dermatophagoides pteronyssinus. (6/87)

AIM: A double masked randomised trial comparing 0.05% mequitazine eye drops with 0.05% levocabastine and placebo was carried out in otherwise healthy volunteers allergic to house dust mites (Dermatophagoides pteronyssinus). METHOD: Double masked, randomised, single centre study, comparing three parallel treatment groups. 60 healthy adults with a confirmed history of allergic conjunctivitis to house dust mites for at least 2 years were included and completed the trial. Conjunctival provocation tests (CPT) were done at screening, at visit 2 (V2) (1 week later), and at visit 3 (V3) (2 weeks after V2). Treatment was instilled in the same eye, 5 minutes after the CPT at V2, and twice daily until V3. CPT were scored 5, 10, 15, and 60 minutes after instillation of the dose of Dermatophagoides pteronyssinus antigen determined at inclusion (V2, curative test) or resulting in positivity (V3, preventive test) RESULTS: In the V2 (curative) test the difference between the active treatments and placebo on the redness+itching scores was not significant. At the V3 (preventive) CPT there was a lower number of reactions at the threshold dose with mequitazine (20%) compared to placebo (60%, p = 0.01) or levocabastine (45%, p = 0.10). CONCLUSION: This trial failed to clearly demonstrate curative superiority of topical antihistamines with placebo, when a single dose of treatment was instilled following CPT. However mequitazine 0.05% eye drops were superior to placebo in preventing a reaction to CPT, after 2 weeks of treatment.  (+info)

IgA response in serum and gut secretion in sensitized mice fed with the dust mite Dermatophagoides pteronyssinus extract. (7/87)

Induced oral tolerance to mucosal-exposed antigens in immunized animals is of particular interest for the development of immunotherapeutic approaches to human allergic diseases. This is a unique feature of mucosal surfaces which represent the main contact interface with the external environment. However, the influence of oral tolerance on specific and natural polyreactive IgA antibodies, the major defense mechanism of the mucosa, is unknown. We have shown that oral administration of an extract of the dust mite Dermatophagoides pteronyssinus (Dp) to primed mice caused down-regulation of IgE responses and an increase in tumor growth factor-beta secretion. In the present study, we observed that primed inbred female A/Sn mice (8 to 10 weeks old) fed by gavage a total weight of 1.0-mg Dp extract on the 6th, 7th and 8th days post-immunization presented normal secretion of IL-4 and IL-10 in gut-associated lymphoid tissue and a decreased production of interferon gamma induced by Dp in the draining lymph nodes (13,340 +/- 3,519 vs 29,280 +/- 2,971 pg/ml). Mice fed the Dp extract also showed higher levels of serum anti-Dp IgA antibodies and an increase of IgA-secreting cells in mesenteric lymph nodes (N = 10), reflecting an increase in total fecal IgA antibodies (N = 10). The levels of secretory anti-Dp IgA antibodies increased after re-immunization regardless of Dp extract feeding. Oral tolerance did not interfere with serum or secretory IgA antibody reactivity related to self and non-self antigens. These results suggest that induction of oral tolerance to a Dp extract in sensitized mice triggered different regulatory mechanisms which inhibited the IgE response and stimulated systemic and secretory IgA responses, preserving the natural polyreactive IgA antibody production.  (+info)

Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. (8/87)

It is now well established that passive exposure to inhaled OVA leads to a state of immunological tolerance. Therefore, to elicit allergic sensitization, researchers have been compelled to devise alternative strategies, such as the systemic delivery of OVA in the context of powerful adjuvants, which are alien to the way humans are exposed and sensitized to allergens. The objectives of these studies were to investigate immune-inflammatory responses to intranasal delivery of a purified house dust mite (HDM) extract and to evaluate the role of GM-CSF in this process. HDM was delivered to BALB/c mice daily for 10 days. After the last exposure, mice were killed, bronchoalveolar lavage was performed, and samples were obtained. Expression/production of Th2-associated molecules in the lymph nodes, lung, and spleen were evaluated by real-time quantitative PCR and ELISA, respectively. Using this exposure protocol, exposure to HDM alone generated Th2 sensitization based on the expression/production of Th2 effector molecules and airway eosinophilic inflammation. Flow cytometric analysis demonstrated expansion and activation of APCs in the lung and an influx of activated Th2 effector cells. Moreover, this inflammation was accompanied by airways hyper-responsiveness and a robust memory-driven immune response. Finally, administration of anti-GM-CSF-neutralizing Abs markedly reduced immune-inflammatory responses in both lung and spleen. Thus, intranasal delivery of HDM results in Th2 sensitization and airway eosinophilic inflammation that appear to be mediated, at least in part, by endogenous GM-CSF production.  (+info)

'Dermatophagoides pteronyssinus' is a species of mite that belongs to the family Pyroglyphidae. These mites are commonly known as house dust mites, and they are found in various environments, particularly in households. They thrive in warm and humid conditions, and their primary food source consists of human skin scales.

House dust mites like 'Dermatophagoides pteronyssinus' are associated with allergic reactions in humans, such as asthma, rhinitis, and dermatitis. Their feces and body parts contain protease enzymes that can trigger an immune response in sensitive individuals, leading to the release of histamine and other inflammatory mediators. These allergens can become airborne and inhaled or come into contact with the skin, causing symptoms such as sneezing, runny nose, itchy eyes, and difficulty breathing.

It is essential to maintain a clean living environment, particularly in bedding and upholstered furniture, to reduce the population of house dust mites and minimize allergen exposure. Measures such as using allergen-impermeable covers for mattresses and pillows, washing bedding in hot water, and reducing humidity levels can help control dust mite populations and alleviate allergic symptoms.

Dermatophagoides are a group of mites that are commonly found in house dust. They are a common cause of allergies and can be found in bedding, carpets, and upholstered furniture. Dermatophagoides mites feed on human skin cells and dander, and their feces and bodies contain proteins that can act as antigens. These antigens can trigger an immune response in some people, leading to the production of antibodies and the release of chemicals such as histamine, which can cause allergic symptoms such as sneezing, runny nose, and itchy eyes.

There are several species of Dermatophagoides mites that are known to cause allergies, including D. pteronyssinus and D. farinae. These mites are very small, measuring only about 0.3 millimeters in length, and are not visible to the naked eye. They thrive in warm, humid environments and are most active at night.

Exposure to Dermatophagoides antigens can occur through inhalation or skin contact. In people with allergies to these mites, symptoms can be triggered by activities such as making the bed, vacuuming, or sleeping on a mattress that is infested with mites. Allergy testing, such as a skin prick test or a blood test, can be used to diagnose an allergy to Dermatophagoides mites. Treatment options for allergies to these mites may include avoidance measures, medications, and immunotherapy (allergy shots).

Mites are tiny arthropods belonging to the class Arachnida, which also includes spiders and ticks. They are characterized by their small size, usually measuring less than 1 mm in length, and their lack of obvious segmentation on their bodies. Many mites are parasitic, feeding on the skin cells, blood, or fluids of plants and animals, including humans. Some common mite infestations in humans include scabies, caused by the itch mite (Sarcoptes scabiei), and dust mites (e.g., Dermatophagoides pteronyssinus and D. farinae), which are commonly found in household dust and can cause allergic reactions in some people. It's worth noting that the majority of mites are not harmful to humans and play important roles in ecosystems as decomposers and predators.

Dermatophagoides farinae is a species of mite that belongs to the family Pyroglyphidae. These mites are commonly known as house dust mites, and they are found in household environments all over the world. Dermatophagoides farinae mites feed on human skin cells and other organic debris, and they are often found in bedding, upholstered furniture, and carpeting.

House dust mites, including Dermatophagoides farinae, are a common cause of allergies. The proteins present in the mite's feces and body parts can trigger an immune response in some people, leading to symptoms such as sneezing, runny nose, itchy eyes, and skin irritation. Dermatophagoides farinae is one of the most prevalent species of house dust mite found in North America.

It's worth noting that while house dust mites are often associated with poor hygiene or dirty environments, they can be found even in the cleanest homes. Regular cleaning and vacuuming, as well as the use of allergen-proof covers on bedding, can help reduce the number of house dust mites in the home and alleviate symptoms for those who are allergic to them.

Arthropods are a phylum of animals that includes insects, spiders, crustaceans, and other creatures with jointed appendages. Arthropod proteins, therefore, refer to the proteins that are found in these organisms. These proteins play various roles in the structure, function, and regulation of arthropod cells, tissues, and organs.

Arthropod proteins can be classified into several categories based on their functions, such as structural proteins, enzymes, signaling proteins, and defense proteins. Structural proteins provide support and protection to the arthropod exoskeleton, which is composed mainly of chitin and proteins. Enzymes are proteins that catalyze chemical reactions in arthropod metabolism, while signaling proteins regulate various physiological processes, including growth, development, and reproduction. Defense proteins protect arthropods from pathogens, parasites, and environmental stressors.

Arthropod proteins have attracted significant interest in biomedical research due to their potential applications in drug discovery, vaccine development, and diagnostic tools. For example, some arthropod proteins have been identified as promising targets for the development of new insecticides and antiparasitic drugs. Additionally, arthropod-derived proteins have been used in the production of recombinant vaccines against infectious diseases such as Lyme disease and malaria.

Understanding the structure and function of arthropod proteins is essential for advancing our knowledge of arthropod biology, evolution, and ecology. It also has important implications for human health, agriculture, and environmental conservation.

An allergen is a substance that can cause an allergic reaction in some people. These substances are typically harmless to most people, but for those with allergies, the immune system mistakenly identifies them as threats and overreacts, leading to the release of histamines and other chemicals that cause symptoms such as itching, sneezing, runny nose, rashes, hives, and difficulty breathing. Common allergens include pollen, dust mites, mold spores, pet dander, insect venom, and certain foods or medications. When a person comes into contact with an allergen, they may experience symptoms that range from mild to severe, depending on the individual's sensitivity to the substance and the amount of exposure.

I apologize for any confusion, but "Pyroglyphidae" is not a medical term. It is actually a family of small arthropods, specifically mites, that are often found in houses and other buildings. These mites are commonly known as dust mites or storage mites, and some species are associated with allergies and asthma symptoms in humans. If you have any questions related to medical terminology, I'll be happy to help!

Immunoglobulin E (IgE) is a type of antibody that plays a key role in the immune response to parasitic infections and allergies. It is produced by B cells in response to stimulation by antigens, such as pollen, pet dander, or certain foods. Once produced, IgE binds to receptors on the surface of mast cells and basophils, which are immune cells found in tissues and blood respectively. When an individual with IgE antibodies encounters the allergen again, the cross-linking of IgE molecules bound to the FcεRI receptor triggers the release of mediators such as histamine, leukotrienes, prostaglandins, and various cytokines from these cells. These mediators cause the symptoms of an allergic reaction, such as itching, swelling, and redness. IgE also plays a role in protecting against certain parasitic infections by activating eosinophils, which can kill the parasites.

In summary, Immunoglobulin E (IgE) is a type of antibody that plays a crucial role in the immune response to allergens and parasitic infections, it binds to receptors on the surface of mast cells and basophils, when an individual with IgE antibodies encounters the allergen again, it triggers the release of mediators from these cells causing the symptoms of an allergic reaction.

Skin tests are medical diagnostic procedures that involve the application of a small amount of a substance to the skin, usually through a scratch, prick, or injection, to determine if the body has an allergic reaction to it. The most common type of skin test is the patch test, which involves applying a patch containing a small amount of the suspected allergen to the skin and observing the area for signs of a reaction, such as redness, swelling, or itching, over a period of several days. Another type of skin test is the intradermal test, in which a small amount of the substance is injected just beneath the surface of the skin. Skin tests are used to help diagnose allergies, including those to pollen, mold, pets, and foods, as well as to identify sensitivities to medications, chemicals, and other substances.

Allergic rhinitis, perennial type, is a medical condition characterized by inflammation of the nasal passages caused by an allergic response to environmental allergens that are present throughout the year. Unlike seasonal allergic rhinitis, which is triggered by specific pollens or molds during certain times of the year, perennial allergic rhinitis is a persistent condition that occurs year-round.

Common allergens responsible for perennial allergic rhinitis include dust mites, cockroaches, pet dander, and indoor mold spores. Symptoms may include sneezing, runny or stuffy nose, itchy eyes, ears, throat, or roof of the mouth. Treatment options typically involve avoiding exposure to the offending allergens, if possible, as well as medications such as antihistamines, nasal corticosteroids, and leukotriene receptor antagonists to manage symptoms. Immunotherapy (allergy shots) may also be recommended for long-term management in some cases.

In medical terms, "dust" is not defined as a specific medical condition or disease. However, generally speaking, dust refers to small particles of solid matter that can be found in the air and can come from various sources, such as soil, pollen, hair, textiles, paper, or plastic.

Exposure to certain types of dust, such as those containing allergens, chemicals, or harmful pathogens, can cause a range of health problems, including respiratory issues like asthma, allergies, and lung diseases. Prolonged exposure to certain types of dust, such as silica or asbestos, can even lead to serious conditions like silicosis or mesothelioma.

Therefore, it is important for individuals who work in environments with high levels of dust to take appropriate precautions, such as wearing masks and respirators, to minimize their exposure and reduce the risk of health problems.

Hypersensitivity, Immediate: Also known as Type I hypersensitivity, it is an exaggerated and abnormal immune response that occurs within minutes to a few hours after exposure to a second dose of an allergen (a substance that triggers an allergic reaction). This type of hypersensitivity is mediated by immunoglobulin E (IgE) antibodies, which are produced by the immune system in response to the first exposure to the allergen. Upon subsequent exposures, these IgE antibodies bind to mast cells and basophils, leading to their degranulation and the release of mediators such as histamine, leukotrienes, and prostaglandins. These mediators cause a variety of symptoms, including itching, swelling, redness, and pain at the site of exposure, as well as systemic symptoms such as difficulty breathing, wheezing, and hypotension (low blood pressure). Examples of immediate hypersensitivity reactions include allergic asthma, hay fever, anaphylaxis, and some forms of food allergy.

Mite infestations refer to the presence and multiplication of mites, which are tiny arthropods belonging to the class Arachnida, on or inside a host's body. This can occur in various sites such as the skin, lungs, or gastrointestinal tract, depending on the specific mite species.

Skin infestations by mites, also known as dermatophilosis or mange, are common and may cause conditions like scabies (caused by Sarcoptes scabiei) or demodecosis (caused by Demodex spp.). These conditions can lead to symptoms such as itching, rash, and skin lesions.

Lung infestations by mites, although rare, can occur in people who work in close contact with mites, such as farmers or laboratory workers. This condition is called "mite lung" or "farmer's lung," which is often caused by exposure to high levels of dust containing mite feces and dead mites.

Gastrointestinal infestations by mites can occur in animals but are extremely rare in humans. The most common example is the intestinal roundworm, which belongs to the phylum Nematoda rather than Arachnida.

It's important to note that mite infestations can be treated with appropriate medical interventions and prevention measures.

Hypersensitivity is an exaggerated or inappropriate immune response to a substance that is generally harmless to most people. It's also known as an allergic reaction. This abnormal response can be caused by various types of immunological mechanisms, including antibody-mediated reactions (types I, II, and III) and cell-mediated reactions (type IV). The severity of the hypersensitivity reaction can range from mild discomfort to life-threatening conditions. Common examples of hypersensitivity reactions include allergic rhinitis, asthma, atopic dermatitis, food allergies, and anaphylaxis.

Desensitization, Immunologic is a medical procedure that aims to decrease the immune system's response to an allergen. This is achieved through the controlled exposure of the patient to gradually increasing amounts of the allergen, ultimately leading to a reduction in the severity of allergic reactions upon subsequent exposures. The process typically involves administering carefully measured and incrementally larger doses of the allergen, either orally, sublingually (under the tongue), or by injection, under medical supervision. Over time, this repeated exposure can help the immune system become less sensitive to the allergen, thereby alleviating allergic symptoms.

The specific desensitization protocol and administration method may vary depending on the type of allergen and individual patient factors. Immunologic desensitization is most commonly used for environmental allergens like pollen, dust mites, or pet dander, as well as insect venoms such as bee or wasp stings. It is important to note that this procedure should only be performed under the close supervision of a qualified healthcare professional, as there are potential risks involved, including anaphylaxis (a severe and life-threatening allergic reaction).

A Radioallergosorbent Test (RAST) is a type of blood test used in the diagnosis of allergies. It measures the presence and levels of specific antibodies, called immunoglobulin E (IgE), produced by the immune system in response to certain allergens. In this test, a small amount of blood is taken from the patient and then mixed with various allergens. If the patient has developed IgE antibodies against any of these allergens, they will bind to them, forming an antigen-antibody complex.

The mixture is then passed over a solid phase, such as a paper or plastic surface, which has been coated with allergen-specific antibodies. These antibodies will capture the antigen-antibody complexes formed in the previous step. A radioactive label is attached to a different type of antibody (called anti-IgE), which then binds to the IgE antibodies captured on the solid phase. The amount of radioactivity detected is proportional to the quantity of IgE antibodies present, providing an indication of the patient's sensitivity to that specific allergen.

While RAST tests have been largely replaced by more modern and sensitive techniques, such as fluorescence enzyme immunoassays (FEIA), they still provide valuable information in diagnosing allergies and guiding treatment plans.

"Sarcoptes scabiei" is a medical term that refers to a species of mite known as the human itch mite or simply scabies mite. This tiny arthropod burrows into the upper layer of human skin, where it lives and lays its eggs, causing an intensely itchy skin condition called scabies. The female mite measures about 0.3-0.5 mm in length and has eight legs. It is barely visible to the naked eye.

The mite's burrowing and feeding activities trigger an immune response in the host, leading to a characteristic rash and intense itching, particularly at night. The rash typically appears as small red bumps or blisters and can occur anywhere on the body, but is most commonly found in skin folds such as the wrists, elbows, armpits, waistline, and buttocks.

Scabies is highly contagious and can spread rapidly through close physical contact with an infected person, shared bedding or towels, or prolonged skin-to-skin contact. It is important to seek medical treatment promptly if scabies is suspected, as the condition can cause significant discomfort and lead to secondary bacterial infections if left untreated. Treatment typically involves topical medications that kill the mites and their eggs, as well as thorough cleaning of bedding, clothing, and other items that may have come into contact with the infected person.

Scabies is a contagious skin condition caused by the infestation of the human itch mite (Sarcoptes scabiei var. hominis). The female mite burrows into the upper layer of the skin, where it lays its eggs and causes an intensely pruritic (itchy) rash. The rash is often accompanied by small red bumps and blisters, typically found in areas such as the hands, wrists, elbows, armpits, waistline, genitals, and buttocks. Scabies is transmitted through direct skin-to-skin contact with an infected individual or through sharing of contaminated items like bedding or clothing. It can affect people of all ages, races, and socioeconomic backgrounds, but it is particularly common in crowded living conditions, nursing homes, and child care facilities. Treatment usually involves topical medications or oral drugs that kill the mites and their eggs, as well as thorough cleaning and laundering of bedding, clothing, and towels to prevent reinfestation.

Asthma is a chronic respiratory disease characterized by inflammation and narrowing of the airways, leading to symptoms such as wheezing, coughing, shortness of breath, and chest tightness. The airway obstruction in asthma is usually reversible, either spontaneously or with treatment.

The underlying cause of asthma involves a combination of genetic and environmental factors that result in hypersensitivity of the airways to certain triggers, such as allergens, irritants, viruses, exercise, and emotional stress. When these triggers are encountered, the airways constrict due to smooth muscle spasm, swell due to inflammation, and produce excess mucus, leading to the characteristic symptoms of asthma.

Asthma is typically managed with a combination of medications that include bronchodilators to relax the airway muscles, corticosteroids to reduce inflammation, and leukotriene modifiers or mast cell stabilizers to prevent allergic reactions. Avoiding triggers and monitoring symptoms are also important components of asthma management.

There are several types of asthma, including allergic asthma, non-allergic asthma, exercise-induced asthma, occupational asthma, and nocturnal asthma, each with its own set of triggers and treatment approaches. Proper diagnosis and management of asthma can help prevent exacerbations, improve quality of life, and reduce the risk of long-term complications.

Nasal provocation tests are a type of diagnostic procedure used in allergy testing to determine the specific allergens that cause a person's nasal symptoms. In this test, a small amount of an allergen is introduced into the patient's nostril using a spray or drops. The patient's response is then observed and measured for any signs of an allergic reaction, such as sneezing, runny nose, or congestion.

The test may be performed with a single allergen or with a series of allergens to identify which specific substances the patient is allergic to. The results of the test can help guide treatment decisions and management strategies for allergies, including immunotherapy (allergy shots) and avoidance measures.

It's important to note that nasal provocation tests should only be performed under the supervision of a trained healthcare professional, as there is a small risk of inducing a severe allergic reaction.

Cysteine endopeptidases are a type of enzymes that cleave peptide bonds within proteins. They are also known as cysteine proteases or cysteine proteinases. These enzymes contain a catalytic triad consisting of three amino acids: cysteine, histidine, and aspartate. The thiol group (-SH) of the cysteine residue acts as a nucleophile and attacks the carbonyl carbon of the peptide bond, leading to its cleavage.

Cysteine endopeptidases play important roles in various biological processes, including protein degradation, cell signaling, and inflammation. They are involved in many physiological and pathological conditions, such as apoptosis, immune response, and cancer. Some examples of cysteine endopeptidases include cathepsins, caspases, and calpains.

It is important to note that these enzymes require a reducing environment to maintain the reduced state of their active site cysteine residue. Therefore, they are sensitive to oxidizing agents and inhibitors that target the thiol group. Understanding the structure and function of cysteine endopeptidases is crucial for developing therapeutic strategies that target these enzymes in various diseases.

Atopic dermatitis is a chronic, inflammatory skin condition that is commonly known as eczema. It is characterized by dry, itchy, and scaly patches on the skin that can become red, swollen, and cracked over time. The condition often affects the skin on the face, hands, feet, and behind the knees, and it can be triggered or worsened by exposure to certain allergens, irritants, stress, or changes in temperature and humidity. Atopic dermatitis is more common in people with a family history of allergies, such as asthma or hay fever, and it often begins in infancy or early childhood. The exact cause of atopic dermatitis is not fully understood, but it is thought to involve a combination of genetic and environmental factors that affect the immune system and the skin's ability to maintain a healthy barrier function.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In plants, antigens are typically found on the surface of plant cells and may be derived from various sources such as:

1. Pathogens: Plant pathogens like bacteria, viruses, fungi, and oomycetes have unique molecules on their surfaces that can serve as antigens for the plant's immune system. These antigens are recognized by plant pattern recognition receptors (PRRs) and trigger an immune response.
2. Endogenous proteins: Some plant proteins, when expressed in abnormal locations or quantities, can be recognized as foreign by the plant's immune system and elicit an immune response. These proteins may serve as antigens and are involved in self/non-self recognition.
3. Glycoproteins: Plant cell surface glycoproteins, which contain carbohydrate moieties, can also act as antigens. They play a role in plant-microbe interactions and may be recognized by both the plant's immune system and pathogens.
4. Allergens: Certain plant proteins can cause allergic reactions in humans and animals when ingested or inhaled. These proteins, known as allergens, can also serve as antigens for the human immune system, leading to the production of IgE antibodies and triggering an allergic response.
5. Transgenic proteins: In genetically modified plants, new proteins introduced through genetic engineering may be recognized as foreign by the plant's immune system or even by the human immune system in some cases. These transgenic proteins can serve as antigens and have been a subject of concern in relation to food safety and potential allergies.

Understanding plant antigens is crucial for developing effective strategies for plant disease management, vaccine development, and improving food safety and allergy prevention.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Bronchial provocation tests are a group of medical tests used to assess the airway responsiveness of the lungs by challenging them with increasing doses of a specific stimulus, such as methacholine or histamine, which can cause bronchoconstriction (narrowing of the airways) in susceptible individuals. These tests are often performed to diagnose and monitor asthma and other respiratory conditions that may be associated with heightened airway responsiveness.

The most common type of bronchial provocation test is the methacholine challenge test, which involves inhaling increasing concentrations of methacholine aerosol via a nebulizer. The dose response is measured by monitoring lung function (usually through spirometry) before and after each exposure. A positive test is indicated when there is a significant decrease in forced expiratory volume in one second (FEV1) or other measures of airflow, which suggests bronchial hyperresponsiveness.

Other types of bronchial provocation tests include histamine challenges, exercise challenges, and mannitol challenges. These tests have specific indications, contraindications, and protocols that should be followed to ensure accurate results and patient safety. Bronchial provocation tests are typically conducted in a controlled clinical setting under the supervision of trained healthcare professionals.

Respiratory hypersensitivity, also known as respiratory allergies or hypersensitive pneumonitis, refers to an exaggerated immune response in the lungs to inhaled substances or allergens. This condition occurs when the body's immune system overreacts to harmless particles, leading to inflammation and damage in the airways and alveoli (air sacs) of the lungs.

There are two types of respiratory hypersensitivity: immediate and delayed. Immediate hypersensitivity, also known as type I hypersensitivity, is mediated by immunoglobulin E (IgE) antibodies and results in symptoms such as sneezing, runny nose, and asthma-like symptoms within minutes to hours of exposure to the allergen. Delayed hypersensitivity, also known as type III or type IV hypersensitivity, is mediated by other immune mechanisms and can take several hours to days to develop after exposure to the allergen.

Common causes of respiratory hypersensitivity include mold spores, animal dander, dust mites, pollen, and chemicals found in certain occupations. Symptoms may include coughing, wheezing, shortness of breath, chest tightness, and fatigue. Treatment typically involves avoiding the allergen, if possible, and using medications such as corticosteroids, bronchodilators, or antihistamines to manage symptoms. In severe cases, immunotherapy (allergy shots) may be recommended to help desensitize the immune system to the allergen.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Acaridae is a family of mites, also known as "grain mites" or "flour mites." These mites are tiny arthropods that are commonly found in stored food products such as grains, cereals, and dried fruits. Some species of Acaridae can cause allergic reactions in humans, and they have been known to contaminate food and cause spoilage. They are also capable of carrying and transmitting various diseases.

Here is a medical definition for Acaridae:

"A family of mites that includes several species commonly found in stored food products such as grains, cereals, and dried fruits. These mites can cause allergic reactions in humans and contaminate food, leading to spoilage. Some species are capable of carrying and transmitting diseases."

An antigen is a substance (usually a protein) that is recognized as foreign by the immune system and stimulates an immune response, leading to the production of antibodies or activation of T-cells. Antigens can be derived from various sources, including bacteria, viruses, fungi, parasites, and tumor cells. They can also come from non-living substances such as pollen, dust mites, or chemicals.

Antigens contain epitopes, which are specific regions on the antigen molecule that are recognized by the immune system. The immune system's response to an antigen depends on several factors, including the type of antigen, its size, and its location in the body.

In general, antigens can be classified into two main categories:

1. T-dependent antigens: These require the help of T-cells to stimulate an immune response. They are typically larger, more complex molecules that contain multiple epitopes capable of binding to both MHC class II molecules on antigen-presenting cells and T-cell receptors on CD4+ T-cells.
2. T-independent antigens: These do not require the help of T-cells to stimulate an immune response. They are usually smaller, simpler molecules that contain repetitive epitopes capable of cross-linking B-cell receptors and activating them directly.

Understanding antigens and their properties is crucial for developing vaccines, diagnostic tests, and immunotherapies.

Cockroaches are not a medical condition or disease. They are a type of insect that can be found in many parts of the world. Some species of cockroaches are known to carry diseases and allergens, which can cause health problems for some people. Cockroach allergens can trigger asthma symptoms, especially in children. Additionally, cockroaches can contaminate food and surfaces with bacteria and other germs, which can lead to illnesses such as salmonellosis and gastroenteritis.

If you have a problem with cockroaches in your home or workplace, it is important to take steps to eliminate them to reduce the risk of health problems. This may include cleaning up food and water sources, sealing entry points, and using pesticides or hiring a professional pest control service.

Intradermal tests are a type of allergy test that involves the injection of a small amount of allergen extract directly into the skin, usually the forearm or back. This is different from other types of allergy tests such as scratch tests or blood tests, which measure immune system responses to allergens in other ways.

During an intradermal test, a healthcare professional uses a fine needle to inject a small amount of allergen extract just beneath the surface of the skin. This creates a small wheal or bubble, and the area is then observed for signs of a reaction such as redness, swelling, or itching. These reactions indicate that the person has antibodies to the allergen and may be allergic to it.

Intradermal tests are often used when other types of allergy tests have been inconclusive or when a healthcare professional wants to confirm the results of a previous test. They can be used to diagnose a variety of allergies, including those to insect venom, medications, and environmental allergens such as pollen or mold.

It's important to note that intradermal tests carry a higher risk of causing a severe allergic reaction than other types of allergy tests, so they should only be performed by trained healthcare professionals in a medical setting where appropriate treatments are available.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

"Mentha pulegium" is the scientific name for an herb commonly known as pennyroyal. It belongs to the mint family (Lamiaceae) and is native to Europe, North Africa, and parts of Asia. Pennyroyal has been used traditionally in folk medicine for various purposes such as treating digestive issues, relieving menstrual cramps, and repelling insects. However, it's essential to note that pennyroyal can be toxic if ingested in large amounts or overused, especially in pregnant women, due to its active compound pulegone. Always consult a healthcare professional before using any herbal remedies for medicinal purposes.

"Tick control" is not a medical term per se, but it is a common term used in public health and medicine to refer to the methods and practices aimed at reducing or preventing the population of ticks in a given area. This can include various strategies such as:

1. Landscape management: Modifying the environment to make it less tick-friendly, for example, by clearing leaf litter, brush, and tall grasses around homes and recreational areas.
2. Chemical control: Using pesticides to kill ticks in the environment or on animals. This can include treating vegetation, animal feed and bedding, or using tick repellents on human skin or clothing.
3. Biological control: Using natural predators or pathogens of ticks to reduce their populations.
4. Personal protection: Using protective clothing, insect repellent, and other measures to prevent tick bites when spending time outdoors.
5. Public education: Informing the public about the risks associated with ticks and how to protect themselves, as well as the importance of reporting tick bites and removing ticks promptly and properly.

Tick control is an important aspect of preventing tick-borne diseases, which can have serious health consequences for humans and animals.

'Bedding and linens' is a term that refers to the items used to cover, clean, and maintain beds and other furniture in medical and residential settings. These items include:

1. Sheets: These are flat pieces of cloth that are placed on top of the mattress and beneath the blankets or comforters. They come in various sizes (twin, full, queen, king) to fit different mattress sizes.
2. Blankets/Comforters: These are thicker, often quilted or filled, pieces of fabric that provide warmth and comfort to the user.
3. Pillows and pillowcases: Pillows are used to support the head and neck during sleep, while pillowcases are the removable covers that protect the pillows from dirt, sweat, and stains.
4. Mattress pads/protectors: These are additional layers placed between the mattress and the sheets to provide extra protection against spills, stains, or allergens.
5. Bed skirts: These are decorative pieces of fabric that cover the space between the box spring and the floor, hiding any storage area or providing a more finished look to the bed.
6. Towels and washcloths: While not directly related to the bed, these linens are often included in the 'bedding and linens' category as they share similar cleaning and maintenance requirements.

In medical settings, such as hospitals and nursing homes, strict infection control protocols are followed for handling, washing, and storing bedding and linens to prevent the spread of infectious diseases.

The Ability of Allergen-Specific Immunoglobulin G, F(ab)2, & Fab Antibodies Prepared from Dermatophagoides Pteronyssinus ... In patients receiving subcutaneous immunotherapy (SCIT) for Dermatophagoides pteronyssinus (Der-p), the inhibitory activity of ...
Dermatophagoides pteronyssinus (d1) IgE (Quest). Get know how much does lab test cost. Direct access testing with or without ... Dermatophagoides pteronyssinus (d1) IgE Dermatophagoides pteronyssinus (d1) IgE Lab Test Short Info. Dermatophagoides ... Dermatophagoides pteronyssinus (d1) IgE in online lab tests stores. If you need more than just Dermatophagoides pteronyssinus ( ... Covered tests: Dermatophagoides pteronyssinus (d1) IgE (Quest) Covered components: Dermatophagoides pteronyssinus (d1) IgE, ...
... confirmed by in vitro testing for IgE antibodies to Dermatophagoides farinae or Dermatophagoides pteronyssinus house dust mites ... Dust mites (Dermatophagoides pteronyssinus and farinae, size 30 µm). The primary allergen associated with dust mites is an ...
A new vaccine against House Dust Mite allergy based on the allergens Der p1 and Der p2 from Dermatophagoides pteronyssinus. ... A new vaccine against House Dust Mite allergy based on the allergens Der p1 and Der p2 from Dermatophagoides pteronyssinus. ...
... confirmed by in vitro testing for IgE antibodies to Dermatophagoides farinae or Dermatophagoides pteronyssinus house dust mites ... Dust mites (Dermatophagoides pteronyssinus and farinae, size 30 µm). The primary allergen associated with dust mites is an ...
Structure/epitope analysis and IgE binding activities of three cyclophilin family proteins from Dermatophagoides pteronyssinus ... Structure/epitope analysis and IgE binding activities of three cyclophilin family proteins from Dermatophagoides pteronyssinus ... it has been demonstrated that a major allergen in house dust is related to the presence of mites of the genus Dermatophagoides1 ...
Der p 1 is located in the mid-gut and fecal pellets of the European house dust mite Dermatophagoides pteronyssinus. It has been ... "Dermatophagoides pteronyssinus antigen p 1". US National Library of Medicine Medical Subject Headings. Retrieved 3 April 2015. ... Hales, BJ; Thomas, WR (August 1997). "T-cell sensitization to epitopes from the house dust mites Dermatophagoides pteronyssinus ... proposal that Euroglyphus maynei may be more closely related to Dermatophagoides farinae than Dermatophagoides pteronyssinus. ...
Linkage analysis of dermatophagoides pteronyssinus-specific IgE responsiveness with polymorphic markers on chromosome 6p21 (HLA ... Linkage analysis of dermatophagoides pteronyssinus-specific IgE responsiveness with polymorphic markers on chromosome 6p21 (HLA ... Linkage analysis of dermatophagoides pteronyssinus-specific IgE responsiveness with polymorphic markers on chromosome 6p21 (HLA ... Linkage analysis of dermatophagoides pteronyssinus-specific IgE responsiveness with polymorphic markers on chromosome 6p21 (HLA ...
D. Pteronyssinus IgE antibody (kU/L). English Text: Serum IgE antibody to Dermatophagoides Pteronyssinus, result (kU/L). Target ... Serum IgE antibody to Dermatophagoides Farinae, result (kU/L). Target: Both males and females 1 YEARS - 150 YEARS. Code or ... LBXID1 - D. Pteronyssinus IgE antibody (kU/L). Variable Name: LBXID1. SAS Label: ...
Dermatophagoides pteronyssinus (D. farinae). w.m.. 1. 6.19.19. Ixodes dammini. male w.m. ...
Dermatophagoides pteronyssinus: A0A6P6XVZ2; Dermatophagoides farinae: A0A922HK46; Ixodes scapularis: B7P7T4; Rhipicephalus ...
Mite crude extract (Dermatophagoides pteronyssinus, Dp; Cosmo Bio Co., Ltd., Tokyo, Japan) was used as an allergen for inducing ... Dermatophagoides pteronyssinus; ELISA: enzyme-linked immunosorbent assay; Et-OH: ethanol; KC: keratinocyte chemoattractant; HSD ... ADSLs were induced by the injection of D. pteronyssinus (Dp) into mouse ear tissue, and the effects of various antiseptics were ...
... and Dermatophagoides pteronyssinus (14 vs 10%; p , 0.05). This was reflected by the prevalences of positive specific IgE values ...
Dermatophagoides pteronyssinus, Dermatophagoides farinae, Blueberry Plant, Vaccinium macrocarpon, Citrullus, Cicer, Prosopis, ...
DP: dermatophagoides pteronyssinus;. DF: dermatophagoides farina;. Supplementary File Legends. Additional file 1: Table S1. ...
Dermatophagoides pteronyssinus. *Cat dander. *Dog dander. *Mouse urine. *Cockroach, German Fasting is not required. Take all ...
Specific IgE directed against Dermatophagoides pteronyssinus, cat, timothy grass and Cladosporium herbarum were measured. The ...
Standardised allergen extract from house dust mites (Dermatophagoides pteronyssinus and Dermatophagoides farina). Date of ...
The European House dust mite (Dermatophagoides pteronyssinus).. Some other lesser-known species are the Dermatophagoides ... Dermatophagoides can be broken down into dermato (skin flakes) and phagoides (eater), indicating that these organisms draw ... The American House dust mite (Dermatophagoides farinae ). * ...
Table 1. Frequency of helper and cytotoxic CD30+ T cells, after Dermatophagoides pteronyssinus (Der p) stimulation in patients ...
Each participating child was skin tested to the allergensDermatophagoides pteronyssinus andD farinae, cat, cockroach and ...
Staubmilben Bedeutung : Dermatophagoides pteronys- sinus ist die wichtigste Art in Europa. Diagram the plant parts and label ...
In particular, Dermatophagoides pteronyssinus and Dermatophagoides farinae mites live in house dust and are responsible for ...
Easy, fast and secure! Order here Dermatophagoid pteronyssinus 15C 30C 9C doses Boiron. ... Buy homeopathic doses Dermatophagoid pteronyssinus Boiron € 3.87 on Care and nature, your bio pharmacy online. ... Dermatophagoides pteronyssinus 15C 30C 9C Dose homeopathy Boiron. Brand : Boiron dilutions homéopathiques ... DERMATOPHAGOIDES pteronyssinus 5C 15C 30C 7C 9C Tube pellets Homeopathy Boiron €5.99 ...
Dermatophagoides pteronyssinus allergen p 12 0 *Antigens, Dermatophagoides *Arthropod Proteins. Dermatophagoides pteronyssinus ... Dermatophagoides pteronyssinus antigen p 5 0 *Antigens, Dermatophagoides *Arthropod Proteins. Dermatophagoides pteronyssinus ... Dermatophagoides pteronyssinus antigen p 2 0 *Antigens, Dermatophagoides *Arthropod Proteins. Dermatophagoides pteronyssinus ... Other names Dermatophagoides pteronyssinus Antigens; Dermatophagoides farinae Antigens; Dermatophagoides Antigens; Allergens, ...
... y especificidad de la prueba cut nea por punci n con extractos alerg nicos estandarizados de Dermatophagoides pteronyssinus en ... Factors influencing adsorption of Dermatophagoides siboney allergen extract into aluminum adjuvants. Biotecnol Apl, Dec 2010, ...

No FAQ available that match "dermatophagoides pteronyssinus"

No images available that match "dermatophagoides pteronyssinus"