The part of a denture that overlies the soft tissue and supports the supplied teeth and is supported in turn by abutment teeth or the residual alveolar ridge. It is usually made of resins or metal or their combination.
A denture replacing all natural teeth and associated structures in both the maxilla and mandible.
The plan, delineation, and location of actual structural elements of dentures. The design can relate to retainers, stress-breakers, occlusal rests, flanges, framework, lingual or palatal bars, reciprocal arms, etc.
A complete denture replacing all the natural maxillary teeth and associated maxillary structures. It is completely supported by the oral tissue and underlying maxillary bone.
An appliance used as an artificial or prosthetic replacement for missing teeth and adjacent tissues. It does not include CROWNS; DENTAL ABUTMENTS; nor TOOTH, ARTIFICIAL.
Acrylic resins, also known as polymethyl methacrylate (PMMA), are a type of synthetic resin formed from polymerized methyl methacrylate monomers, used in various medical applications such as dental restorations, orthopedic implants, and ophthalmic lenses due to their biocompatibility, durability, and transparency.
A partial denture designed and constructed to be removed readily from the mouth.
A complete denture replacing all the natural mandibular teeth and associated structures. It is completely supported by the oral tissue and underlying mandibular bone.
Substances used to clean dentures; they are usually alkaline peroxides or hypochlorites, may contain enzymes and release oxygen. Use also for sonic action cleaners.
Material applied to the tissue side of a denture to provide a soft lining to the parts of a denture coming in contact with soft tissue. It cushions contact of the denture with the tissues.
The retention of a denture in place by design, device, or adhesion.
The process of refitting a denture by replacing the denture base material without changing the occlusal relations of the teeth. Rebasing may include adding to the denture base to compensate for resorptive changes to subjacent structures.
Inflammation of the mouth due to denture irritation.
A fabricated tooth substituting for a natural tooth in a prosthesis. It is usually made of porcelain or plastic.
Polymerized methyl methacrylate monomers which are used as sheets, moulding, extrusion powders, surface coating resins, emulsion polymers, fibers, inks, and films (From International Labor Organization, 1983). This material is also used in tooth implants, bone cements, and hard corneal contact lenses.
Materials used in the production of dental bases, restorations, impressions, prostheses, etc.
The quality or state of being able to be bent or creased repeatedly. (From Webster, 3d ed)
The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility.
The methyl ester of methacrylic acid. It polymerizes easily to form POLYMETHYL METHACRYLATE. It is used as a bone cement.
The description and measurement of the various factors that produce physical stress upon dental restorations, prostheses, or appliances, materials associated with them, or the natural oral structures.
A partial denture attached to prepared natural teeth, roots, or implants by cementation.
A denture replacing one or more (but not all) natural teeth. It is supported and retained by underlying tissue and some or all of the remaining teeth.
The process of reuniting or replacing broken or worn parts of a denture.
Creation of a smooth and glossy surface finish on a denture or amalgam.
The process of producing a form or impression made of metal or plaster using a mold.
The methyl esters of methacrylic acid that polymerize easily and are used as tissue cements, dental materials, and absorbent for biological substances.
Chemical reaction in which monomeric components are combined to form POLYMERS (e.g., POLYMETHYLMETHACRYLATE).
Characteristics or attributes of the outer boundaries of objects, including molecules.
Removable prosthesis constructed over natural teeth or implanted studs.
A commonly used prosthesis that results in a strong, permanent restoration. It consists of an electrolytically etched cast-metal retainer that is cemented (bonded), using resins, to adjacent teeth whose enamel was previously acid-treated (acid-etched). This type of bridgework is sometimes referred to as a Maryland bridge.
That portion of the electromagnetic spectrum from the UHF (ultrahigh frequency) radio waves and extending into the INFRARED RAYS frequencies.
The placing of a body or a part thereof into a liquid.
Acrylic acids or acrylates which are substituted in the C-2 position with a methyl group.
Inability or inadequacy of a dental restoration or prosthesis to perform as expected.
Chemicals especially for use on instruments to destroy pathogenic organisms. (Boucher, Clinical Dental Terminology, 4th ed)
The quality or state of being wettable or the degree to which something can be wet. This is also the ability of any solid surface to be wetted when in contact with a liquid whose surface tension is reduced so that the liquid spreads over the surface of the solid.
Compounds similar to hydrocarbons in which a tetravalent silicon atom replaces the carbon atom. They are very reactive, ignite in air, and form useful derivatives.
An adhesion procedure for orthodontic attachments, such as plastic DENTAL CROWNS. This process usually includes the application of an adhesive material (DENTAL CEMENTS) and letting it harden in-place by light or chemical curing.
Metal devices for fastening together two or more parts of dental prostheses for stabilizing or retaining them by attachment to abutment teeth. For a precision attachment for a partial denture DENTURE PRECISION ATTACHMENT is available.
Presentation devices used for patient education and technique training in dentistry.
The field of dentistry involved in procedures for designing and constructing dental appliances. It includes also the application of any technology to the field of dentistry.
Polymers where the main polymer chain comprises recurring amide groups. These compounds are generally formed from combinations of diamines, diacids, and amino acids and yield fibers, sheeting, or extruded forms used in textiles, gels, filters, sutures, contact lenses, and other biomaterials.
Silicon polymers that contain alternate silicon and oxygen atoms in linear or cyclic molecular structures.
Pairing of purine and pyrimidine bases by HYDROGEN BONDING in double-stranded DNA or RNA.
Specific alloys not less than 85% chromium and nickel or cobalt, with traces of either nickel or cobalt, molybdenum, and other substances. They are used in partial dentures, orthopedic implants, etc.
Hard, amorphous, brittle, inorganic, usually transparent, polymerous silicate of basic oxides, usually potassium or sodium. It is used in the form of hard sheets, vessels, tubing, fibers, ceramics, beads, etc.
Inorganic compounds that contain carbon as an integral part of the molecule but are not derived from hydrocarbons.
The maximum stress a material subjected to a stretching load can withstand without tearing. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p2001)
The total absence of teeth from either the mandible or the maxilla, but not both. Total absence of teeth from both is MOUTH, EDENTULOUS. Partial absence of teeth in either is JAW, EDENTULOUS, PARTIALLY.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A calcium salt that is used for a variety of purposes including: building materials, as a desiccant, in dentistry as an impression material, cast, or die, and in medicine for immobilizing casts and as a tablet excipient. It exists in various forms and states of hydration. Plaster of Paris is a mixture of powdered and heat-treated gypsum.
Any system of defining ownership of dentures or dental prostheses.
A mixture of metallic elements or compounds with other metallic or metalloid elements in varying proportions for use in restorative or prosthetic dentistry.
The study of the energy of electrons ejected from matter by the photoelectric effect, i.e., as a direct result of absorption of energy from electromagnetic radiation. As the energies of the electrons are characteristic of a specific element, the measurement of the energy of these electrons is a technique used to determine the chemical composition of surfaces.
Numerical expression indicating the measure of stiffness in a material. It is defined by the ratio of stress in a unit area of substance to the resulting deformation (strain). This allows the behavior of a material under load (such as bone) to be calculated.
A group of thermoplastic or thermosetting polymers containing polyisocyanate. They are used as ELASTOMERS, as coatings, as fibers and as foams.
Total lack of teeth through disease or extraction.
Fluorocarbon polymers are synthetic, high-molecular-weight compounds consisting of carbon chains with fluorine atoms replacing hydrogen atoms, known for their chemical and thermal stability, as well as their resistance to water, oil, and heat, which make them useful in various medical applications such as biocompatible coatings, drug delivery systems, and implant materials.
Water-soluble low-molecular-weight polymers of acrylic or methacrylic acid that form solid, insoluble products when mixed with specially prepared ZnO powder. The resulting cement adheres to dental enamel and is also used as a luting agent.
Physiological functions, activities, and interactions of microorganisms, including ARCHAEA; BACTERIA; RICKETTSIA; VIRUSES; FUNGI; and others.
Inorganic compounds that contain silicon as an integral part of the molecule.
Materials incorporated mechanically in plastics (usually PVC) to increase flexibility, workability or distensibility; due to the non-chemical inclusion, plasticizers leach out from the plastic and are found in body fluids and the general environment.
Natural teeth or teeth roots used as anchorage for a fixed or removable denture or other prosthesis (such as an implant) serving the same purpose.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Absence of teeth from a portion of the mandible and/or maxilla.
The internal resistance of a material to moving some parts of it parallel to a fixed plane, in contrast to stretching (TENSILE STRENGTH) or compression (COMPRESSIVE STRENGTH). Ionic crystals are brittle because, when subjected to shear, ions of the same charge are brought next to each other, which causes repulsion.
The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property.
A prosthesis that gains its support, stability, and retention from a substructure that is implanted under the soft tissues of the basal seat of the device and is in contact with bone. (From Boucher's Clinical Dental Terminology, 4th ed)
Preparation of TOOTH surfaces, and of materials bonded to teeth or DENTAL IMPLANTS, with agents and methods which roughen the surface to facilitate adhesion. Agents include phosphoric or other acids (ACID ETCHING, DENTAL) and methods include LASERS.
A property of the surface of an object that makes it stick to another surface.
A peroxide derivative that has been used topically for BURNS and as a dermatologic agent in the treatment of ACNE and POISON IVY DERMATITIS. It is used also as a bleach in the food industry.
The visually perceived property of objects created by absorption or reflection of specific wavelengths of light.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
Rendering pathogens harmless through the use of heat, antiseptics, antibacterial agents, etc.
The hardening or polymerization of bonding agents (DENTAL CEMENTS) via chemical reactions, usually involving two components. This type of dental bonding uses a self-cure or dual-cure system.
Procedure of producing an imprint or negative likeness of the teeth and/or edentulous areas. Impressions are made in plastic material which becomes hardened or set while in contact with the tissue. They are later filled with plaster of Paris or artificial stone to produce a facsimile of the oral structures present. Impressions may be made of a full complement of teeth, of areas where some teeth have been removed, or in a mouth from which all teeth have been extracted. (Illustrated Dictionary of Dentistry, 1982)
The maximum compression a material can withstand without failure. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p427)
Dental occlusion in which the occlusal contact of the teeth on the working side of the jaw is accompanied by the harmonious contact of the teeth on the opposite (balancing) side. (From Jablonski, Dictionary of Dentistry, 1992, p556)
A precision device used for attaching a fixed or removable partial denture to the crown of an abutment tooth or a restoration. One type is the intracoronal attachment and the other type is the extracoronal attachment. It consists of a female portion within the coronal portion of the crown of an abutment and a fitted male portion attached to the denture proper. (Jablonski, Dictionary of Dentistry, 1992, p85; from Boucher's Clinical Dental Terminology, 4th ed, p264)
Presence of warmth or heat or a temperature notably higher than an accustomed norm.
A dark-gray, metallic element of widespread distribution but occurring in small amounts; atomic number, 22; atomic weight, 47.90; symbol, Ti; specific gravity, 4.5; used for fixation of fractures. (Dorland, 28th ed)
A dental specialty concerned with the restoration and maintenance of oral function by the replacement of missing TEETH and related structures by artificial devices or DENTAL PROSTHESES.
Synthetic resins, containing an inert filler, that are widely used in dentistry.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
The act and process of chewing and grinding food in the mouth.
Dental cements composed either of polymethyl methacrylate or dimethacrylate, produced by mixing an acrylic monomer liquid with acrylic polymers and mineral fillers. The cement is insoluble in water and is thus resistant to fluids in the mouth, but is also irritating to the dental pulp. It is used chiefly as a luting agent for fabricated and temporary restorations. (Jablonski's Dictionary of Dentistry, 1992, p159)
A change of a substance from one form or state to another.
The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
Resistance and recovery from distortion of shape.
The selected form given to a natural tooth when it is reduced by instrumentation to receive a prosthesis (e.g., artificial crown or a retainer for a fixed or removable prosthesis). The selection of the form is guided by clinical circumstances and physical properties of the materials that make up the prosthesis. (Boucher's Clinical Dental Terminology, 4th ed, p239)
Occlusal wear of the surfaces of restorations and surface wear of dentures.
Mechanical devices that simulate the temporomandibular joints and jaws to which maxillary and mandibular casts are attached. The entire assembly attempts to reproduce the movements of the mandible and the various tooth-to-tooth relationships that accompany those movements.
A partial denture intended for short-term use in a temporary or emergency situation.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid.
Substances used on inanimate objects that destroy harmful microorganisms or inhibit their activity. Disinfectants are classed as complete, destroying SPORES as well as vegetative forms of microorganisms, or incomplete, destroying only vegetative forms of the organisms. They are distinguished from ANTISEPTICS, which are local anti-infective agents used on humans and other animals. (From Hawley's Condensed Chemical Dictionary, 11th ed)
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
Accumulations of microflora that lead to pathological plaque and calculus which cause PERIODONTAL DISEASES. It can be considered a type of BIOFILMS. It is subtly distinguished from the protective DENTAL PELLICLE.
An artificial replacement for one or more natural teeth or part of a tooth, or associated structures, ranging from a portion of a tooth to a complete denture. The dental prosthesis is used for cosmetic or functional reasons, or both. DENTURES and specific types of dentures are also available. (From Boucher's Clinical Dental Terminology, 4th ed, p244 & Jablonski, Dictionary of Dentistry, 1992, p643)
A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis).
The inferior region of the skull consisting of an internal (cerebral), and an external (basilar) surface.

Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. (1/125)

The aim of this paper is to review our understanding of the mechanisms and clinical significance of adhesion of C. albicans to denture-base materials in relation to denture plaque and denture-related stomatitis. Earlier reports in the literature of a 65% prevalence level of denture-related stomatitis seem to be exaggerated. More recent studies indicate that denture-related stomatitis is considerably less common, particularly in normal healthy subjects. The etiology of the condition is discussed in this review, and although much of the literature supports the view that the condition is strongly associated with C. albicans, this is not always so. In some subjects, the cause appears to be related to a non-specific plaque. This review also considers the role of denture plaque in the pathogenesis of denture-related stomatitis, the sequential development of denture plaque, and its colonization by Candida organisms. Designing controlled in vivo studies is difficult, and as a consequence, many investigators have had to resort to in vitro studies. The majority of these studies have attempted to investigate the hydrophobicity of C. albicans, relating the surface free-energy of denture-base materials, particularly acrylic resin, to that of the organism. Surprisingly little work has been directed at surface roughness and how it affects retention of organisms. Further, no attention has been paid to the properties and character of the surface, other than average surface roughness, as it affects adhesion. A comparison of results from in vitro studies on the effect on adhesion of pre-coating the surfaces of denture-base materials with saliva has produced equivocal conclusions. This is largely due to little standardization of experimental protocols between studies, particularly in the collection and handling of the saliva used. In conclusion, the review strongly supports the suggestion that adherence of C. albicans to denture-base materials in vitro is related to the hydrophobicity of the organism. The clinical significance of the observation and the mechanisms for the development and maturation of denture plaque are yet to be understood. There is a clear need for further investigation of other factors that may moderate the adhesion of organisms and subsequent colonization of denture-base materials.  (+info)

Current trends in removable prosthodontics. (2/125)

BACKGROUND: This article discusses trends in the demographics and treatment of the edentulous patient. It is clear that there still is a tremendous need for removable-prosthodontic services today. While the basic process of making dentures has changed little over the past several decades, new materials and techniques can help laboratories and clinicians provide functional, esthetic restorations that offer exceptional value to patients. Implant treatment is a tremendous adjunct to removable prosthodontics in the treatment of edentulous patients, but it is not within the financial reach of all dental patients. CLINICAL IMPLICATIONS: The clinical skills required to deliver excellent complete denture care are also paramount to successful implant prosthodontics (fixed and removable) and esthetic dentistry. Even so, the opportunities to develop these skills and the interest appear to be decreasing at the same time that the need is projected to increase. In service to our patients, the profession must examine this trend closely.  (+info)

Complete denture covering mandibular tori using three base materials: a case report. (3/125)

The torus mandibularis presents many challenges when fabricating a complete denture. The mucosa tends to be thin and will not tolerate normal occlusal loads on a denture. Large mandibular tori can prevent complete seating of impression trays and denture. To address this problem, we fabricated a new mandibular complete denture incorporating a combination of soft acrylic flanges and liners.  (+info)

Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base. (4/125)

The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.  (+info)

Application of electrolyzed acid water to sterilization of denture base part 1. Examination of sterilization effects on resin plate. (5/125)

Bactericidal activities of electrolyzed strong and weak acid waters for acrylic denture base resin were evaluated in order to discuss the applicability of these waters for sterilization of denture base. Only 1-minute immersion in the electrolyzed strong or weak acid water could completely eliminate the attached bacteria, Staphylococcus aureus 209P, on the resin plate. When the resin was relined with tissue conditioner, 5-minute immersion or 1- to 2-minute ultrasonic cleaning reduced the number of the bacteria from 10(5)/cm2 level to 10(1)/cm2 and no surviving bacteria could be detected after 10-minute treatment. These findings suggest that both the electrolyzed strong and weak acid waters are well applicable to the disinfectant for acrylic denture base showing excellent bactericidal activities in a significantly shorter treatment as compared with the conventional denture cleaning.  (+info)

Adding silanes to MMA: the effects on the water absorption, adhesive strength and mechanical properties of acrylic denture base resins. (6/125)

The adhesive strength of porcelain artificial teeth and polymethylmethacrylates (PMMAs), which contained silanes with various number of vinyl or ethoxy groups, and the mechanical and physical properties of the PMMAs were measured. Four types of PMMAs with silanes showed high adhesive shear strength and caused fractures in the porcelain. Water absorption of the PMMAs increased with the addition of silane, but that of one type with silane was almost the same as the PMMA only type. The flexural strengths of the PMMAs with silane, except for one type, showed no significant differences compared with that of PMMA (p < 0.05). The Tg levels of all PMMAs with silane fell less than that of PMMA. From these results, it was found that PMMA with silane from three vinyl groups and one ethoxy group showed excellent chemical bonding to porcelain and low water absorption.  (+info)

Differential scanning calorimetric study of acrylic resin powders used in dentistry. (7/125)

The thermal behavior of eight dental acrylic resin powders was studied using differential scanning calorimetry (DSC). In addition, high performance liquid chromatography was performed to supplement the DSC analysis. The HPLC analysis revealed that the contents of residual monomers and benzoyl peroxide (BPO) in the powders were 0.01-0.97 mass% and 0.25-1.28 mass%, respectively. All the resin powders produced one broad exothermic peak, while a mixture of BPO and PMMA powders generated two peaks. One peak pattern was assigned to the decomposition of BPO included within the polymer particles. The results suggested that BPO was present inside the particles and little BPO was mixed into the resin powders. Moreover, the present study demonstrated a unique useability of DSC in characterizing resin powders.  (+info)

Content and release of bisphenol A from polycarbonate dental products. (8/125)

Bisphenol A (BPA) is an endocrine disruptor, and is used as a raw material for bisphenol A diglycidyl methacrylate and polycarbonate, that are used in the dental materials. In this study, the total and released amounts of BPA from polycarbonate-based dental materials were measured with high-pressure liquid chromatography (HPLC). The specimens used were orthodontic brackets and denture base resins in the same condition as when obtained commercially were cut into 3 x 3 x 4 mm pieces and crushed into powder. The HPLC analysis was carried out after immersion of the specimens in water or ethanol for a determined time. The total amount of BPA in the specimens was analyzed after dissolution in chloroform. The amount of BPA released after immersion in water for 1 hr was 0.01-0.4 microgram/g for the block samples and 0.14-4.22 micrograms/g for the crushed samples, while that in ethanol for 1 hr was 0.12-9.42 micrograms/g for the block samples and 0.42-22.24 micrograms/g for the crushed samples. The control of BPA in the denture preform resin was 78.9 micrograms/g and this increased to 90.2 micrograms/g after heating to form dentures and then to 250 micrograms/g with mechanical crushing. The results of this study indicate that BPA is released from polycarbonates used in dentistry, and that the thermal conditions during the manufacturing of restorations may cause polymer decomposition resulting in the formation of BPA.  (+info)

Denture bases are the part of a dental prosthesis that rests on the oral tissues and supports the artificial teeth. They are typically made from polymers such as acrylic resin or polymer-ceramic composites, and are custom-fabricated to fit precisely onto the gums and underlying bone structure in the mouth. The denture base provides stability and retention for the prosthesis, allowing it to remain securely in place during eating, speaking, and other activities. It is important that denture bases fit well and are comfortable, as ill-fitting bases can cause irritation, sores, and difficulty with oral function.

A complete denture is a removable dental appliance that replaces all of the teeth in an upper or lower arch. It is also commonly referred to as a "full denture." A complete denture is created specifically to fit a patient's mouth and can be made of either acrylic resin (plastic) or metal and acrylic resin.

The upper complete denture covers the palate (roof of the mouth), while the lower complete denture is shaped like a horseshoe to leave room for the tongue. Dentures are held in place by forming a seal with the gums and remaining jawbone structure, and can be secured further with the use of dental adhesives.

Complete dentures not only restore the ability to eat and speak properly but also help support the facial structures, improving the patient's appearance and overall confidence. It is important to maintain regular dental check-ups even if all teeth are missing, as the dentist will monitor the fit and health of the oral tissues and make any necessary adjustments to the denture.

Denture design refers to the plan and configuration of a removable dental prosthesis, which is created to replace missing teeth and surrounding tissues in the mouth. The design process involves several factors such as:

1. The number and position of artificial teeth (pontics) used to restore the functional occlusion and aesthetics.
2. The type and arrangement of the denture base material that supports the artificial teeth and conforms to the oral tissues.
3. The selection and placement of various rests, clasps, or attachments to improve retention, stability, and support of the denture.
4. The choice of materials used for the construction of the denture, including the type of acrylic resin, metal alloys, or other components.
5. Consideration of the patient's individual needs, preferences, and oral conditions to ensure optimal fit, comfort, and functionality.

The design process is typically carried out by a dental professional, such as a prosthodontist or denturist, in close collaboration with the patient to achieve a custom-made solution that meets their specific requirements.

A complete upper denture is a removable dental appliance that replaces all of the natural teeth in the upper jaw. It is typically made of acrylic resin and fits over the gums, creating a natural-looking smile and allowing the patient to chew and speak properly. The denture is custom-made to fit the unique contours of the patient's mouth, ensuring a comfortable and secure fit.

Complete upper dentures are designed to replace an entire arch of teeth, providing support for the lips and cheeks and helping to maintain the natural shape of the face. They can be held in place by suction or with the help of dental adhesives, and should be removed and cleaned regularly to ensure good oral hygiene and prevent damage to the gums and underlying bone.

Overall, complete upper dentures are an effective solution for patients who have lost all of their upper teeth due to injury, decay, or other factors. They can help restore function, aesthetics, and confidence, allowing individuals to lead a healthy and fulfilling life.

Dentures are defined as a removable dental appliance that replaces missing teeth and surrounding tissues. They are made to resemble your natural teeth and may even enhance your smile. There are two types of dentures - complete and partial. Complete dentures are used when all the teeth are missing, while partial dentures are used when some natural teeth remain.

Complete dentures cover the entire upper or lower jaw, while partial dentures replace one or more missing teeth by attaching to the remaining teeth. Dentures improve chewing ability, speech, and support the facial muscles and structure, preventing sagging of the cheeks and jowls that can occur with missing teeth.

The process of getting dentures usually involves several appointments with a dental professional, who will take impressions and measurements of your mouth to ensure a proper fit and comfortable bite. It may take some time to get used to wearing dentures, but they are an effective solution for restoring a natural-looking smile and improving oral function in people who have lost their teeth.

Acrylic resins are a type of synthetic polymer made from methacrylate monomers. They are widely used in various industrial, commercial, and medical applications due to their unique properties such as transparency, durability, resistance to breakage, and ease of coloring or molding. In the medical field, acrylic resins are often used to make dental restorations like false teeth and fillings, medical devices like intraocular lenses, and surgical instruments. They can also be found in orthopedic implants, bone cement, and other medical-grade plastics. Acrylic resins are biocompatible, meaning they do not typically cause adverse reactions when in contact with living tissue. However, they may release small amounts of potentially toxic chemicals over time, so their long-term safety in certain applications is still a subject of ongoing research.

A partial denture, removable is a type of dental prosthesis used when one or more natural teeth remain in the upper or lower jaw. It is designed to replace the missing teeth and rest on the remaining teeth and gums for support. This type of denture can be removed by the patient for cleaning and while sleeping. It is typically made of acrylic resin, metal, or a combination of both, and is custom-fabricated to fit the individual's mouth for comfort and functionality.

A complete lower denture is a removable dental appliance that replaces all of the natural teeth in the lower jaw. It is typically made of plastic or a combination of plastic and metal, and it rests on the gums and bones of the lower jaw. The denture is designed to look and function like natural teeth, allowing the individual to speak, chew, and smile confidently. Complete lower dentures are custom-made for each patient to ensure a comfortable and secure fit.

Denture cleansers are specialized cleaning products designed to clean and maintain dentures, which are removable artificial teeth. These products typically contain active ingredients that help break down and remove dental plaque, tartar, stains, and odors that can accumulate on dentures over time. Denture cleansers come in various forms, including:

1. Denture cleaning tablets or powders: Users dissolve these products in water and soak their dentures in the solution to clean them.
2. Denture cleaning pastes or gels: These are applied directly to the dentures and then brushed off with a soft toothbrush.
3. Denture cleaning foams: These are sprayed onto the dentures and then rinsed off after a short period of time.

It is essential to follow the manufacturer's instructions when using denture cleansers, as some products may not be suitable for specific types of dentures or materials. Additionally, it is recommended to clean dentures daily with a soft toothbrush and warm water, even when using denture cleansers, to ensure optimal oral hygiene.

Denture liners are soft, flexible materials that are used to reline or temporarily repair the fitting surface of a denture. They are intended to improve the comfort and fit of the denture by filling in any spaces or irregularities between the denture and the gum tissue. Denture liners are typically made from materials such as silicone, polyphosphazine, or acrylic and can be added to the denture by a dental professional in the dental office. They may need to be replaced or re-adjusted periodically to maintain a proper fit.

Denture retention, in the field of dentistry, refers to the ability of a dental prosthesis (dentures) to maintain its position and stability within the mouth. It is achieved through various factors including the fit, shape, and design of the denture, as well as the use of dental implants or adhesives. Proper retention helps ensure comfortable and effective chewing, speaking, and smiling for individuals who have lost some or all of their natural teeth.

Denture rebasing is a dental procedure that involves replacing the entire base of a denture without changing the clinical crown heights of the artificial teeth. This process is typically done when the existing base material has worn out, become unstable, or when there are significant changes in the oral tissues and jawbone structure due to resorption.

The procedure involves removing the existing artificial teeth from the denture, modifying them if necessary, and then placing them onto a new pink acrylic base that fits accurately over the remaining dental ridges. The rebasing material is usually made of a durable, flexible, and comfortable polymer like polymethyl methacrylate (PMMA).

Rebasing can help improve the fit, stability, and comfort of a denture without the need for replacing the entire appliance. It is essential to have regular dental check-ups and follow proper oral hygiene practices to ensure the longevity and effectiveness of the denture rebasing treatment.

Stomatitis, denture is a specific type of stomatitis (inflammation of the mouth) that is caused by ill-fitting or poorly cleaned dentures. It is also known as denture-induced stomatitis. The condition is often characterized by redness and soreness of the oral mucosa, particularly under the denture-bearing area.

The continuous irritation and friction from the denture, combined with the accumulation of microorganisms such as Candida albicans (yeast), can lead to this inflammatory response. Denture wearers, especially those who have been using their dentures for an extended period or those with poor oral hygiene, are at a higher risk of developing denture-induced stomatitis.

To manage this condition, it is essential to maintain good oral hygiene, clean the dentures thoroughly, and ensure a proper fit. In some cases, antifungal medications may be prescribed to treat any underlying Candida infection. Regular dental check-ups are also crucial for early detection and prevention of stomatitis, denture.

An artificial tooth, also known as a dental prosthesis or dental restoration, is a device made to replace a missing tooth or teeth. It can be removable, such as a denture, or fixed, such as a bridge or an implant-supported crown. The material used to make artificial teeth can vary and may include porcelain, resin, metal, or a combination of these materials. Its purpose is to restore function, aesthetics, and/or speech, and it is custom-made to fit the individual's mouth for comfort and effectiveness.

Polymethyl methacrylate (PMMA) is a type of synthetic resin that is widely used in the medical field due to its biocompatibility and versatility. It is a transparent, rigid, and lightweight material that can be easily molded into different shapes and forms. Here are some of the medical definitions of PMMA:

1. A biocompatible acrylic resin used in various medical applications such as bone cement, intraocular lenses, dental restorations, and drug delivery systems.
2. A type of synthetic material that is used as a bone cement to fix prosthetic joint replacements and vertebroplasty for the treatment of spinal fractures.
3. A transparent and shatter-resistant material used in the manufacture of medical devices such as intravenous (IV) fluid bags, dialyzer housings, and oxygenators.
4. A drug delivery system that can be used to administer drugs locally or systemically, such as intraocular sustained-release drug implants for the treatment of chronic eye diseases.
5. A component of dental restorations such as fillings, crowns, and bridges due to its excellent mechanical properties and esthetic qualities.

Overall, PMMA is a versatile and valuable material in the medical field, with numerous applications that take advantage of its unique properties.

Dental materials are substances that are used in restorative dentistry, prosthodontics, endodontics, orthodontics, and preventive dentistry to restore or replace missing tooth structure, improve the function and esthetics of teeth, and protect the oral tissues from decay and disease. These materials can be classified into various categories based on their physical and chemical properties, including metals, ceramics, polymers, composites, cements, and alloys.

Some examples of dental materials include:

1. Amalgam: a metal alloy used for dental fillings that contains silver, tin, copper, and mercury. It is strong, durable, and resistant to wear but has been controversial due to concerns about the toxicity of mercury.
2. Composite: a tooth-colored restorative material made of a mixture of glass or ceramic particles and a bonding agent. It is used for fillings, veneers, and other esthetic dental treatments.
3. Glass ionomer cement: a type of cement used for dental restorations that releases fluoride ions and helps prevent tooth decay. It is often used for fillings in children's teeth or as a base under crowns and bridges.
4. Porcelain: a ceramic material used for dental crowns, veneers, and other esthetic restorations. It is strong, durable, and resistant to staining but can be brittle and prone to fracture.
5. Gold alloy: a metal alloy used for dental restorations that contains gold, copper, and other metals. It is highly biocompatible, corrosion-resistant, and malleable but can be expensive and less esthetic than other materials.
6. Acrylic resin: a type of polymer used for dental appliances such as dentures, night guards, and orthodontic retainers. It is lightweight, flexible, and easy to modify but can be less durable than other materials.

The choice of dental material depends on various factors, including the location and extent of the restoration, the patient's oral health status, their esthetic preferences, and their budget. Dental professionals must consider these factors carefully when selecting the appropriate dental material for each individual case.

In the context of medicine, particularly in physical therapy and rehabilitation, "pliability" refers to the quality or state of being flexible or supple. It describes the ability of tissues, such as muscles or fascia (connective tissue), to stretch, deform, and adapt to forces applied upon them without resistance or injury. Improving pliability can help enhance range of motion, reduce muscle stiffness, promote circulation, and alleviate pain. Techniques like soft tissue mobilization, myofascial release, and stretching are often used to increase pliability in clinical settings.

I'm happy to help! However, I must clarify that "materials testing" is not a medical term per se. It is a term used in various fields, including engineering and materials science, to describe the process of subjecting materials to different tests to evaluate their properties and performance under various conditions.

In the context of medical devices or implants, materials testing may refer to the evaluation of the physical and mechanical properties of materials used in their construction. These tests can include assessments of strength, durability, biocompatibility, and other factors that are critical to ensuring the safety and efficacy of medical devices.

Medical device manufacturers must comply with regulatory standards for materials testing to ensure that their products meet specific requirements for performance, safety, and quality. These standards may vary depending on the type of device, its intended use, and the country or region in which it will be marketed and sold.

Methyl Methacrylate (MMA) is not a medical term itself, but it is a chemical compound that is used in various medical applications. Therefore, I will provide you with a general definition and some of its medical uses.

Methyl methacrylate (C5H8O2) is an organic compound, specifically an ester of methacrylic acid and methanol. It is a colorless liquid at room temperature, with a characteristic sweet odor. MMA is primarily used in the production of polymethyl methacrylate (PMMA), a transparent thermoplastic often referred to as acrylic glass or plexiglass.

In the medical field, PMMA has several applications:

1. Intraocular lenses: PMMA is used to create artificial intraocular lenses (IOLs) that replace natural lenses during cataract surgery. These IOLs are biocompatible and provide excellent optical clarity.
2. Bone cement: MMA is mixed with a powdered polymer to form polymethyl methacrylate bone cement, which is used in orthopedic and trauma surgeries for fixation of prosthetic joint replacements, vertebroplasty, and kyphoplasty.
3. Dental applications: PMMA is used in the fabrication of dental crowns, bridges, and dentures due to its excellent mechanical properties and biocompatibility.
4. Surgical implants: PMMA is also used in various surgical implants, such as cranial plates and reconstructive surgery, because of its transparency and ability to be molded into specific shapes.

Dental stress analysis is a method used in dentistry to evaluate the amount and distribution of forces that act upon teeth and surrounding structures during biting, chewing, or other functional movements. This analysis helps dental professionals identify areas of excessive stress or strain that may lead to dental problems such as tooth fracture, mobility, or periodontal (gum) disease. By identifying these areas, dentists can develop treatment plans to reduce the risk of dental issues and improve overall oral health.

Dental stress analysis typically involves the use of specialized equipment, such as strain gauges, T-scan occlusal analysis systems, or finite element analysis software, to measure and analyze the forces that act upon teeth during various functional movements. The results of the analysis can help dentists determine the best course of treatment, which may include adjusting the bite, restoring damaged teeth with crowns or fillings, or fabricating custom-made oral appliances to redistribute the forces evenly across the dental arch.

Overall, dental stress analysis is an important tool in modern dentistry that helps dental professionals diagnose and treat dental problems related to occlusal (bite) forces, ensuring optimal oral health and function for their patients.

A partial denture that is fixed, also known as a fixed partial denture or a dental bridge, is a type of prosthetic device used to replace one or more missing teeth. Unlike removable partial dentures, which can be taken out of the mouth for cleaning and maintenance, fixed partial dentures are permanently attached to the remaining natural teeth or implants surrounding the gap left by the missing tooth or teeth.

A typical fixed partial denture consists of an artificial tooth (or pontic) that is fused to one or two crowns on either side. The crowns are cemented onto the prepared surfaces of the adjacent teeth, providing a stable and secure attachment for the pontic. This creates a natural-looking and functional replacement for the missing tooth or teeth.

Fixed partial dentures offer several advantages over removable options, including improved stability, comfort, and aesthetics. However, they typically require more extensive preparation of the adjacent teeth, which may involve removing some healthy tooth structure to accommodate the crowns. Proper oral hygiene is essential to maintain the health of the supporting teeth and gums, as well as the longevity of the fixed partial denture. Regular dental check-ups and professional cleanings are also necessary to ensure the continued success of this type of restoration.

A partial denture is a type of removable dental prosthesis that replaces one or more missing teeth on a jaw while the remaining natural teeth remain intact. It is designed to fit securely and comfortably among the existing teeth, filling in the gaps created by tooth loss and helping to restore normal biting, chewing, and speaking functions.

Partial dentures typically consist of an acrylic base that resembles the color of gum tissue, with artificial teeth attached to it. The base is often held in place by metal or plastic clasps that hook around the existing teeth for support. In some cases, precision attachments may be used instead of clasps for a more discreet and natural-looking fit.

Partial dentures can help prevent several dental issues associated with tooth loss, such as drifting, tilting, or rotating of adjacent teeth, which can lead to further tooth loss and bite problems over time. They also help maintain the overall shape and structure of the face, preventing sagging or collapsing of facial muscles that may occur due to missing teeth.

Regular dental check-ups are essential for individuals wearing partial dentures to ensure proper fit, function, and oral health. Dentists will often examine the denture, the remaining natural teeth, and the gums to monitor any changes or issues and make necessary adjustments as needed.

Denture repair is the process of fixing or mending broken, damaged, or ill-fitting dentures to restore their functionality, comfort, and appearance. This may involve repairing fractured denture bases or teeth, rebasing or relining dentures to ensure a better fit, or adding new teeth to replace those that have been lost due to decay or breakage. Denture repairs are typically performed by dental professionals, such as dentists or prosthodontists, who have the necessary training and expertise to provide high-quality and safe repairs. It is essential to have damaged dentures repaired promptly to prevent further damage and potential harm to the oral tissues.

Dental polishing is a procedure in dentistry that is performed to smooth and clean the surfaces of teeth after professional dental cleaning (prophylaxis), restoration, or other dental treatments. It is usually done using a slow-speed handpiece with a soft, rubber cup attached to it, which holds a polishing paste or a slurry of pumice and water. The polishing paste may contain an abrasive agent, fluoride, or a flavoring agent. The dental professional moves the handpiece in a circular motion over the tooth surface to remove stains, plaque, and minor surface roughness, leaving the teeth smooth and shiny. Dental polishing helps to prevent the buildup of plaque and tartar, reduce the risk of decay and gum disease, and improve the overall oral hygiene and aesthetics of the teeth.

The dental casting technique is a method used in dentistry to create accurate replicas or reproductions of teeth and oral structures. This process typically involves the following steps:

1. Making an impression: A dental professional takes an impression of the patient's teeth and oral structures using a special material, such as alginate or polyvinyl siloxane. The impression material captures the precise shape and contours of the teeth and surrounding tissues.
2. Pouring the cast: The impression is then filled with a casting material, such as gypsum-based stone, which hardens to form a positive model or replica of the teeth and oral structures. This model is called a dental cast or die.
3. Examining and modifying the cast: The dental cast can be used for various purposes, such as analyzing the patient's bite, planning treatment, fabricating dental appliances, or creating study models for teaching or research purposes. Dental professionals may also modify the cast to simulate various conditions or treatments.
4. Replicating the process: In some cases, multiple casts may be made from a single impression, allowing dental professionals to create identical replicas of the patient's teeth and oral structures. This can be useful for comparing changes over time, creating duplicate appliances, or sharing information with other dental professionals involved in the patient's care.

The dental casting technique is an essential part of many dental procedures, as it enables dentists to accurately assess, plan, and implement treatments based on the unique characteristics of each patient's oral structures.

Methyl Methacrylates (MMA) are a family of synthetic materials that are commonly used in the medical field, particularly in orthopedic and dental applications. Medically, MMA is often used as a bone cement to fix prosthetic implants, such as artificial hips or knees, into place during surgeries.

Methyl methacrylates consist of a type of acrylic resin that hardens when mixed with a liquid catalyst. This property allows it to be easily molded and shaped before it sets, making it ideal for use in surgical procedures where precise positioning is required. Once hardened, MMA forms a strong, stable bond with the bone, helping to secure the implant in place.

It's important to note that while MMA is widely used in medical applications, there have been concerns about its safety in certain situations. For example, some studies have suggested that high levels of methyl methacrylate fumes released during the setting process may be harmful to both patients and surgical staff. Therefore, appropriate precautions should be taken when using MMA-based products in medical settings.

Polymerization is not exclusively a medical term, but it is widely used in the field of medical sciences, particularly in areas such as biochemistry and materials science. In a broad sense, polymerization refers to the process by which small molecules, known as monomers, chemically react and join together to form larger, more complex structures called polymers.

In the context of medical definitions:

Polymerization is the chemical reaction where multiple repeating monomer units bind together covalently (through strong chemical bonds) to create a long, chain-like molecule known as a polymer. This process can occur naturally or be induced artificially through various methods, depending on the type of monomers and desired polymer properties.

In biochemistry, polymerization plays an essential role in forming important biological macromolecules such as DNA, RNA, proteins, and polysaccharides. These natural polymers are built from specific monomer units—nucleotides for nucleic acids (DNA and RNA), amino acids for proteins, and sugars for polysaccharides—that polymerize in a highly regulated manner to create the final functional structures.

In materials science, synthetic polymers are often created through polymerization for various medical applications, such as biocompatible materials, drug delivery systems, and medical devices. These synthetic polymers can be tailored to have specific properties, such as degradation rates, mechanical strength, or hydrophilicity/hydrophobicity, depending on the desired application.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

A dental prosthesis known as an "overlay denture" is a type of removable restoration that covers and restores only the occlusal (biting) surfaces of the natural teeth, while leaving the remaining tooth structure and surrounding soft tissues intact. This type of denture is typically used when there are still sufficient healthy tooth structures present to provide support and stability for the prosthesis.

Overlay dentures can be made from various materials such as acrylic resin or metal alloys, and they can be fabricated to fit over the natural teeth with precision, ensuring optimal comfort and functionality. These dentures are designed to improve the patient's ability to chew and speak properly, while also enhancing their smile and overall oral esthetics.

It is important to note that proper dental hygiene and regular check-ups with a dental professional are essential for maintaining good oral health and ensuring the longevity of an overlay denture.

A partial denture that is fixed and bonded with resin is a type of dental restoration used when one or more natural teeth are missing in a jaw. Unlike removable partial dentures, fixed partial dentures, also known as "dental bridges," are permanently attached to the remaining teeth or implants for support.

In this specific type, the false tooth (or pontic) is connected to the adjacent teeth with the help of resin-bonded retainers, which are made from a special dental resin material. The retainers are bonded to the back surfaces of the supporting teeth, providing a secure and stable fit for the replacement tooth.

Resin-bonded fixed partial dentures offer several advantages, including minimally invasive preparation, lower cost compared to other types of bridges, and quicker installation time. However, they may not be suitable for all cases, especially when supporting teeth have large fillings or significant crowning. A dental professional can determine the most appropriate treatment option based on an individual's oral health needs and preferences.

I'm sorry for any confusion, but "microwaves" is not a term typically used in medical definitions. Microwaves are a form of electromagnetic radiation with wavelengths ranging from one meter to one millimeter; they are commonly used in communication devices and home appliances such as microwave ovens. If you have any questions related to health or medicine, please provide more context so I can give you a more accurate response.

In medical terms, "immersion" is not a term with a specific clinical definition. However, in general terms, immersion refers to the act of placing something or someone into a liquid or environment completely. In some contexts, it may be used to describe a type of wound care where the wound is covered completely with a medicated dressing or solution. It can also be used to describe certain medical procedures or therapies that involve submerging a part of the body in a liquid, such as hydrotherapy.

Methacrylates are a group of chemical compounds that contain the methacrylate functional group, which is a vinyl group (CH2=CH-) with a carbonyl group (C=O) at the β-position. This structure gives them unique chemical and physical properties, such as low viscosity, high reactivity, and resistance to heat and chemicals.

In medical terms, methacrylates are used in various biomedical applications, such as dental restorative materials, bone cements, and drug delivery systems. For example, methacrylate-based resins are commonly used in dentistry for fillings, crowns, and bridges due to their excellent mechanical properties and adhesion to tooth structures.

However, there have been concerns about the potential toxicity of methacrylates, particularly their ability to release monomers that can cause allergic reactions, irritation, or even mutagenic effects in some individuals. Therefore, it is essential to use these materials with caution and follow proper handling and safety protocols.

Dental restoration failure refers to the breakdown or loss of functionality of a dental restoration, which is a procedure performed to restore the function, integrity, and morphology of a tooth that has been damaged due to decay, trauma, or wear. The restoration can include fillings, crowns, veneers, bridges, and implants. Failure of dental restorations can occur due to various reasons such as recurrent decay, fracture, poor fit, or material failure, leading to further damage or loss of the tooth.

Dental disinfectants are antimicrobial agents that are used to inactivate or destroy microorganisms present on dental instruments, equipment, and surfaces in order to prevent the transmission of infectious diseases. These disinfectants are intended to reduce the number of pathogens to a level that is considered safe and poses minimal risk of infection.

Dental disinfectants can be classified based on their spectrum of activity, which ranges from low-level disinfectants that are effective against vegetative bacteria, fungi, and viruses, to high-level disinfectants that also inactivate bacterial spores. The choice of a particular dental disinfectant depends on the intended use, the level of contamination, and the type of microorganisms present.

It is important to follow the manufacturer's instructions for use, including the recommended contact time, concentration, and method of application, to ensure the effectiveness of dental disinfectants. Additionally, proper handling, storage, and disposal of these agents are essential to prevent harm to patients, staff, and the environment.

"Wettability" is not a term that has a specific medical definition. It is a term that is more commonly used in the fields of chemistry, physics, and materials science to describe how well a liquid spreads on a solid surface. In other words, it refers to the ability of a liquid to maintain contact with a solid surface, which can have implications for various medical applications such as the design of medical devices or the study of biological surfaces. However, it is not a term that would typically be used in a clinical medical context.

Silanes are a group of chemical compounds that contain silicon and hydrogen. The general formula for silanes is Si_xH_(2x+2), where x is a positive integer. Silanes are named after their parent compound, silane (SiH4), which contains one silicon atom and four hydrogen atoms.

Silanes are colorless and highly flammable gases at room temperature. They are typically prepared by the reaction of metal silicides with acids or by the reduction of halogenated silanes. Silanes have a variety of industrial applications, including as intermediates in the production of silicon-based materials such as semiconductors and polymers.

In medical contexts, silanes are not typically used directly. However, some silane-containing compounds have been investigated for their potential therapeutic uses. For example, some organosilanes have been shown to have antimicrobial properties and may be useful as disinfectants or in the development of medical devices. Other silane-containing materials have been studied for their potential use in drug delivery systems or as imaging agents in diagnostic procedures.

It is important to note that some silanes can be hazardous if not handled properly, and they should only be used by trained professionals in a controlled environment. Exposure to silanes can cause irritation to the eyes, skin, and respiratory tract, and prolonged exposure can lead to more serious health effects.

Dental bonding is a cosmetic dental procedure in which a tooth-colored resin material (a type of plastic) is applied and hardened with a special light, which ultimately "bonds" the material to the tooth to improve its appearance. According to the American Dental Association (ADA), dental bonding can be used for various purposes, including:

1. Repairing chipped or cracked teeth
2. Improving the appearance of discolored teeth
3. Closing spaces between teeth
4. Protecting a portion of the tooth's root that has been exposed due to gum recession
5. Changing the shape and size of teeth

Dental bonding is generally a quick and painless procedure, often requiring little to no anesthesia. The surface of the tooth is roughened and conditioned to help the resin adhere properly. Then, the resin material is applied, molded, and smoothed to the desired shape. A special light is used to harden the material, which typically takes only a few minutes. Finally, the bonded material is trimmed, shaped, and polished to match the surrounding teeth.

While dental bonding can be an effective solution for minor cosmetic concerns, it may not be as durable or long-lasting as other dental restoration options like veneers or crowns. The lifespan of a dental bonding procedure typically ranges from 3 to 10 years, depending on factors such as oral habits, location of the bonded tooth, and proper care. Regular dental checkups and good oral hygiene practices can help extend the life of dental bonding.

Dental clasps are a component of dental restorations, such as removable partial dentures (RPDs), that help to retain and stabilize the appliance in the mouth. They are typically made of metal wires or plastic materials and are designed to fit around specific teeth to hold the denture securely in place.

There are several types of dental clasps, including:

1. Adams clasp: A wire clasp that wraps around a tooth and has a circular loop that fits over the crown of the tooth.
2. Akers clasp: A wire clasp that hooks around the back of a molar tooth and has a flexible arm that extends forward to engage with another tooth.
3. C-clasp: A wire clasp that forms a "C" shape and wraps around the side of a tooth, with the open end facing away from the RPD.
4. I-bar clasp: A plastic or metal clasp that is shaped like an "I" and fits over the front of a tooth, with the two ends extending backward to engage with other teeth.
5. Ring clasp: A wire clasp that forms a complete circle around a tooth and has a small gap where it can be hooked onto the RPD.

Dental clasps are designed to be strong enough to hold the RPD in place, but flexible enough to allow for easy removal when necessary. They should fit comfortably and securely without causing damage to the teeth or gums. Regular dental check-ups and adjustments can help ensure that dental clasps continue to function properly over time.

Dental models are replicas of a patient's teeth and surrounding oral structures, used in dental practice and education. They are typically created using plaster or other materials that harden to accurately reproduce the shape and position of each tooth, as well as the contours of the gums and palate. Dental models may be used for a variety of purposes, including treatment planning, creating custom-fitted dental appliances, and teaching dental students about oral anatomy and various dental procedures. They provide a tactile and visual representation that can aid in understanding and communication between dentists, patients, and other dental professionals.

Dental technology refers to the application of science and engineering in dentistry to prevent, diagnose, and treat dental diseases and conditions. It involves the use of various equipment, materials, and techniques to improve oral health and enhance the delivery of dental care. Some examples of dental technology include:

1. Digital radiography: This technology uses digital sensors instead of traditional X-ray films to produce images of the teeth and supporting structures. It provides higher quality images, reduces radiation exposure, and allows for easier storage and sharing of images.
2. CAD/CAM dentistry: Computer-aided design and computer-aided manufacturing (CAD/CAM) technology is used to design and fabricate dental restorations such as crowns, bridges, and veneers in a single appointment. This technology allows for more precise and efficient production of dental restorations.
3. Dental implants: These are artificial tooth roots that are placed into the jawbone to replace missing teeth. They provide a stable foundation for dental restorations such as crowns, bridges, and dentures.
4. Intraoral cameras: These are small cameras that can be inserted into the mouth to capture detailed images of the teeth and gums. These images can be used for diagnosis, treatment planning, and patient education.
5. Laser dentistry: Dental lasers are used to perform a variety of procedures such as cavity preparation, gum contouring, and tooth whitening. They provide more precise and less invasive treatments compared to traditional dental tools.
6. 3D printing: This technology is used to create dental models, surgical guides, and custom-made dental restorations. It allows for more accurate and efficient production of dental products.

Overall, dental technology plays a crucial role in modern dentistry by improving the accuracy, efficiency, and quality of dental care.

I believe there may be some confusion in your question. "Nylons" is a common term for a type of synthetic fiber often used in clothing, hosiery, and other textile applications. It is not a medical term or concept. If you have any questions related to medical terminology or concepts, I would be happy to try and help clarify!

Siloxanes are a group of synthetic compounds that contain repeating units of silicon-oxygen-silicon (Si-O-Si) bonds, often combined with organic groups such as methyl or ethyl groups. They are widely used in various industrial and consumer products due to their unique properties, including thermal stability, low surface tension, and resistance to water and heat.

In medical terms, siloxanes have been studied for their potential use in medical devices and therapies. For example, some siloxane-based materials have been developed for use as coatings on medical implants, such as catheters and stents, due to their ability to reduce friction and prevent bacterial adhesion.

However, it's worth noting that exposure to high levels of certain types of siloxanes has been linked to potential health effects, including respiratory irritation and reproductive toxicity. Therefore, appropriate safety measures should be taken when handling these compounds in a medical or industrial setting.

Base pairing is a specific type of chemical bonding that occurs between complementary base pairs in the nucleic acid molecules DNA and RNA. In DNA, these bases are adenine (A), thymine (T), guanine (G), and cytosine (C). Adenine always pairs with thymine via two hydrogen bonds, while guanine always pairs with cytosine via three hydrogen bonds. This precise base pairing is crucial for the stability of the double helix structure of DNA and for the accurate replication and transcription of genetic information. In RNA, uracil (U) takes the place of thymine and pairs with adenine.

Chromium alloys are materials made by combining chromium with other metals, such as nickel, cobalt, or iron. The addition of chromium to these alloys enhances their properties, making them resistant to corrosion and high temperatures. These alloys have a wide range of applications in various industries, including automotive, aerospace, and medical devices.

Chromium alloys can be classified into two main categories: stainless steels and superalloys. Stainless steels are alloys that contain at least 10.5% chromium by weight, which forms a passive oxide layer on the surface of the material, protecting it from corrosion. Superalloys, on the other hand, are high-performance alloys designed to operate in extreme environments, such as jet engines and gas turbines. They contain significant amounts of chromium, along with other elements like nickel, cobalt, and molybdenum.

Chromium alloys have several medical applications due to their excellent properties. For instance, they are used in surgical instruments, dental implants, and orthopedic devices because of their resistance to corrosion and biocompatibility. Additionally, some chromium alloys exhibit superelasticity, a property that allows them to return to their original shape after being deformed, making them suitable for use in stents and other medical devices that require flexibility and durability.

I'm sorry for any confusion, but "Glass" is not a medical term. Glass is a non-crystalline amorphous solid that is often transparent and has various uses in everyday life, including medical devices and equipment. If you have any questions related to medical terminology or concepts, please provide them, and I'll be happy to help.

Carbon inorganic compounds are chemical substances that contain carbon combined with one or more elements other than hydrogen. These compounds include oxides of carbon such as carbon monoxide (CO) and carbon dioxide (CO2), metal carbides like calcium carbide (CaC2) and silicon carbide (SiC), and carbonates like calcium carbonate (CaCO3) and sodium carbonate (Na2CO3).

Unlike organic compounds, which are based on carbon-hydrogen bonds, inorganic carbon compounds do not contain hydrocarbon structures. Instead, they feature carbon bonded to elements such as nitrogen, oxygen, sulfur, or halogens. Inorganic carbon compounds have diverse physical and chemical properties and play important roles in various industrial applications, as well as in biological systems.

Tensile strength is a material property that measures the maximum amount of tensile (pulling) stress that a material can withstand before failure, such as breaking or fracturing. It is usually measured in units of force per unit area, such as pounds per square inch (psi) or pascals (Pa). In the context of medical devices or biomaterials, tensile strength may be used to describe the mechanical properties of materials used in implants, surgical tools, or other medical equipment. High tensile strength is often desirable in these applications to ensure that the material can withstand the stresses and forces it will encounter during use.

"Edentulous jaw" is a medical term used to describe a jaw that is missing all of its natural teeth. The term "edentulous" is derived from the Latin word "edentulus," which means "without teeth." This condition can affect either the upper jaw (maxilla) or the lower jaw (mandible), or both, resulting in a significant impact on an individual's ability to eat, speak, and maintain proper facial structure.

Edentulism is often associated with aging, as tooth loss becomes more common in older adults due to factors like gum disease, tooth decay, and injury. However, it can also affect younger individuals who have lost their teeth due to various reasons. Dental professionals typically recommend the use of dentures or dental implants to restore oral function and aesthetics for patients with edentulous jaws.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Calcium sulfate is an inorganic compound with the chemical formula CaSO4. It is a white, odorless, and tasteless solid that is insoluble in alcohol but soluble in water. Calcium sulfate is commonly found in nature as the mineral gypsum, which is used in various industrial applications such as plaster, wallboard, and cement.

In the medical field, calcium sulfate may be used as a component of some pharmaceutical products or as a surgical material. For example, it can be used as a bone void filler to promote healing after bone fractures or surgeries. Calcium sulfate is also used in some dental materials and medical devices.

It's important to note that while calcium sulfate has various industrial and medical uses, it should not be taken as a dietary supplement or medication without the guidance of a healthcare professional.

Denture identification marking refers to the process or practice of inscribing a unique identifier, such as a name, initials, or a serial number, on a dental prosthesis (dentures). This is done to help identify and distinguish one person's dentures from another's, particularly in situations where multiple patients may require dentures or in cases of confusion or loss. It can also assist in the return of lost or misplaced dentures to their rightful owner.

The marking can be done using various methods such as engraving, laser etching, or casting the identifier into the denture base material during its manufacture. However, it is important to comply with local regulations and professional guidelines when adding identification marks to dental prostheses, as there may be restrictions on what information can be included and how it should be displayed.

Dental alloys are materials made by combining two or more metals to be used in dental restorations, such as crowns, bridges, fillings, and orthodontic appliances. These alloys can be classified into three main categories based on their composition:

1. Precious Alloys: Predominantly composed of precious metals like gold, platinum, palladium, and silver. They are highly corrosion-resistant, biocompatible, and durable, making them suitable for long-term use in dental restorations. Common examples include high noble (gold) alloys and noble alloys.
2. Base Metal Alloys: Contain primarily non-precious metals like nickel, chromium, cobalt, and beryllium. They are more affordable than precious alloys but may cause allergic reactions or sensitivities in some patients. Common examples include nickel-chromium alloys and cobalt-chromium alloys.
3. Castable Glass Ionomer Alloys: A combination of glass ionomer cement (GIC) powder and metal liquid, which can be cast into various dental restorations. They have the advantage of being both strong and adhesive to tooth structure but may not be as durable as other alloy types.

Each type of dental alloy has its unique properties and applications, depending on the specific clinical situation and patient needs. Dental professionals consider factors like cost, biocompatibility, mechanical properties, and esthetics when selecting an appropriate alloy for a dental restoration.

Photoelectron Spectroscopy (PES) is not typically considered a medical definition, but it is a term used in physical and analytical chemistry. However, I can provide a definition for you:

Photoelectron Spectroscopy (PES) is a technique used to study the electronic structure of atoms, molecules, and solids by irradiating them with photons (usually from a laser or a synchrotron light source) and measuring the kinetic energy of the ejected electrons. The technique provides information about the energy levels of the electrons in the sample, which can be used to determine its chemical composition, bonding, and electronic structure. PES is a valuable tool in surface science, materials research, and environmental analysis.

The Elastic Modulus, also known as Young's modulus, is a measure of the stiffness of a material. It is defined as the ratio of stress (force per unit area) to strain (partial deformation or change in length per unit length) in the elastic range of deformation of a material. In other words, it measures how much a material will deform (change in length or size) when subjected to a given amount of force. A higher elastic modulus indicates that a material is stiffer and less likely to deform, while a lower elastic modulus indicates that a material is more flexible and will deform more easily. The elastic modulus is typically expressed in units of Pascals (Pa) or Gigapascals (GPa).

I'm sorry for any confusion, but "Polyurethanes" are not a medical term. They are a type of polymer that is used in a variety of industrial and consumer products, including foam cushions, insulation, and packaging materials. Polyurethanes are created through a chemical reaction between diisocyanates and polyols. While they have many applications in the medical field, such as in the production of medical devices and equipment, they are not a medical term themselves.

"Edentulous mouth" is a medical term used to describe a condition where an individual has no remaining natural teeth in either their upper or lower jaw, or both. This situation can occur due to various reasons such as tooth decay, gum disease, trauma, or aging. Dentists often recommend dental prosthetics like dentures to restore oral function and aesthetics for individuals with edentulous mouths.

Fluorocarbon polymers are a type of synthetic polymeric material that contain carbon-fluorine bonds. These materials are known for their chemical inertness, high stability, and resistance to heat, chemicals, and water. They are often used in various medical applications such as in the coating of medical devices, implants, and drug delivery systems due to their biocompatibility and non-reactive properties.

Fluorocarbon polymers can be classified into two main categories: perfluoropolymers and fluoropolymers. Perfluoropolymers contain only carbon and fluorine atoms, while fluoropolymers contain other elements such as hydrogen, oxygen, or nitrogen in addition to carbon and fluorine.

Examples of fluorocarbon polymers used in medical applications include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene tetrafluoroethylene (ETFE). These materials have a wide range of properties that make them useful in various medical applications, such as low coefficient of friction, high electrical resistance, and excellent chemical resistance.

Polycarboxylate cement is not a medical term, but rather refers to a type of hydraulic cement used in construction and engineering. It's a specialized kind of cement that contains polycarboxylate-based high-range water-reducing admixtures (HRWRAs). These admixtures improve the workability and durability of concrete by reducing the amount of water needed for mixing while maintaining or even enhancing the strength of the final product.

The use of polycarboxylate cement is not directly related to medical practice or patient care, but it may have indirect implications in medical fields such as construction safety, environmental health, and industrial medicine.

Microbiological processes refer to the various metabolic activities and reactions carried out by microorganisms, including bacteria, fungi, viruses, and other microscopic life forms. These processes are crucial for maintaining the balance of ecosystems and play a significant role in biogeochemical cycles, such as nitrogen fixation, carbon cycling, and decomposition.

In medical contexts, microbiological processes can have both beneficial and harmful effects on human health. For example, some microorganisms help break down food in the gut, synthesize vitamins, and protect against harmful pathogens. However, other microorganisms can cause infectious diseases by producing toxins, invading tissues, or disrupting normal physiological functions.

Examples of microbiological processes with medical relevance include:

1. Fermentation: the anaerobic breakdown of organic compounds, such as sugars and amino acids, resulting in the production of acid, gas, or alcohol. This process is used by some bacteria to produce energy and can also be exploited for industrial purposes, such as the production of yogurt, cheese, and other fermented foods.
2. Nitrogen fixation: the conversion of atmospheric nitrogen into ammonia, which can then be converted into proteins and other essential nutrients for living organisms. Some bacteria, such as Rhizobia spp., can fix nitrogen in the roots of leguminous plants, providing them with a natural fertilizer.
3. Pathogenesis: the ability of certain microorganisms to cause disease by invading host tissues, evading the immune system, and producing harmful substances such as toxins or enzymes.
4. Biofilm formation: the creation of complex communities of microorganisms that adhere to surfaces and are protected by a matrix of extracellular polymeric substances (EPS). Biofilms can cause chronic infections, resist antibiotics, and contribute to the persistence of pathogens in medical devices and implants.
5. Antibiotic resistance: the ability of microorganisms to survive exposure to antibiotics or other antimicrobial agents. This process can occur through various mechanisms, such as enzymatic degradation of antibiotics, modification of drug targets, or active efflux of drugs from cells.
6. Virulence factors: the specific molecules produced by microorganisms that contribute to their ability to cause disease. These factors can include adhesins, invasins, toxins, and other substances that help pathogens evade host defenses, colonize tissues, or damage host cells.
7. Horizontal gene transfer: the exchange of genetic material between different species or strains of microorganisms, often through processes such as conjugation, transformation, or transduction. This process can facilitate the spread of antibiotic resistance genes, virulence factors, and other traits that enhance the fitness and pathogenicity of microbes.
8. Probiotics: live microorganisms that confer health benefits to the host when administered in adequate amounts. Probiotics can help maintain a healthy gut microbiota, prevent or treat gastrointestinal disorders, and modulate the immune system.
9. Vaccines: preparations containing antigens or other components of pathogens that stimulate an immune response and provide protection against subsequent infection. Vaccines can be based on whole inactivated or attenuated microorganisms, purified proteins or polysaccharides, DNA or RNA sequences, or recombinant viral vectors.
10. Microbiome: the collective genetic material of all the microorganisms present in a particular environment, such as the human body. The microbiome plays important roles in maintaining health, modulating immunity, and influencing metabolism, but can also contribute to disease when it becomes imbalanced or disrupted.

Silicon compounds refer to chemical substances that contain the element silicon (Si) combined with other elements. Silicon is a Group 14 semimetal in the periodic table, and it often forms compounds through covalent bonding. The most common silicon compound is silicon dioxide (SiO2), also known as silica, which is found in nature as quartz, sand, and other minerals.

Silicon can form compounds with many other elements, including hydrogen, oxygen, halogens, sulfur, nitrogen, and carbon. For example:

* Silanes (SiHn) are a series of silicon-hydrogen compounds where n ranges from 1 to 6.
* Silicones are synthetic polymers made up of alternating silicon and oxygen atoms with organic groups attached to the silicon atoms.
* Silicates are a class of minerals that contain silicon, oxygen, and one or more metal cations. They have a wide range of structures and uses, including as building materials, ceramics, and glass.
* Siloxanes are a group of compounds containing alternating silicon-oxygen bonds with organic groups attached to the silicon atoms.

Silicon compounds have various applications in industry, medicine, and daily life. For instance, silicones are used in medical devices such as breast implants, contact lenses, and catheters due to their biocompatibility and flexibility. Silicates are found in pharmaceuticals, cosmetics, and food additives. Silicon-based materials are also used in dental restorations, bone cement, and drug delivery systems.

Plasticizers are substances added to polymers or plastics to increase their flexibility, workability, and durability. They achieve this by reducing the intermolecular forces between polymer chains, thereby lowering the glass transition temperature (Tg) of the material. This allows the plastic to remain flexible even at lower temperatures. Common plasticizers include phthalates, adipates, and epoxy compounds. It is important to note that some plasticizers can have potential health concerns, and their use may be regulated in certain applications.

A dental abutment is a component of a dental implant restoration that connects the implant to the replacement tooth or teeth. It serves as a support structure and is attached to the implant, which is surgically placed in the jawbone. The abutment provides a stable foundation for the placement of a crown, bridge, or denture, depending on the patient's individual needs.

Dental abutments can be made from various materials such as titanium, zirconia, or other biocompatible materials. They come in different shapes and sizes to accommodate the specific requirements of each implant case. The selection of an appropriate dental abutment is crucial for ensuring a successful and long-lasting dental implant restoration.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

Edentulous partially refers to a condition where some teeth are missing in the jaw but not all. In other words, it is a state of having fewer teeth than normal for that particular dental arch. A dental arch can be either the upper or lower jaw.

In medical terms, "edentulous" means lacking teeth. So, when we say "jaw, edentulous, partially," it indicates a jaw that has some missing teeth. This condition is different from being completely edentulous, which refers to having no teeth at all in the dental arch.

Being edentulous or partially edentulous can impact an individual's ability to eat, speak, and affect their overall quality of life. Dental professionals often recommend various treatment options, such as dentures, bridges, or implants, to restore functionality and aesthetics for those who are partially edentulous.

Shear strength is a property of a material that describes its ability to withstand forces that cause internal friction and sliding of one portion of the material relative to another. In the context of human tissues, shear strength is an important factor in understanding how tissues respond to various stresses and strains, such as those experienced during physical activities or injuries.

For example, in the case of bones, shear strength is a critical factor in determining their ability to resist fractures under different types of loading conditions. Similarly, in soft tissues like ligaments and tendons, shear strength plays a crucial role in maintaining the integrity of these structures during movement and preventing excessive deformation or injury.

It's worth noting that measuring the shear strength of human tissues can be challenging due to their complex structure and anisotropic properties. As such, researchers often use specialized techniques and equipment to quantify these properties under controlled conditions in the lab.

In the context of medical terminology, "hardness" is not a term that has a specific or standardized definition. It may be used in various ways to describe the firmness or consistency of a tissue, such as the hardness of an artery or tumor, but it does not have a single authoritative medical definition.

In some cases, healthcare professionals may use subjective terms like "hard," "firm," or "soft" to describe their tactile perception during a physical examination. For example, they might describe the hardness of an enlarged liver or spleen by comparing it to the feel of their knuckles when gently pressed against the abdomen.

However, in other contexts, healthcare professionals may use more objective measures of tissue stiffness or elasticity, such as palpation durometry or shear wave elastography, which provide quantitative assessments of tissue hardness. These techniques can be useful for diagnosing and monitoring conditions that affect the mechanical properties of tissues, such as liver fibrosis or cancer.

Therefore, while "hardness" may be a term used in medical contexts to describe certain physical characteristics of tissues, it does not have a single, universally accepted definition.

A dental prosthesis that is supported by dental implants is an artificial replacement for one or more missing teeth. It is a type of dental restoration that is anchored to the jawbone using one or more titanium implant posts, which are surgically placed into the bone. The prosthesis is then attached to the implants, providing a stable and secure fit that closely mimics the function and appearance of natural teeth.

There are several types of implant-supported dental prostheses, including crowns, bridges, and dentures. A single crown may be used to replace a single missing tooth, while a bridge or denture can be used to replace multiple missing teeth. The specific type of prosthesis used will depend on the number and location of the missing teeth, as well as the patient's individual needs and preferences.

Implant-supported dental prostheses offer several advantages over traditional removable dentures, including improved stability, comfort, and functionality. They also help to preserve jawbone density and prevent facial sagging that can occur when teeth are missing. However, they do require a surgical procedure to place the implants, and may not be suitable for all patients due to factors such as bone density or overall health status.

Dental etching is a dental procedure that involves the use of a chemical agent, such as phosphoric or maleic acid, to create microscopic roughness on the surface of teeth. This process is typically used to prepare the tooth enamel for the application of bonding agents, such as dental adhesives and composite resins, which are used in various restorative and cosmetic dental procedures, such as fillings, veneers, and crowns.

During dental etching, the chemical agent is applied to the tooth surface for a specific amount of time, usually between 15-60 seconds, depending on the strength of the acid and the desired level of etching. The acid dissolves the minerals in the enamel, creating small pores or irregularities that increase the surface area and improve the bonding of the restorative material to the tooth. After etching, the tooth is rinsed with water and dried, and the bonding agent is applied and cured to create a strong and durable bond between the restoration and the tooth.

Dental etching is a safe and effective procedure when performed by a trained dental professional. However, over-etching or improper use of the acid can weaken the tooth structure and lead to sensitivity or other complications. Therefore, it is important to follow proper techniques and guidelines for dental etching to ensure optimal outcomes and patient satisfaction.

'Adhesiveness' is a term used in medicine and biology to describe the ability of two surfaces to stick or adhere to each other. In medical terms, it often refers to the property of tissues or cells to adhere to one another, as in the case of scar tissue formation where healing tissue adheres to adjacent structures.

In the context of microbiology, adhesiveness can refer to the ability of bacteria or other microorganisms to attach themselves to surfaces, such as medical devices or human tissues, which can lead to infection and other health problems. Adhesives used in medical devices, such as bandages or wound dressings, also have adhesiveness properties that allow them to stick to the skin or other surfaces.

Overall, adhesiveness is an important property in many areas of medicine and biology, with implications for wound healing, infection control, and the design and function of medical devices.

Benzoyl peroxide is a medication used in the treatment of acne. It is available in various forms, including creams, gels, and washes. Benzoyl peroxide works by reducing the amount of bacteria on the skin and helping to unclog pores. It is typically applied to the affected area once or twice a day.

Benzoyl peroxide can cause side effects such as dryness, redness, and irritation of the skin. It is important to follow the directions for use carefully and start with a lower concentration if you are new to using this medication. If you experience severe or persistent side effects, it is recommended that you speak with a healthcare provider.

It is also important to note that benzoyl peroxide can bleach clothing and hair, so it is best to apply it carefully and allow it to fully absorb into the skin before dressing or coming into contact with fabrics.

In the context of medical terminology, 'color' is not defined specifically with a unique meaning. Instead, it generally refers to the characteristic or appearance of something, particularly in relation to the color that a person may observe visually. For instance, doctors may describe the color of a patient's skin, eyes, hair, or bodily fluids to help diagnose medical conditions or monitor their progression.

For example, jaundice is a yellowing of the skin and whites of the eyes that can indicate liver problems, while cyanosis refers to a bluish discoloration of the skin and mucous membranes due to insufficient oxygen in the blood. Similarly, doctors may describe the color of stool or urine to help diagnose digestive or kidney issues.

Therefore, 'color' is not a medical term with a specific definition but rather a general term used to describe various visual characteristics of the body and bodily fluids that can provide important diagnostic clues for healthcare professionals.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

Disinfection is the process of eliminating or reducing harmful microorganisms from inanimate objects and surfaces through the use of chemicals, heat, or other methods. The goal of disinfection is to reduce the number of pathogens to a level that is considered safe for human health. Disinfection is an important step in preventing the spread of infectious diseases in healthcare settings, food processing facilities, and other environments where there is a risk of infection transmission.

It's important to note that disinfection is not the same as sterilization, which is the complete elimination of all microorganisms, including spores. Disinfection is generally less effective than sterilization but is often sufficient for most non-critical surfaces and objects. The choice between disinfection and sterilization depends on the level of risk associated with the item or surface being treated and the intended use of that item or surface.

Self-curing of dental resins, also known as auto-curing or self-cure, refers to the ability of certain dental materials to undergo polymerization and harden without the need for external light activation. This process is typically achieved through a chemical reaction between two components within the material that generates heat and causes the resin to solidify.

Self-curing dental resins are commonly used in dentistry for various applications, such as filling cavities or creating dental restorations like crowns and bridges. These materials offer several advantages over light-cured resins, including easier placement in hard-to-reach areas and reduced dependence on specialized equipment.

However, self-curing resins may have some limitations compared to light-cured alternatives, such as longer setting times, potential for overheating during the curing process, and less precise control over the degree of polymerization.

A dental impression technique is a method used in dentistry to create a detailed and accurate replica of a patient's teeth and oral structures. This is typically accomplished by using an impression material, which is inserted into a tray and then placed in the patient's mouth. The material sets or hardens, capturing every detail of the teeth, gums, and other oral tissues.

There are several types of dental impression techniques, including:

1. Irreversible Hydrocolloid Impression Material: This is a common type of impression material that is made of alginate powder mixed with water. It is poured into a tray and inserted into the patient's mouth. Once set, it is removed and used to create a cast or model of the teeth.

2. Reversible Hydrocolloid Impression Material: This type of impression material is similar to irreversible hydrocolloid, but it can be reused. It is made of agar and water and is poured into a tray and inserted into the patient's mouth. Once set, it is removed and reheated to be used again.

3. Polyvinyl Siloxane (PVS) Impression Material: This is a two-part impression material that is made of a base and a catalyst. It is poured into a tray and inserted into the patient's mouth. Once set, it is removed and used to create a cast or model of the teeth. PVS is known for its high accuracy and detail.

4. Addition Silicone Impression Material: This is another two-part impression material that is made of a base and a catalyst. It is similar to PVS, but it has a longer working time and sets slower. It is often used for full-arch impressions or when there is a need for a very detailed impression.

5. Elastomeric Impression Material: This is a type of impression material that is made of a rubber-like substance. It is poured into a tray and inserted into the patient's mouth. Once set, it is removed and used to create a cast or model of the teeth. Elastomeric impression materials are known for their high accuracy and detail.

The dental impression technique is an essential part of many dental procedures, including creating crowns, bridges, dentures, and orthodontic appliances. The accuracy and detail of the impression can significantly impact the fit and function of the final restoration or appliance.

Compressive strength is a measure of the maximum compressive load that a material or structure can withstand before failure or deformation. It is typically expressed in units of pressure, such as pounds per square inch (psi) or megapascals (MPa). Compressive strength is an important property in the design and analysis of structures and materials, as it helps to ensure their safety and durability under compressive loads.

In medical terminology, compressive strength may refer to the ability of biological tissues, such as bone or cartilage, to withstand compressive forces without deforming or failing. For example, osteoporosis is a condition characterized by reduced bone density and compressive strength, which can increase the risk of fractures in affected individuals. Similarly, degenerative changes in articular cartilage can lead to decreased compressive strength and joint pain or stiffness.

Dental occlusion, balanced, refers to the ideal alignment and contact between the upper and lower teeth when the jaw is closed. In a balanced occlusion, the forces of bite are distributed evenly across all of the teeth, minimizing the risk of damage or excessive wear. This is often the goal of dental restorations and orthodontic treatment.

A denture precision attachment is a type of dental prosthesis that uses a precise and secure connection between the denture and the remaining natural teeth or implants. This connection is made using a specially designed male and female attachment system, which allows for easy removal and cleaning of the denture while providing stability and support during use.

The male component of the attachment is typically incorporated into the denture, while the female component is attached to the natural tooth or implant. The two components are designed to fit together precisely, creating a strong and stable connection that helps to improve the function, comfort, and aesthetics of the denture.

Precision attachments are often used in cases where there are insufficient teeth or bone structure to support a traditional denture, or where patients desire a more secure and stable fit than can be achieved with a standard denture adhesive. They may also be used in conjunction with dental implants to provide additional support and retention for the denture.

Overall, precision attachments offer a reliable and effective solution for patients who require replacement of missing teeth, and can help to improve their quality of life by restoring their ability to eat, speak, and smile with confidence.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

Titanium is not a medical term, but rather a chemical element (symbol Ti, atomic number 22) that is widely used in the medical field due to its unique properties. Medically, it is often referred to as a biocompatible material used in various medical applications such as:

1. Orthopedic implants: Titanium and its alloys are used for making joint replacements (hips, knees, shoulders), bone plates, screws, and rods due to their high strength-to-weight ratio, excellent corrosion resistance, and biocompatibility.
2. Dental implants: Titanium is also commonly used in dental applications like implants, crowns, and bridges because of its ability to osseointegrate, or fuse directly with bone tissue, providing a stable foundation for replacement teeth.
3. Cardiovascular devices: Titanium alloys are used in the construction of heart valves, pacemakers, and other cardiovascular implants due to their non-magnetic properties, which prevent interference with magnetic resonance imaging (MRI) scans.
4. Medical instruments: Due to its resistance to corrosion and high strength, titanium is used in the manufacturing of various medical instruments such as surgical tools, needles, and catheters.

In summary, Titanium is a chemical element with unique properties that make it an ideal material for various medical applications, including orthopedic and dental implants, cardiovascular devices, and medical instruments.

Prosthodontics is a specialized branch of dentistry that focuses on the diagnosis, restoration, and replacement of missing or damaged teeth. A prosthodontist is a dental professional who has completed additional training beyond dental school in this field, learning advanced techniques for creating and placing various types of dental prostheses, such as:

1. Dental crowns: Artificial restorations that cover damaged or weakened teeth to restore their function and appearance.
2. Dental bridges: Fixed or removable appliances used to replace one or more missing teeth by connecting artificial teeth to adjacent natural teeth or implants.
3. Complete dentures: Removable appliances that replace all the teeth in an arch, resting on the gums and supported by the underlying bone structure.
4. Partial dentures: Removable appliances that replace some missing teeth, typically attached to remaining natural teeth with clasps or precision attachments.
5. Dental implants: Titanium screws that are surgically placed into the jawbone to serve as anchors for crowns, bridges, or dentures, providing a more secure and stable solution for tooth replacement.
6. Maxillofacial prosthetics: Custom-made devices used to restore or improve the function and appearance of facial structures affected by congenital defects, trauma, or surgical removal of tumors.

Prosthodontists work closely with other dental specialists, such as oral surgeons, periodontists, and orthodontists, to develop comprehensive treatment plans for their patients, ensuring optimal functional and aesthetic outcomes.

Composite resins, also known as dental composites or filling materials, are a type of restorative material used in dentistry to restore the function, integrity, and morphology of missing tooth structure. They are called composite resins because they are composed of a combination of materials, including a resin matrix (usually made of bisphenol A-glycidyl methacrylate or urethane dimethacrylate) and filler particles (commonly made of silica, quartz, or glass).

The composite resins are widely used in modern dentistry due to their excellent esthetic properties, ease of handling, and ability to bond directly to tooth structure. They can be used for a variety of restorative procedures, including direct and indirect fillings, veneers, inlays, onlays, and crowns.

Composite resins are available in various shades and opacities, allowing dentists to match the color and translucency of natural teeth closely. They also have good wear resistance, strength, and durability, making them a popular choice for both anterior and posterior restorations. However, composite resins may be prone to staining over time and may require more frequent replacement compared to other types of restorative materials.

Scanning electron microscopy (SEM) is a type of electron microscopy that uses a focused beam of electrons to scan the surface of a sample and produce a high-resolution image. In SEM, a beam of electrons is scanned across the surface of a specimen, and secondary electrons are emitted from the sample due to interactions between the electrons and the atoms in the sample. These secondary electrons are then detected by a detector and used to create an image of the sample's surface topography. SEM can provide detailed images of the surface of a wide range of materials, including metals, polymers, ceramics, and biological samples. It is commonly used in materials science, biology, and electronics for the examination and analysis of surfaces at the micro- and nanoscale.

Mastication is the medical term for the process of chewing food. It's the first step in digestion, where food is broken down into smaller pieces by the teeth, making it easier to swallow and further digest. The act of mastication involves not only the physical grinding and tearing of food by the teeth but also the mixing of the food with saliva, which contains enzymes that begin to break down carbohydrates. This process helps to enhance the efficiency of digestion and nutrient absorption in the subsequent stages of the digestive process.

Resin cements are dental materials used to bond or cement restorations, such as crowns, bridges, and orthodontic appliances, to natural teeth or implants. They are called "resin" cements because they are made of a type of synthetic resin material that can be cured or hardened through the use of a chemical reaction or exposure to light.

Resin cements typically consist of three components: a base, a catalyst, and a filler. The base and catalyst are mixed together to create a putty-like consistency, which is then applied to the restoration or tooth surface. Once the cement is in place, it is exposed to light or allowed to chemically cure, which causes it to harden and form a strong bond between the restoration and the tooth.

Resin cements are known for their excellent adhesive properties, as well as their ability to withstand the forces of biting and chewing. They can also be color-matched to natural teeth, making them an aesthetically pleasing option for dental restorations. However, they may not be suitable for all patients or situations, and it is important for dental professionals to carefully consider the specific needs and conditions of each patient when choosing a cement material.

A phase transition in the context of medicine and physiology often refers to the transformation of a substance or matter from one state to another within the body, typically in relation to temperature or pressure changes. However, I couldn't find a widely accepted medical definition for "phase transition."

In physics and chemistry, a phase transition is a process where a thermodynamic system changes from one phase or state of matter to another, such as:

1. Solid to liquid (melting)
2. Liquid to gas (vaporization)
3. Gas to liquid (condensation)
4. Solid to gas (sublimation)
5. Changes between different crystalline structures of the same substance (polymorphic phase transitions)

While not a direct medical definition, these concepts are relevant in various biochemical and physiological processes, such as protein folding, cell membrane fluidity, and temperature regulation in the body.

In medicine, "absorption" refers to the process by which substances, including nutrients, medications, or toxins, are taken up and assimilated into the body's tissues or bloodstream after they have been introduced into the body via various routes (such as oral, intravenous, or transdermal).

The absorption of a substance depends on several factors, including its chemical properties, the route of administration, and the presence of other substances that may affect its uptake. For example, some medications may be better absorbed when taken with food, while others may require an empty stomach for optimal absorption.

Once a substance is absorbed into the bloodstream, it can then be distributed to various tissues throughout the body, where it may exert its effects or be metabolized and eliminated by the body's detoxification systems. Understanding the process of absorption is crucial in developing effective medical treatments and determining appropriate dosages for medications.

In medicine, elasticity refers to the ability of a tissue or organ to return to its original shape after being stretched or deformed. This property is due to the presence of elastic fibers in the extracellular matrix of the tissue, which can stretch and recoil like rubber bands.

Elasticity is an important characteristic of many tissues, particularly those that are subjected to repeated stretching or compression, such as blood vessels, lungs, and skin. For example, the elasticity of the lungs allows them to expand and contract during breathing, while the elasticity of blood vessels helps maintain normal blood pressure by allowing them to expand and constrict in response to changes in blood flow.

In addition to its role in normal physiology, elasticity is also an important factor in the diagnosis and treatment of various medical conditions. For example, decreased elasticity in the lungs can be a sign of lung disease, while increased elasticity in the skin can be a sign of aging or certain genetic disorders. Medical professionals may use techniques such as pulmonary function tests or skin biopsies to assess elasticity and help diagnose these conditions.

Tooth preparation in prosthodontics refers to the process of altering the clinical crown of a tooth or teeth to receive a restoration, such as a crown, veneer, or bridge. This procedure involves removing a portion of the enamel and dentin to create a suitable foundation for the prosthetic device. The preparation aims to achieve proper retention, resistance form, and marginal fit, ensuring the successful integration and longevity of the restoration. The process may also include the management of tooth structure loss due to decay, trauma, or wear, and the establishment of harmonious occlusion with the opposing teeth.

Dental restoration wear refers to the progressive loss of structure and function of a dental restoration, such as a filling or crown, due to wear and tear over time. This can be caused by factors such as chewing, grinding, or clenching of teeth, as well as chemical dissolution from acidic foods and drinks. The wear can lead to changes in the shape and fit of the restoration, which may result in discomfort, sensitivity, or even failure of the restoration. Regular dental check-ups are important for monitoring dental restorations and addressing any issues related to wear before they become more serious.

A dental articulator is a mechanical device that is used in dentistry to simulate the movement and relationship of the upper and lower jaws (maxilla and mandible). It is essentially a hinge-like instrument that helps dental professionals replicate the patient's unique jaw movements and create dental restorations, such as crowns, bridges, or dentures, which fit accurately and comfortably.

Dental articulators come in various designs and complexities, but they generally consist of an upper and lower portion that represent the maxilla and mandible, respectively. These portions are connected by an adjustable arm, called a condylar element, which mimics the temporomandibular joint (TMJ) movement. This allows for the simulation of different jaw movements, such as opening, closing, protrusion, and lateral excursions.

By using a dental articulator, dentists can precisely design, adjust, and verify the fit, form, and function of dental restorations before placing them in the patient's mouth. This helps ensure optimal occlusal (bite) relationships, improved aesthetics, and increased patient comfort and satisfaction.

A partial, temporary denture is a removable dental appliance that is used to replace one or more missing teeth on a temporary basis. It is also known as an "interim" or "transitional" partial denture. This type of denture is typically made from acrylic resin and may be held in place with clasps that fit around remaining natural teeth or with the use of dental adhesives.

Partial, temporary dentures are used for a variety of reasons, such as to maintain the position of existing teeth while a patient waits for a permanent restoration, to allow gum tissue to heal after tooth extraction, or to provide an aesthetic solution for missing teeth during the healing process. They may also be used as a long-term solution for individuals who cannot tolerate a full denture or who are not candidates for other types of dental restorations.

It is important to note that while temporary partial dentures can help improve function and aesthetics, they are not meant to be a permanent replacement for missing teeth. A dental professional should be consulted for a comprehensive evaluation and treatment plan to address long-term oral health needs.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Silicon dioxide is not a medical term, but a chemical compound with the formula SiO2. It's commonly known as quartz or sand and is not something that would typically have a medical definition. However, in some cases, silicon dioxide can be used in pharmaceutical preparations as an excipient (an inactive substance that serves as a vehicle or medium for a drug) or as a food additive, often as an anti-caking agent.

In these contexts, it's important to note that silicon dioxide is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). However, exposure to very high levels of respirable silica dust, such as in certain industrial settings, can increase the risk of lung disease, including silicosis.

Disinfectants are antimicrobial agents that are applied to non-living objects to destroy or irreversibly inactivate microorganisms, but not necessarily their spores. They are different from sterilizers, which kill all forms of life, and from antiseptics, which are used on living tissue. Disinfectants work by damaging the cell wall or membrane of the microorganism, disrupting its metabolism, or interfering with its ability to reproduce. Examples of disinfectants include alcohol, bleach, hydrogen peroxide, and quaternary ammonium compounds. They are commonly used in hospitals, laboratories, and other settings where the elimination of microorganisms is important for infection control. It's important to use disinfectants according to the manufacturer's instructions, as improper use can reduce their effectiveness or even increase the risk of infection.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Dental deposits, also known as dental plaque or calculus, are accumulations of bacteria and other substances on the surface of teeth. Plaque is a soft, sticky film that constantly forms on the teeth due to the presence of bacteria in the mouth. When plaque is not removed regularly through brushing and flossing, it can harden into a rough, crusty deposit called calculus or tartar.

Calculus can form above and below the gum line and can cause inflammation and irritation of the gums, leading to gum disease if left untreated. Dental deposits can also contribute to tooth decay, bad breath, and other oral health problems. Regular dental checkups and cleanings are necessary to remove dental deposits and prevent further buildup.

A dental prosthesis is a device that replaces one or more missing teeth or parts of teeth to correct deficiencies in chewing ability, speech, and aesthetics. It can be removable or fixed (permanent) and can be made from various materials such as acrylic resin, porcelain, metal alloys, or a combination of these. Examples of dental prostheses include dentures, bridges, crowns, and implants.

'Candida albicans' is a species of yeast that is commonly found in the human body, particularly in warm and moist areas such as the mouth, gut, and genital region. It is a part of the normal microbiota and usually does not cause any harm. However, under certain conditions like a weakened immune system, prolonged use of antibiotics or steroids, poor oral hygiene, or diabetes, it can overgrow and cause infections known as candidiasis. These infections can affect various parts of the body including the skin, nails, mouth (thrush), and genital area (yeast infection).

The medical definition of 'Candida albicans' is:

A species of yeast belonging to the genus Candida, which is commonly found as a commensal organism in humans. It can cause opportunistic infections when there is a disruption in the normal microbiota or when the immune system is compromised. The overgrowth of C. albicans can lead to various forms of candidiasis, such as oral thrush, vaginal yeast infection, and invasive candidiasis.

The skull base is the lower part of the skull that forms the floor of the cranial cavity and the roof of the facial skeleton. It is a complex anatomical region composed of several bones, including the frontal, sphenoid, temporal, occipital, and ethmoid bones. The skull base supports the brain and contains openings for blood vessels and nerves that travel between the brain and the face or neck. The skull base can be divided into three regions: the anterior cranial fossa, middle cranial fossa, and posterior cranial fossa, which house different parts of the brain.

No FAQ available that match "denture bases"

No images available that match "denture bases"