A phylum of oxygenic photosynthetic bacteria comprised of unicellular to multicellular bacteria possessing CHLOROPHYLL a and carrying out oxygenic PHOTOSYNTHESIS. Cyanobacteria are the only known organisms capable of fixing both CARBON DIOXIDE (in the presence of light) and NITROGEN. Cell morphology can include nitrogen-fixing heterocysts and/or resting cells called akinetes. Formerly called blue-green algae, cyanobacteria were traditionally treated as ALGAE.
A form-genus of spherical to rod-shaped CYANOBACTERIA in the order Chroococcales. They contain THYLAKOIDS and are found in a wide range of habitats.
A form-genus of unicellular CYANOBACTERIA in the order Chroococcales. None of the strains fix NITROGEN, there are no gas vacuoles, and sheath layers are never produced.
A form-genus of CYANOBACTERIA in the order Chroococcales. Many species are planktonic and possess gas vacuoles.
A genus of CYANOBACTERIA consisting of trichomes that are untapered with conspicuous constrictions at cross-walls. A firm individual sheath is absent, but a soft covering is often present. Many species are known worldwide as major components of freshwater PLANKTON and also of many saline lakes. The species ANABAENA FLOS-AQUAE is responsible for acute poisonings of various animals.
Cyclic heptapeptides found in MICROCYSTIS and other CYANOBACTERIA. Hepatotoxic and carcinogenic effects have been noted. They are sometimes called cyanotoxins, which should not be confused with chemicals containing a cyano group (CN) which are toxic.
A form-genus of CYANOBACTERIA in the order Nostocales. Trichomes composed of spherical or ovoid vegetative cells along with heterocysts and akinetes. The species form symbiotic associations with a wide range of eukaryotes.
Light energy harvesting structures attached to the THYLAKOID MEMBRANES of CYANOBACTERIA and RED ALGAE. These multiprotein complexes contain pigments (PHYCOBILIPROTEINS) that transfer light energy to chlorophyll a.
The metal-free blue phycobilin pigment in a conjugated chromoprotein of blue-green algae. It functions as light-absorbing substance together with chlorophylls.
A genus of marine planktonic CYANOBACTERIA in the order PROCHLOROPHYTES. They lack PHYCOBILISOMES and contain divinyl CHLOROPHYLL, a and b.
The enrichment of a terrestrial or aquatic ECOSYSTEM by the addition of nutrients, especially nitrogen and phosphorus, that results in a superabundant growth of plants, ALGAE, or other primary producers. It can be a natural process or result from human activity such as agriculture runoff or sewage pollution. In aquatic ecosystems, an increase in the algae population is termed an algal bloom.
The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001)
Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES.
The relationships of groups of organisms as reflected by their genetic makeup.
A broad category of proteins that regulate the CIRCADIAN RHYTHM of an organism. Included here are proteins that transmit intracellular and intercellular signals in a chronological manner along with proteins that sense light and time-dependent changes in the environment such as the PHOTOPERIOD.
Water containing no significant amounts of salts, such as water from RIVERS and LAKES.
The metal-free red phycobilin pigment in a conjugated chromoprotein of red algae. It functions as a light-absorbing substance together with chlorophylls.
A form-genus of CYANOBACTERIA in the order Nostocales, characterized by thin trichomes, cylindrical akinetes, and terminal heterocysts.
Proteins found in any species of bacterium.
The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds.
Open chain tetrapyrroles that function as light harvesting chromophores in PHYCOBILIPROTEINS.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Free-floating minute organisms that are photosynthetic. The term is non-taxonomic and refers to a lifestyle (energy utilization and motility), rather than a particular type of organism. Most, but not all, are unicellular algae. Important groups include DIATOMS; DINOFLAGELLATES; CYANOBACTERIA; CHLOROPHYTA; HAPTOPHYTA; CRYPTOMONADS; and silicoflagellates.
A form-genus of filamentous CYANOBACTERIA in the order Nostocales. Its members can be planktonic or benthic and the trichomes are composed of disc-shaped vegetative cells.
A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN.
The salinated water of OCEANS AND SEAS that provides habitat for marine organisms.
That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range.
A genus of filamentous CYANOBACTERIA in the order Oscillatoriales. It is commonly found in freshwater environments, especially hot springs.
A large multisubunit protein complex that is found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to drive electron transfer reactions that result in either the reduction of NADP to NADPH or the transport of PROTONS across the membrane.
Plants of the division Rhodophyta, commonly known as red algae, in which the red pigment (PHYCOERYTHRIN) predominates. However, if this pigment is destroyed, the algae can appear purple, brown, green, or yellow. Two important substances found in the cell walls of red algae are AGAR and CARRAGEENAN. Some rhodophyta are notable SEAWEED (macroalgae).
A form-genus of unicellular coccoid to rod-shaped CYANOBACTERIA, in the order Chroococcales. Three different clusters of strains from diverse habitats are included.
Light harvesting proteins found in phycobilisomes.
Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms.
A form-genus of planktonic CYANOBACTERIA in the order Nostocales.
The functional hereditary units of BACTERIA.
The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
Processes by which phototrophic organisms use sunlight as their primary energy source. Contrasts with chemotrophic processes which do not depend on light and function in deriving energy from exogenous chemical sources. Photoautotrophy (or photolithotrophy) is the ability to use sunlight as energy to fix inorganic nutrients to be used for other organic requirements. Photoautotrophs include all GREEN PLANTS; GREEN ALGAE; CYANOBACTERIA; and green and PURPLE SULFUR BACTERIA. Photoheterotrophs or photoorganotrophs require a supply of organic nutrients for their organic requirements but use sunlight as their primary energy source; examples include certain PURPLE NONSULFUR BACTERIA. Depending on environmental conditions some organisms can switch between different nutritional modes (AUTOTROPHY; HETEROTROPHY; chemotrophy; or phototrophy) to utilize different sources to meet their nutrients and energy requirements.
Any of a group of plants formed by a symbiotic combination of a fungus with an algae or CYANOBACTERIA, and sometimes both. The fungal component makes up the bulk of the lichen and forms the basis for its name.
The genetic complement of a BACTERIA as represented in its DNA.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Membranous cisternae of the CHLOROPLAST containing photosynthetic pigments, reaction centers, and the electron-transport chain. Each thylakoid consists of a flattened sac of membrane enclosing a narrow intra-thylakoid space (Lackie and Dow, Dictionary of Cell Biology, 2nd ed). Individual thylakoids are interconnected and tend to stack to form aggregates called grana. They are found in cyanobacteria and all plants.
A genus of filamentous CYANOBACTERIA found in most lakes and ponds. It has been used as a nutritional supplement particularly due to its high protein content.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A phylum of photosynthetic EUKARYOTA bearing double membrane-bound plastids containing chlorophyll a and b. They comprise the classical green algae, and represent over 7000 species that live in a variety of primarily aquatic habitats. Only about ten percent are marine species, most live in freshwater.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Protein complexes that take part in the process of PHOTOSYNTHESIS. They are located within the THYLAKOID MEMBRANES of plant CHLOROPLASTS and a variety of structures in more primitive organisms. There are two major complexes involved in the photosynthetic process called PHOTOSYSTEM I and PHOTOSYSTEM II.
Four PYRROLES joined by one-carbon units linking position 2 of one to position 5 of the next. The conjugated bond system results in PIGMENTATION.
Complexes containing CHLOROPHYLL and other photosensitive molecules. They serve to capture energy in the form of PHOTONS and are generally found as components of the PHOTOSYSTEM I PROTEIN COMPLEX or the PHOTOSYSTEM II PROTEIN COMPLEX.
A compound that contains a reduced purine ring system but is not biosynthetically related to the purine alkaloids. It is a poison found in certain edible mollusks at certain times; elaborated by GONYAULAX and consumed by mollusks, fishes, etc. without ill effects. It is neurotoxic and causes RESPIRATORY PARALYSIS and other effects in MAMMALS, known as paralytic SHELLFISH poisoning.
Hydrocarbon-rich byproducts from the non-fossilized BIOMASS that are combusted to generate energy as opposed to fossilized hydrocarbon deposits (FOSSIL FUELS).
A species of ANABAENA that can form SPORES called akinetes.
Urobilin is a pigment formed from the breakdown of bilirubin, found in small amounts in urine and typically becoming more concentrated in dehydrated individuals or those with certain liver conditions.
An algal bloom where the algae produce powerful toxins that can kill fish, birds, and mammals, and ultimately cause illness in humans. The harmful bloom can also cause oxygen depletion in the water due to the death and decomposition of non-toxic algae species.
One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista.
The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other.
I'm sorry for any confusion, but the term "Atlantic Ocean" is a geographical term referring to one of the world's five oceans, covering approximately 20% of the Earth's surface and separating the continents of Europe and Africa to the east from those of North and South America to the west. It doesn't have a direct medical definition, as it is not a medical term.
Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).
Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms.
An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1.
Inland bodies of still or slowly moving FRESH WATER or salt water, larger than a pond, and supplied by RIVERS and streams.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
A plant family of the order Cycadales, class Cycadopsida, division CYCADOPHYTA.
I'm sorry for any confusion, but the term "Pacific Ocean" is a geographical term referring to the largest ocean in the world, covering an area of about 63,800,000 square miles (165,200,000 square kilometers), and it is not a medical term.
Diamino acids are a type of modified amino acids containing two amino groups, which can be found in various biological molecules and play important roles in various cellular processes, such as nitrogen fixation and protein synthesis.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
The processes by which organisms use simple inorganic substances such as gaseous or dissolved carbon dioxide and inorganic nitrogen as nutrient sources. Contrasts with heterotrophic processes which make use of organic materials as the nutrient supply source. Autotrophs can be either chemoautotrophs (or chemolithotrophs), largely ARCHAEA and BACTERIA, which also use simple inorganic substances for their metabolic energy reguirements; or photoautotrophs (or photolithotrophs), such as PLANTS and CYANOBACTERIA, which derive their energy from light. Depending on environmental conditions some organisms can switch between different nutritional modes (autotrophy; HETEROTROPHY; chemotrophy; or PHOTOTROPHY) to utilize different sources to meet their nutrient and energy requirements.
A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)
Self-replicating cytoplasmic organelles of plant and algal cells that contain pigments and may synthesize and accumulate various substances. PLASTID GENOMES are used in phylogenetic studies.
I'm sorry for any confusion, but "sculpture" is a term related to the visual arts and doesn't have a recognized medical definition. If you have any questions related to medicine or health, I'd be happy to try to help answer those!
The processes by which organisms utilize organic substances as their nutrient sources. Contrasts with AUTOTROPHIC PROCESSES which make use of simple inorganic substances as the nutrient supply source. Heterotrophs can be either chemoheterotrophs (or chemoorganotrophs) which also require organic substances such as glucose for their primary metabolic energy requirements, or photoheterotrophs (or photoorganotrophs) which derive their primary energy requirements from light. Depending on environmental conditions some organisms can switch between different nutritional modes (AUTOTROPHY; heterotrophy; chemotrophy; or PHOTOTROPHY) to utilize different sources to meet their nutrients and energy requirements.
A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration.
A type of climate characterized by insufficient moisture to support appreciable plant life. It is a climate of extreme aridity, usually of extreme heat, and of negligible rainfall. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA.
The absence of light.
The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs and stimuli, hormone secretion, sleeping, and feeding.
A copper-containing plant protein that is a fundamental link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
A pre-emergent herbicide.
A family of BACTERIOPHAGES and ARCHAEAL VIRUSES which are characterized by complex contractile tails.
A phylum of bacteria consisting of the purple bacteria and their relatives which form a branch of the eubacterial tree. This group of predominantly gram-negative bacteria is classified based on homology of equivalent nucleotide sequences of 16S ribosomal RNA or by hybridization of ribosomal RNA or DNA with 16S and 23S ribosomal RNA.
The study of the origin, structure, development, growth, function, genetics, and reproduction of organisms which inhabit the OCEANS AND SEAS.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
The variety of all native living organisms and their various forms and interrelationships.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
A great expanse of continuous bodies of salt water which together cover more than 70 percent of the earth's surface. Seas may be partially or entirely enclosed by land, and are smaller than the five oceans (Atlantic, Pacific, Indian, Arctic, and Antarctic).
The general name for a group of fat-soluble pigments found in green, yellow, and leafy vegetables, and yellow fruits. They are aliphatic hydrocarbons consisting of a polyisoprene backbone.
Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases.
Community of tiny aquatic PLANTS and ANIMALS, and photosynthetic BACTERIA, that are either free-floating or suspended in the water, with little or no power of locomotion. They are divided into PHYTOPLANKTON and ZOOPLANKTON.
The collective name for the republics of ESTONIA; LATVIA; and LITHUANIA on the eastern shore of the Baltic Sea. (Webster's New Geographical Dictionary, 1988, p111)
Ligases that catalyze the joining of adjacent AMINO ACIDS by the formation of carbon-nitrogen bonds between their carboxylic acid groups and amine groups.
A chain of islands, cays, and reefs in the West Indies, lying southeast of Florida and north of Cuba. It is an independent state, called also the Commonwealth of the Bahamas or the Bahama Islands. The name likely represents the local name Guanahani, itself of uncertain origin. (From Webster's New Geographical Dictionary, 1988, p106 & Room, Brewer's Dictionary of Names, 1992, p45)
Total mass of all the organisms of a given type and/or in a given area. (From Concise Dictionary of Biology, 1990) It includes the yield of vegetative mass produced from any given crop.
The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC).
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A form species of spore-producing CYANOBACTERIA, in the family Nostocaceae, order Nostocales. It is an important source of fixed NITROGEN in nutrient-depleted soils. When wet, it appears as a jelly-like mass.
The common name for the phylum of microscopic unicellular STRAMENOPILES. Most are aquatic, being found in fresh, brackish, and salt water. Diatoms are noted for the symmetry and sculpturing of their siliceous cell walls. They account for 40% of PHYTOPLANKTON, but not all diatoms are planktonic.
Flagellate EUKARYOTES, found mainly in the oceans. They are characterized by the presence of transverse and longitudinal flagella which propel the organisms in a rotating manner through the water. Dinoflagellida were formerly members of the class Phytomastigophorea under the old five kingdom paradigm.
A diverse genus of minute freshwater CRUSTACEA, of the suborder CLADOCERA. They are a major food source for both young and adult freshwater fish.
Geological formations consisting of underground enclosures with access from the surface.
The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics.
A division of GYMNOSPERMS which look like palm trees (ARECACEAE) but are more closely related to PINUS. They have large cones and large pinnate leaves and are sometimes called cycads, a term which may also refer more narrowly to cycadales or CYCAS.
A genus of PROCHLOROPHYTES containing unicellular, spherical bacteria without a mucilaginous sheath. They are found almost exclusively as extracellular symbionts of colonial ASCIDIANS on subtropical or tropical marine shores.
A plant genus of the family NYMPHAEACEAE. Members contain sesquiterpene thioalkaloids.
Sets of enzymatic reactions occurring in organisms and that form biochemicals by making new covalent bonds.
A republic consisting of a group of about 100 islands and islets in the western Pacific Ocean. Its capital is Koror. Under Spain it was administered as a part of the Caroline Islands but was sold to Germany in 1899. Seized by Japan in 1914, it was taken by the Allies in World War II in 1944. In 1947 it became part of the U.S. Trust Territory of the Pacific Islands, became internally self-governing in 1980, obtained independent control over its foreign policy (except defense) in 1986, and achieved total independence October 1, 1994. (Webster's New Geographical Dictionary, 1988, p915; telephone communication with Randy Flynn, Board on Geographic Names, 17 January 1995)
Substances or organisms which pollute the water or bodies of water. Use for water pollutants in general or those for which there is no specific heading.
N-methyl-8-azabicyclo[3.2.1]octanes best known for the ones found in PLANTS.
Minute free-floating animal organisms which live in practically all natural waters.
**I'm sorry for any confusion, but "Wyoming" is a U.S. state and not a term used in medical definitions.**
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)
A genus of colorless, filamentous bacteria in the family THIOTRICHACEAE whose cells contain inclusions of sulfur granules. When found in decaying seaweed beds and polluted water, its presence signals environmental degradation.
Enzymes that catalyze the cleavage of a carbon-nitrogen bond by means other than hydrolysis or oxidation. Subclasses are the AMMONIA-LYASES, the AMIDINE-LYASES, the amine-lyases, and other carbon-nitrogen lyases. EC 4.3.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
A class in the phylum CNIDARIA, comprised mostly of corals and anemones. All members occur only as polyps; the medusa stage is completely absent.
The intergenic DNA segments that are between the ribosomal RNA genes (internal transcribed spacers) and between the tandemly repeated units of rDNA (external transcribed spacers and nontranscribed spacers).
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The spectrum of different living organisms inhabiting a particular region, habitat, or biotope.
One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Acetylene is not typically considered a medical term, but rather a chemical compound (C2H2) commonly used in industrial and laboratory settings for its high energy content and reactivity, which may have various applications in medicine such as wound healing and surgical procedures, but it is not a medical diagnosis or disease.
Energy transmitted from the sun in the form of electromagnetic radiation.
Enzymes of the isomerase class that catalyze reactions in which a group can be regarded as eliminated from one part of a molecule, leaving a double bond, while remaining covalently attached to the molecule. (From Enzyme Nomenclature, 1992) EC 5.5.
The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Below normal weather temperatures that may lead to serious health problems. Extreme cold is a dangerous situation that can bring on health emergencies in susceptible people.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A phylum of anoxygenic, phototrophic bacteria including the family Chlorobiaceae. They occur in aquatic sediments, sulfur springs, and hot springs and utilize reduced sulfur compounds instead of oxygen.
A mass of organic or inorganic solid fragmented material, or the solid fragment itself, that comes from the weathering of rock and is carried by, suspended in, or dropped by air, water, or ice. It refers also to a mass that is accumulated by any other natural agent and that forms in layers on the earth's surface, such as sand, gravel, silt, mud, fill, or loess. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1689)
Planet that is the third in order from the sun. It is one of the four inner or terrestrial planets of the SOLAR SYSTEM.
Carbonic acid calcium salt (CaCO3). An odorless, tasteless powder or crystal that occurs in nature. It is used therapeutically as a phosphate buffer in hemodialysis patients and as a calcium supplement.
Removal of moisture from a substance (chemical, food, tissue, etc.).
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Proteins found in any species of algae.
A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.
Cytochromes of the c type that are involved in the transfer of electrons from CYTOCHROME B6F COMPLEX and PHOTOSYSTEM I.
The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel.
1,3,6,7-Tetramethyl-4,5-dicarboxyethyl-2,8-divinylbilenone. Biosynthesized from hemoglobin as a precursor of bilirubin. Occurs in the bile of AMPHIBIANS and of birds, but not in normal human bile or serum.
Cytochromes f are found as components of the CYTOCHROME B6F COMPLEX. They play important role in the transfer of electrons from PHOTOSYSTEM I to PHOTOSYSTEM II.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
Bornanes are a class of bicyclic organic compounds, specifically sesquiterpenes, that contain a bornane skeleton, consisting of a cyclohexane ring fused to a cyclopentane ring, and can be found in various essential oils and plants.
An enzyme found in bacteria. It catalyzes the reduction of FERREDOXIN and other substances in the presence of molecular hydrogen and is involved in the electron transport of bacterial photosynthesis.
Polyunsaturated side-chain quinone derivative which is an important link in the electron transport chain of green plants during the photosynthetic conversion of light energy by photophosphorylation into the potential energy of chemical bonds.
Genotypic differences observed among individuals in a population.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
The cycle by which the element carbon is exchanged between organic matter and the earth's physical environment.
The phylum of sponges which are sessile, suspension-feeding, multicellular animals that utilize flagellated cells called choanocytes to circulate water. Most are hermaphroditic. They are probably an early evolutionary side branch that gave rise to no other group of animals. Except for about 150 freshwater species, sponges are marine animals. They are a source of ALKALOIDS; STEROLS; and other complex molecules useful in medicine and biological research.
Poisoning from toxins present in bivalve mollusks that have been ingested. Four distinct types of shellfish poisoning are recognized based on the toxin involved.
Habitat of hot water naturally heated by underlying geologic processes. Surface hot springs have been used for BALNEOLOGY. Underwater hot springs are called HYDROTHERMAL VENTS.
A suborder of CRUSTACEA, order Diplostraca, comprising the water fleas. They are benthic filter feeders that consume PHYTOPLANKTON. The body is laterally compressed and enclosed in a bivalved carapace, from which the head extends.
Large natural streams of FRESH WATER formed by converging tributaries and which empty into a body of water (lake or ocean).
Linear TETRAPYRROLES that give a characteristic color to BILE including: BILIRUBIN; BILIVERDIN; and bilicyanin.
The first chemical element in the periodic table. It has the atomic symbol H, atomic number 1, and atomic weight [1.00784; 1.00811]. It exists, under normal conditions, as a colorless, odorless, tasteless, diatomic gas. Hydrogen ions are PROTONS. Besides the common H1 isotope, hydrogen exists as the stable isotope DEUTERIUM and the unstable, radioactive isotope TRITIUM.
A widely cultivated plant, native to Asia, having succulent, edible leaves eaten as a vegetable. (From American Heritage Dictionary, 1982)

A novel plasmid recombination mechanism of the marine cyanobacterium Synechococcus sp. PCC7002. (1/3405)

We describe a novel mechanism of site-specific recombination in the unicellular marine cyanobacterium Synechococcus sp. PCC7002. The specific recombination sites on the smallest plasmid pAQ1 were localized by studying the properties of pAQ1-derived shuttle-vectors. We found that a palindromic element, the core sequence of which is G(G/A)CGATCGCC, functions as a resolution site for site-specific plasmid recombination. Furthermore, site-directed mutagenesis analysis of the element show that the site-specific recombination in the cyanobacterium requires sequence specificity, symmetry in the core sequence and, in part, the spacing between the elements. Interestingly, this element is over-represented not only in pAQ1 and in the genome of the cyanobacterium, but also in the accumulated cyanobacterial sequences from Synechococcus sp. PCC6301, PCC7942, vulcanus and Synechocystis sp. PCC6803 within GenBank and EMBL databases. Thus, these findings strongly suggest that the site-specific recombination mechanism based on the palindromic element should be common in these cyanobacteria.  (+info)

Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea. (2/3405)

The predominant pool of organic matter on earth is derived from the biological reduction and assimilation of carbon dioxide gas, catalyzed primarily by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). By virtue of its capacity to use molecular oxygen as an alternative and competing gaseous substrate, the catalytic efficiency of RubisCO and the enzyme's ability to assimilate CO2 may be severely limited, with consequent environmental and agricultural effects. Recent genomic sequencing projects, however, have identified putative RubisCO genes from anoxic Archaea. In the present study, these potential RubisCO sequences, from Methanococcus jannaschii and Archaeoglobus fulgidus, were analyzed in order to ascertain whether such sequences might encode functional proteins. We also report the isolation and properties of recombinant RubisCO using sequences obtained from the obligately anaerobic hyperthermophilic methanogen M. jannaschii. This is the first description of an archaeal RubisCO sequence; this study also represents the initial characterization of a RubisCO molecule that has evolved in the absence of molecular oxygen. The enzyme was shown to be a homodimer whose deduced sequence, along with other recently obtained archaeal RubisCO sequences, differs substantially from those of known RubisCO molecules. The recombinant M. jannaschii enzyme has a somewhat low, but reasonable kcat, however, unlike previously isolated RubisCO molecules, this enzyme is very oxygen sensitive yet it is stable to hyperthermal temperatures and catalyzes the formation of the expected carboxylation product. Despite inhibition by oxygen, this unusual RubisCO still catalyzes a weak yet demonstrable oxygenase activity, with perhaps the lowest capacity for CO2/O2 discrimination ever encountered for any RubisCO.  (+info)

In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes. (3/3405)

Individual cyanobacterial cells are normally identified in environmental samples only on the basis of their pigmentation and morphology. However, these criteria are often insufficient for the differentiation of species. Here, a whole-cell hybridization technique is presented that uses horseradish peroxidase (HRP)-labeled, rRNA-targeted oligonucleotides for in situ identification of cyanobacteria. This indirect method, in which the probe-conferred enzyme has to be visualized in an additional step, was necessary since fluorescently monolabeled oligonucleotides were insufficient to overstain the autofluorescence of the target cells. Initially, a nonfluorescent detection assay was developed and successfully applied to cyanobacterial mats. Later, it was demonstrated that tyramide signal amplification (TSA) resulted in fluorescent signals far above the level of autofluorescence. Furthermore, TSA-based detection of HRP was more sensitive than that based on nonfluorescent substrates. Critical points of the assay, such as cell fixation and permeabilization, specificity, and sensitivity, were systematically investigated by using four oligonucleotides newly designed to target groups of cyanobacteria.  (+info)

Synechocystis sp. slr0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyltransferase and 'Nudix' hydrolase activities. (4/3405)

Synechocystis sp. slr0787 open reading frame encodes a 339 residue polypeptide with a predicted molecular mass of 38.5 kDa. Its deduced amino acid sequence shows extensive homology with known separate sequences of proteins from the thermophilic archaeon Methanococcus jannaschii. The N-terminal domain is highly homologous to the archaeal NMN adenylyltransferase, which catalyzes NAD synthesis from NMN and ATP. The C-terminal domain shares homology with the archaeal ADP-ribose pyrophosphatase, a member of the 'Nudix' hydrolase family. The slr0787 gene has been cloned into a T7-based vector for expression in Escherichia coli cells. The recombinant protein has been purified to homogeneity and demonstrated to possess both NMN adenylyltransferase and ADP-ribose pyrophosphatase activities. Both activities have been characterized and compared to their archaeal counterparts.  (+info)

Balanced regulation of expression of the gene for cytochrome cM and that of genes for plastocyanin and cytochrome c6 in Synechocystis. (5/3405)

The cytM gene for cytochrome cM was previously found in Synechocystis sp. PCC 6803. Northern blotting analysis revealed that the cytM gene was scarcely expressed under normal growth conditions but its expression was enhanced when cells were exposed to low temperature or high-intensity light. By contrast, the expression of the genes for cytochrome c6 and plastocyanin was suppressed at low temperature or under high-intensity light. These observations suggest that plastocyanin and/or cytochrome c6, which are dominant under non-stressed conditions, are replaced by cytochrome cM under the stress conditions.  (+info)

Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. (6/3405)

The kai gene cluster, which is composed of three genes, kaiA, kaiB and kaiC, is essential for the generation of circadian rhythms in the unicellular cyanobacterium Synechococcus sp. strain PCC 7942. Here we demonstrate the direct association of KaiA, KaiB and KaiC in yeast cells using the two-hybrid system, in vitro and in cyanobacterial cells. KaiC enhanced KaiA-KaiB interaction in vitro and in yeast cells, suggesting that the three Kai proteins were able to form a heteromultimeric complex. We also found that a long period mutation kaiA1 dramatically enhanced KaiA-KaiB interaction in vitro. Thus, direct protein-protein association among the Kai proteins may be a critical process in the generation of circadian rhythms in cyanobacteria.  (+info)

Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. (7/3405)

An improved electron density map of photosystem I (PSI) calculated at 4-A resolution yields a more detailed structural model of the stromal subunits PsaC, PsaD, and PsaE than previously reported. The NMR structure of the subunit PsaE of PSI from Synechococcus sp. PCC7002 (Falzone, C. J., Kao, Y.-H., Zhao, J., Bryant, D. A., and Lecomte, J. T. J. (1994) Biochemistry 33, 6052-6062) has been used as a model to interpret the region of the electron density map corresponding to this subunit. The spatial orientation with respect to other subunits is described as well as the possible interactions between the stromal subunits. A first model of PsaD consisting of a four-stranded beta-sheet and an alpha-helix is suggested, indicating that this subunit partly shields PsaC from the stromal side. In addition to the improvements on the stromal subunits, the structural model of the membrane-integral region of PSI is also extended. The current electron density map allows the identification of the N and C termini of the subunits PsaA and PsaB. The 11-transmembrane alpha-helices of these subunits can now be assigned uniquely to the hydrophobic segments identified by hydrophobicity analyses.  (+info)

Localization of two phylloquinones, QK and QK', in an improved electron density map of photosystem I at 4-A resolution. (8/3405)

An improved electron density map of photosystem I from Synechococcus elongatus calculated at 4-A resolution for the first time reveals a second phylloquinone molecule and thereby completes the set of cofactors constituting the electron transfer system of this iron-sulfur type photosynthetic reaction center: six chlorophyll a, two phylloquinones, and three Fe4S4 clusters. The location of the newly identified phylloquinone pair, the individual plane orientations of these molecules, and the resulting distances to other cofactors of the electron transfer system are discussed and compared with those determined by magnetic resonance techniques.  (+info)

Cyanobacteria, also known as blue-green algae, are a type of bacteria that obtain their energy through photosynthesis, similar to plants. They can produce oxygen and contain chlorophyll a, which gives them a greenish color. Some species of cyanobacteria can produce toxins that can be harmful to humans and animals if ingested or inhaled. They are found in various aquatic environments such as freshwater lakes, ponds, and oceans, as well as in damp soil and on rocks. Cyanobacteria are important contributors to the Earth's oxygen-rich atmosphere and play a significant role in the global carbon cycle.

I apologize for the confusion, but "Synechococcus" is not a medical term. It is a genus of cyanobacteria (blue-green algae) that are widely distributed in marine and freshwater environments. These microorganisms play a significant role in the global carbon and nitrogen cycles. They are often studied in the fields of ecology, microbiology, and environmental science. If you have any questions related to medical terminology or concepts, I would be happy to help!

I'm sorry for any confusion, but "Synechocystis" is not a medical term. It is actually a genus of cyanobacteria (also known as blue-green algae), which are gram-negative bacteria capable of photosynthesis. The most studied species, Synechocystis sp. PCC 6803, is often used as a model organism in research related to photosynthesis, carbon metabolism, and bioenergy.

If you have any medical terms or concepts that you would like me to define or explain, please let me know!

"Microcystis" is not a medical term, but a genus of cyanobacteria (blue-green algae) commonly found in freshwater environments. Some species of Microcystis can produce toxins called microcystins, which can cause liver damage and other health problems in humans and animals when they consume or come into contact with contaminated water. Therefore, Microcystis blooms in recreational waters or drinking water sources can pose a public health concern.

Anabaena is a genus of cyanobacteria, also known as blue-green algae. These bacteria are capable of photosynthesis and can form colonies that resemble fine filaments or hair-like structures. Some species of Anabaena are able to fix nitrogen from the atmosphere, making them important contributors to the nitrogen cycle in aquatic ecosystems. In some cases, certain species of Anabaena can produce toxins that can be harmful to other organisms, including humans and animals.

It's worth noting that while Anabaena is a widely used and well-established genus name, recent research has suggested that the traditional classification system for cyanobacteria may not accurately reflect their evolutionary relationships. As a result, some scientists have proposed alternative classification schemes that may lead to changes in the way these organisms are named and classified in the future.

Microcystins are a type of toxin produced by certain species of blue-green algae (cyanobacteria) that can contaminate freshwater bodies. They are cyclic peptides consisting of seven amino acids, and their structure varies among different microcystin variants. These toxins can have negative effects on the liver and other organs in humans and animals upon exposure through ingestion, inhalation, or skin contact with contaminated water. They are a concern for both public health and environmental safety, particularly in relation to drinking water supplies, recreational water use, and aquatic ecosystems.

Nostoc is not a medical term, but a genus of cyanobacteria (blue-green algae) that can form colonies in various aquatic and terrestrial environments. Some species of nostoc are capable of forming gelatinous masses or "mats" that can be found in freshwater bodies, soils, and even on the surface of rocks and stones.

While nostoc itself is not a medical term, it has been studied in the context of medicine due to its potential health benefits. Some research suggests that nostoc may have anti-inflammatory, antioxidant, and antimicrobial properties, among others. However, more studies are needed to fully understand the potential therapeutic uses of nostoc and its safety for human consumption or use in medical treatments.

Phycobilisomes are large, complex pigment-protein structures found in the thylakoid membranes of cyanobacteria and the chloroplasts of red algae and glaucophytes. They function as light-harvesting antennae, capturing light energy and transferring it to the photosynthetic reaction centers. Phycobilisomes are composed of phycobiliproteins, which are bound together in a highly organized manner to form rod-like structures called phycobil rods. These rods are attached to a central core structure called the phycobilisome core. The different types of phycobiliproteins absorb light at different wavelengths, allowing the organism to efficiently utilize available sunlight for photosynthesis.

Phycocyanin is a pigment-protein complex found in cyanobacteria and some types of algae, such as Spirulina. It belongs to the family of phycobiliproteins and plays a crucial role in the light-harvesting process during photosynthesis. Phycocyanin absorbs light in the orange and red regions of the visible spectrum and transfers the energy to chlorophyll for use in photosynthesis. It has been studied for its potential health benefits, including antioxidant, anti-inflammatory, and neuroprotective properties. However, more research is needed to fully understand its effects and potential therapeutic uses.

Prochlorococcus is not a medical term, but a scientific name for a type of marine cyanobacteria (blue-green algae) that are among the most abundant photosynthetic organisms on Earth. They play a significant role in global carbon and oxygen cycling. These bacteria are extremely small, typically less than 1 micrometer in diameter, and are found throughout the world's oceans, particularly in warm, sunlit surface waters. Prochlorococcus species contain chlorophyll a and b, but lack phycobiliproteins, which distinguishes them from other cyanobacteria. They have been widely studied for their ecological importance and as model organisms to understand the molecular biology of photosynthesis and other cellular processes in marine environments.

Eutrophication is the process of excessive nutrient enrichment in bodies of water, which can lead to a rapid growth of aquatic plants and algae. This overgrowth can result in decreased levels of oxygen in the water, harming or even killing fish and other aquatic life. The primary cause of eutrophication is the addition of nutrients, particularly nitrogen and phosphorus, from human activities such as agricultural runoff, sewage and wastewater discharge, and air pollution.

In advanced stages, eutrophication can lead to a shift in the dominant species in the aquatic ecosystem, favoring those that are better adapted to the high-nutrient conditions. This can result in a loss of biodiversity and changes in water quality, making it difficult for many organisms to survive.

Eutrophication is a significant global environmental problem, affecting both freshwater and marine ecosystems. It can lead to harmful algal blooms (HABs), which can produce toxins that are dangerous to humans and animals. In addition, eutrophication can impact water use for drinking, irrigation, recreation, and industry, making it a critical issue for public health and economic development.

Photosynthesis is not strictly a medical term, but it is a fundamental biological process with significant implications for medicine, particularly in understanding energy production in cells and the role of oxygen in sustaining life. Here's a general biological definition:

Photosynthesis is a process by which plants, algae, and some bacteria convert light energy, usually from the sun, into chemical energy in the form of organic compounds, such as glucose (or sugar), using water and carbon dioxide. This process primarily takes place in the chloroplasts of plant cells, specifically in structures called thylakoids. The overall reaction can be summarized as:

6 CO2 + 6 H2O + light energy → C6H12O6 + 6 O2

In this equation, carbon dioxide (CO2) and water (H2O) are the reactants, while glucose (C6H12O6) and oxygen (O2) are the products. Photosynthesis has two main stages: the light-dependent reactions and the light-independent reactions (Calvin cycle). The light-dependent reactions occur in the thylakoid membrane and involve the conversion of light energy into ATP and NADPH, which are used to power the Calvin cycle. The Calvin cycle takes place in the stroma of chloroplasts and involves the synthesis of glucose from CO2 and water using the ATP and NADPH generated during the light-dependent reactions.

Understanding photosynthesis is crucial for understanding various biological processes, including cellular respiration, plant metabolism, and the global carbon cycle. Additionally, research into artificial photosynthesis has potential applications in renewable energy production and environmental remediation.

Marine toxins are toxic compounds that are produced by certain marine organisms, including algae, bacteria, and various marine animals such as shellfish, jellyfish, and snails. These toxins can cause a range of illnesses and symptoms in humans who consume contaminated seafood or come into direct contact with the toxin-producing organisms. Some of the most well-known marine toxins include:

1. Saxitoxin: Produced by certain types of algae, saxitoxin can cause paralytic shellfish poisoning (PSP) in humans who consume contaminated shellfish. Symptoms of PSP include tingling and numbness of the lips, tongue, and fingers, followed by muscle weakness, paralysis, and in severe cases, respiratory failure.
2. Domoic acid: Produced by certain types of algae, domoic acid can cause amnesic shellfish poisoning (ASP) in humans who consume contaminated shellfish. Symptoms of ASP include nausea, vomiting, diarrhea, abdominal cramps, headache, and memory loss.
3. Okadaic acid: Produced by certain types of algae, okadaic acid can cause diarrhetic shellfish poisoning (DSP) in humans who consume contaminated shellfish. Symptoms of DSP include nausea, vomiting, diarrhea, abdominal cramps, and fever.
4. Ciguatoxin: Produced by certain types of dinoflagellates, ciguatoxin can cause ciguatera fish poisoning (CFP) in humans who consume contaminated fish. Symptoms of CFP include nausea, vomiting, diarrhea, abdominal pain, and neurological symptoms such as tingling and numbness of the lips, tongue, and fingers, as well as reversal of hot and cold sensations.
5. Tetrodotoxin: Found in certain types of pufferfish, tetrodotoxin can cause a severe form of food poisoning known as pufferfish poisoning or fugu poisoning. Symptoms of tetrodotoxin poisoning include numbness of the lips and tongue, difficulty speaking, muscle weakness, paralysis, and respiratory failure.

Prevention measures for these types of seafood poisoning include avoiding consumption of fish and shellfish that are known to be associated with these toxins, as well as cooking and preparing seafood properly before eating it. Additionally, monitoring programs have been established in many countries to monitor the levels of these toxins in seafood and issue warnings when necessary.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Circadian rhythm signaling peptides and proteins are molecules that play a crucial role in the regulation of circadian rhythms, which are physical, mental, and behavioral changes that follow a daily cycle. These rhythms are driven by the body's internal clock, which is located in the suprachiasmatic nucleus (SCN) of the hypothalamus.

The circadian rhythm is regulated by a complex network of signaling pathways involving both peptides and proteins. These molecules help to coordinate various physiological processes, such as sleep-wake cycles, hormone release, metabolism, and body temperature, with the external environment.

Some examples of circadian rhythm signaling peptides and proteins include:

1. PERIOD (PER) proteins: These are a family of proteins that play a central role in the regulation of the circadian clock. They form complexes with other clock proteins, such as CRYPTOCHROME (CRY) proteins, to inhibit the activity of transcription factors that drive the expression of clock genes.
2. CLOCK and BMAL1: These are transcription factors that bind to DNA and promote the expression of clock genes, including PER and CRY. They form a heterodimer that binds to specific DNA sequences called E-boxes to activate gene transcription.
3. REV-ERBα and RORα: These are nuclear receptors that regulate the expression of BMAL1 and other clock genes. REV-ERBα inhibits the expression of BMAL1, while RORα activates it.
4. Melatonin: This is a hormone produced by the pineal gland that helps to regulate sleep-wake cycles. Its production is controlled by light exposure and is highest at night.
5. Cortisol: This is a steroid hormone produced by the adrenal gland that helps to regulate metabolism, immune function, and stress response. Its levels are highest in the morning and decrease throughout the day.

Overall, circadian rhythm signaling peptides and proteins play a critical role in maintaining the proper functioning of various physiological processes, including sleep-wake cycles, metabolism, and immune function. Dysregulation of these pathways has been linked to several diseases, including cancer, diabetes, and cardiovascular disease.

I'm sorry for any confusion, but "Fresh Water" is not a medical term. It is a term used to describe water that contains low concentrations of dissolved salts and other dissolved minerals. It is distinguished from saline water, which includes saltwater found in the ocean and brackish water found in estuaries. Fresh water is essential for many biological processes and is the primary source of water for human consumption, agriculture, and industrial use.

Phycoerythrin is not a medical term, but a term used in biochemistry and cell biology. It refers to a type of protein found in certain algae and cyanobacteria that binds phycobilins, which are linear tetrapyrrole chromophores. Phycoerythrin is a light-harvesting pigment that absorbs light energy and transfers it to the photosynthetic reaction centers. It is often used in research and clinical settings as a fluorescent label for various applications, such as flow cytometry, immunohistochemistry, and microscopy.

Cylindrospermopsis is a genus of cyanobacteria (blue-green algae) that can produce toxins harmful to humans and animals. The most well-known species in this genus is Cylindrospermopsis raciborskii, which can produce the potent hepatotoxin cylindrospermopsin. This toxin can cause liver damage and other health effects in both humans and animals that consume contaminated water or food.

Cylindrospermopsis species are commonly found in freshwater environments, such as lakes, rivers, and reservoirs. They can form blooms under certain conditions, such as high nutrient levels, warm temperatures, and still or slow-moving waters. These blooms can create a variety of health and environmental hazards, including the production of toxins that can harm wildlife, livestock, and people.

If you suspect that a body of water may be contaminated with Cylindrospermopsis or other harmful algal blooms (HABs), it is important to avoid contact with the water and to seek medical attention if you experience any symptoms of exposure, such as nausea, vomiting, diarrhea, or skin irritation. It is also important to report any suspected HABs to your local health department or environmental agency for further investigation and monitoring.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Nitrogen fixation is a process by which nitrogen gas (N2) in the air is converted into ammonia (NH3) or other chemically reactive forms, making it available to plants and other organisms for use as a nutrient. This process is essential for the nitrogen cycle and for the growth of many types of plants, as most plants cannot utilize nitrogen gas directly from the air.

In the medical field, nitrogen fixation is not a commonly used term. However, in the context of microbiology and infectious diseases, some bacteria are capable of fixing nitrogen and this ability can contribute to their pathogenicity. For example, certain species of bacteria that colonize the human body, such as those found in the gut or on the skin, may be able to fix nitrogen and use it for their own growth and survival. In some cases, these bacteria may also release fixed nitrogen into the environment, which can have implications for the ecology and health of the host and surrounding ecosystems.

Phycobilins are linear tetrapyrrole chromophores found in cyanobacteria, red algae, and glaucophytes. They are the light-harvesting pigments associated with phycobiliproteins in the phycobilisome complex, which is a type of antenna system used to capture light for photosynthesis. The main types of phycobilins are phycocyanobilin, phycoerythrobilin, and allophycocyanobilin. These pigments absorb light in the blue-green to red region of the electromagnetic spectrum and transfer the energy to chlorophyll a for use in photosynthesis. Phycobilins are also used as fluorescent labels in various biochemical and medical research applications.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Phytoplankton are microscopic photosynthetic organisms that live in watery environments such as oceans, seas, lakes, and rivers. They are a diverse group of organisms, including bacteria, algae, and protozoa. Phytoplankton are a critical component of the marine food chain, serving as primary producers that convert sunlight, carbon dioxide, and nutrients into organic matter through photosynthesis. This organic matter forms the base of the food chain and supports the growth and survival of many larger organisms, including zooplankton, fish, and other marine animals. Phytoplankton also play an important role in global carbon cycling and help to regulate Earth's climate by absorbing carbon dioxide from the atmosphere and releasing oxygen.

"Nodularia" is not a term that has a specific medical definition in the context of human diseases or conditions. However, in the field of pathology and microbiology, "Nodularia" is a genus of filamentous cyanobacteria (also known as blue-green algae) that can form harmful algal blooms in bodies of water. These blooms can produce toxins that can be harmful to humans and animals if ingested or come into contact with the skin.

In dermatology, "nodular" is a term used to describe a type of lesion that is solid, raised, and well-circumscribed, but it does not refer to a specific bacterial species like Nodularia.

Photosystem II Protein Complex is a crucial component of the photosynthetic apparatus in plants, algae, and cyanobacteria. It is a multi-subunit protein complex located in the thylakoid membrane of the chloroplasts. Photosystem II plays a vital role in light-dependent reactions of photosynthesis, where it absorbs sunlight and uses its energy to drive the oxidation of water molecules into oxygen, electrons, and protons.

The protein complex consists of several subunits, including the D1 and D2 proteins, which form the reaction center, and several antenna proteins that capture light energy and transfer it to the reaction center. Photosystem II also contains various cofactors, such as pigments (chlorophylls and carotenoids), redox-active metal ions (manganese and calcium), and quinones, which facilitate the charge separation and electron transfer processes during photosynthesis.

Photosystem II Protein Complex is responsible for the initial charge separation event in photosynthesis, which sets off a series of redox reactions that ultimately lead to the reduction of NADP+ to NADPH and the synthesis of ATP, providing energy for the carbon fixation reactions in the Calvin cycle. Additionally, Photosystem II Protein Complex is involved in oxygen evolution, contributing to the Earth's atmosphere's oxygen levels and making it an essential component of global carbon fixation and oxygen production.

Seawater is not a medical term, but it is a type of water that covers more than 70% of the Earth's surface. Medically, seawater can be relevant in certain contexts, such as in discussions of marine biology, environmental health, or water safety. Seawater has a high salt content, with an average salinity of around 3.5%, which is much higher than that of freshwater. This makes it unsuitable for drinking or irrigation without desalination.

Exposure to seawater can also have medical implications, such as in cases of immersion injuries, marine envenomations, or waterborne illnesses. However, there is no single medical definition of seawater.

In the context of medical terminology, "light" doesn't have a specific or standardized definition on its own. However, it can be used in various medical terms and phrases. For example, it could refer to:

1. Visible light: The range of electromagnetic radiation that can be detected by the human eye, typically between wavelengths of 400-700 nanometers. This is relevant in fields such as ophthalmology and optometry.
2. Therapeutic use of light: In some therapies, light is used to treat certain conditions. An example is phototherapy, which uses various wavelengths of ultraviolet (UV) or visible light for conditions like newborn jaundice, skin disorders, or seasonal affective disorder.
3. Light anesthesia: A state of reduced consciousness in which the patient remains responsive to verbal commands and physical stimulation. This is different from general anesthesia where the patient is completely unconscious.
4. Pain relief using light: Certain devices like transcutaneous electrical nerve stimulation (TENS) units have a 'light' setting, indicating lower intensity or frequency of electrical impulses used for pain management.

Without more context, it's hard to provide a precise medical definition of 'light'.

"Oscillatoria" is not a medical term, but rather a taxonomic genus name in the field of biology and microbiology. It belongs to the family of cyanobacteria (blue-green algae) called "Pseudanabaenaceae." Oscillatoria species are filamentous bacteria that contain chlorophyll and can perform photosynthesis. They form long, straight or slightly curved trichomes (filaments) without heterocysts or akinetes. The cells in the trichome are typically separated by narrow gaps, giving them a beaded appearance.

These organisms are often found in various aquatic environments such as freshwater, brackish water, and marine habitats. Some species of Oscillatoria can produce toxins, known as cyanotoxins, which may pose health risks to humans and animals when they contaminate drinking water sources or recreational bodies of water.

In a medical context, exposure to harmful algal blooms containing Oscillatoria species might lead to symptoms such as skin irritation, allergic reactions, gastrointestinal issues, or respiratory problems in sensitive individuals. However, it is essential to note that these health effects are not exclusive to Oscillatoria and can be caused by various cyanobacterial genera.

Photosystem I Protein Complex, also known as PsaA/B-Protein or Photosystem I reaction center, is a large protein complex found in the thylakoid membrane of plant chloroplasts and cyanobacteria. It plays a crucial role in light-dependent reactions of photosynthesis, where it absorbs light energy and converts it into chemical energy in the form of NADPH.

The complex is composed of several subunits, including PsaA and PsaB, which are the core components that bind to chlorophyll a and bacteriochlorophyll a pigments. These pigments absorb light energy and transfer it to the reaction center, where it is used to drive the electron transport chain and generate a proton gradient across the membrane. This gradient is then used to produce ATP, which provides energy for the carbon fixation reactions in photosynthesis.

Photosystem I Protein Complex is also involved in cyclic electron flow, where electrons are recycled within the complex to generate additional ATP without producing NADPH. This process helps regulate the balance between ATP and NADPH production in the chloroplast and optimizes the efficiency of photosynthesis.

Rhodophyta, also known as red algae, is a division of simple, multicellular and complex marine algae. These organisms are characterized by their red pigmentation due to the presence of phycobiliproteins, specifically R-phycoerythrin and phycocyanin. They lack flagella and centrioles at any stage of their life cycle. The cell walls of Rhodophyta contain cellulose and various sulphated polysaccharides. Some species have calcium carbonate deposits in their cell walls, which contribute to the formation of coral reefs. Reproduction in these organisms is typically alternation of generations with a dominant gametophyte generation. They are an important source of food for many marine animals and have commercial value as well, particularly for the production of agar, carrageenan, and other products used in the food, pharmaceutical, and cosmetic industries.

I'm sorry for any confusion, but "Cyanothece" is not a medical term or concept. It is actually the name of a genus of cyanobacteria (blue-green algae), which are capable of both oxygenic photosynthesis and nitrogen fixation. These bacteria have attracted interest in various scientific fields due to their potential applications in bioenergy, bioremediation, and basic biological research.

If you have any questions related to medical terminology or health-related topics, I'd be happy to help!

Phycobiliproteins are pigment-protein complexes that are found in cyanobacteria (blue-green algae) and certain types of red algae. They are a part of the phycobilisome, a light-harvesting antenna complex located in the thylakoid membrane of these organisms. Phycobiliproteins play a crucial role in photosynthesis by capturing light energy and transferring it to chlorophylls for conversion into chemical energy.

There are three main types of phycobiliproteins:

1. Phycocyanin: This blue-colored pigment is responsible for the blue-green color of cyanobacteria. It absorbs light in the orange and red regions of the spectrum and emits fluorescence in the green region.
2. Phycoerythrin: This pink or red-colored pigment absorbs light in the blue and green regions of the spectrum and emits fluorescence in the orange and red regions. It is found in both cyanobacteria and red algae.
3. Allophycocyanin: This blue-green pigment absorbs light in the yellow and orange regions of the spectrum and emits fluorescence in the red region. It is found in cyanobacteria and some types of red algae.

Phycobiliproteins have been studied for their potential applications in various fields, including biotechnology, food technology, and medicine. For example, they are used as natural food colorants, fluorescent markers in research and diagnostics, and nutritional supplements with antioxidant properties.

Chlorophyll is a green pigment found in the chloroplasts of photosynthetic plants, algae, and some bacteria. It plays an essential role in light-dependent reactions of photosynthesis by absorbing light energy, primarily from the blue and red parts of the electromagnetic spectrum, and converting it into chemical energy to fuel the synthesis of carbohydrates from carbon dioxide and water. The structure of chlorophyll includes a porphyrin ring, which binds a central magnesium ion, and a long phytol tail. There are several types of chlorophyll, including chlorophyll a and chlorophyll b, which have distinct absorption spectra and slightly different structures. Chlorophyll is crucial for the process of photosynthesis, enabling the conversion of sunlight into chemical energy and the release of oxygen as a byproduct.

Aphanizomenon is a genus of cyanobacteria (blue-green algae) that can be found in various bodies of water, including freshwater and brackish environments. The name Aphanizomenon comes from the Greek words "aphanes" meaning hidden and "zomen" meaning animal life, which refers to the fact that this organism can form dormant structures called akinetes that are difficult to see with the naked eye.

One species of Aphanizomenon, Aphanizomenon flos-aquae, is known to produce a range of bioactive compounds, including proteins, polysaccharides, and pigments. This species has been studied for its potential health benefits, and some proponents claim that it can be used as a dietary supplement or nutritional supplement. However, it's important to note that the scientific evidence supporting these claims is limited, and more research is needed before any definitive conclusions can be drawn.

It's also worth noting that cyanobacteria like Aphanizomenon can produce harmful toxins known as cyanotoxins, which can pose a risk to human health if ingested or otherwise exposed to them. Therefore, it's important to exercise caution when consuming products derived from cyanobacteria and to consult with a healthcare professional before doing so.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Water microbiology is not a formal medical term, but rather a branch of microbiology that deals with the study of microorganisms found in water. It involves the identification, enumeration, and characterization of bacteria, viruses, parasites, and other microscopic organisms present in water sources such as lakes, rivers, oceans, groundwater, drinking water, and wastewater.

In a medical context, water microbiology is relevant to public health because it helps to assess the safety of water supplies for human consumption and recreational activities. It also plays a critical role in understanding and preventing waterborne diseases caused by pathogenic microorganisms that can lead to illnesses such as diarrhea, skin infections, and respiratory problems.

Water microbiologists use various techniques to study water microorganisms, including culturing, microscopy, genetic analysis, and biochemical tests. They also investigate the ecology of these organisms, their interactions with other species, and their response to environmental factors such as temperature, pH, and nutrient availability.

Overall, water microbiology is a vital field that helps ensure the safety of our water resources and protects public health.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Phototrophic processes refer to the metabolic pathways used by certain organisms, such as plants, algae, and some bacteria, to convert light energy into chemical energy. This is primarily achieved through a process called photosynthesis, where these organisms use light, usually from the sun, to convert carbon dioxide and water into glucose and oxygen. The glucose serves as an energy source for the organism, while the oxygen is released as a byproduct. This process is fundamental to life on Earth as it provides the majority of the oxygen in our atmosphere and forms the base of many food chains.

Lichens are not a medical term, but I can provide a biological definition for you. Lichens are unique symbiotic organisms that result from the mutualistic relationship between fungi (usually Ascomycetes) and photosynthetic partners, such as algae or cyanobacteria. The fungal partner provides protection and anchorage, while the photosynthetic partner supplies carbohydrates through photosynthesis. Lichens are widely distributed and can be found growing on various substrates, including rocks, trees, and soil. They play essential ecological roles, such as soil stabilization, atmospheric nitrogen fixation, and biomonitoring of air pollution.

A bacterial genome is the complete set of genetic material, including both DNA and RNA, found within a single bacterium. It contains all the hereditary information necessary for the bacterium to grow, reproduce, and survive in its environment. The bacterial genome typically includes circular chromosomes, as well as plasmids, which are smaller, circular DNA molecules that can carry additional genes. These genes encode various functional elements such as enzymes, structural proteins, and regulatory sequences that determine the bacterium's characteristics and behavior.

Bacterial genomes vary widely in size, ranging from around 130 kilobases (kb) in Mycoplasma genitalium to over 14 megabases (Mb) in Sorangium cellulosum. The complete sequencing and analysis of bacterial genomes have provided valuable insights into the biology, evolution, and pathogenicity of bacteria, enabling researchers to better understand their roles in various diseases and potential applications in biotechnology.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Thylakoids are membrane-bound structures located in the chloroplasts of plant cells and some protists. They are the site of the light-dependent reactions of photosynthesis, where light energy is converted into chemical energy in the form of ATP (adenosine triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate). Thylakoids have a characteristic stacked or disc-like structure, called grana, and are interconnected by unstacked regions called stroma lamellae. The arrangement of thylakoids in grana increases the surface area for absorption of light energy, allowing for more efficient photosynthesis.

Spirulina is not typically considered in medical definitions, as it is a type of blue-green algae that is often used as a dietary supplement or superfood due to its high nutritional content. However, here's a brief description:

Spirulina (Arthrospira spp.) is a filamentous, spiral-shaped, photosynthetic cyanobacterium that grows in warm, alkaline fresh and brackish waters. It is often found in tropical and subtropical lakes with high pH values and high concentrations of carbonate and bicarbonate. Spirulina contains various nutrients such as proteins, carbohydrates, lipids, vitamins (including B12), minerals, carotenoids, and antioxidants like phycocyanobilin. It has been used for its potential health benefits, including boosting the immune system, reducing inflammation, supporting cardiovascular health, and providing antioxidant protection. However, it is essential to consult healthcare professionals before starting any dietary supplement regimen, as individual needs and responses may vary.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Chlorophyta is a division of green algae, also known as green plants. This group includes a wide variety of simple, aquatic organisms that contain chlorophylls a and b, which gives them their characteristic green color. They are a diverse group, ranging from unicellular forms to complex multicellular seaweeds. Chlorophyta is a large and varied division with approximately 7,00

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Photosynthetic Reaction Center (RC) Complex Proteins are specialized protein-pigment structures that play a crucial role in the primary process of light-driven electron transport during photosynthesis. They are present in the thylakoid membranes of cyanobacteria, algae, and higher plants.

The Photosynthetic Reaction Center Complex Proteins are composed of two major components: the light-harvesting complex (LHC) and the reaction center (RC). The LHC contains antenna pigments like chlorophylls and carotenoids that absorb sunlight and transfer the excitation energy to the RC. The RC is a multi-subunit protein complex containing cofactors such as bacteriochlorophyll, pheophytin, quinones, and iron-sulfur clusters.

When a photon of light is absorbed by the antenna pigments in the LHC, the energy is transferred to the RC, where it initiates a charge separation event. This results in the transfer of an electron from a donor molecule to an acceptor molecule, creating a flow of electrical charge and generating a transmembrane electrochemical gradient. The energy stored in this gradient is then used to synthesize ATP and reduce NADP+, which are essential for carbon fixation and other metabolic processes in the cell.

In summary, Photosynthetic Reaction Center Complex Proteins are specialized protein structures involved in capturing light energy and converting it into chemical energy during photosynthesis, ultimately driving the synthesis of ATP and NADPH for use in carbon fixation and other metabolic processes.

Tetrapyrroles are a class of organic compounds that contain four pyrrole rings joined together in a macrocyclic structure. They are important in biology because they form the core structure of many essential cofactors and prosthetic groups in proteins, including heme, chlorophyll, and cobalamin (vitamin B12).

Heme is a tetrapyrrole that contains iron and is a crucial component of hemoglobin, the protein responsible for oxygen transport in red blood cells. Chlorophyll is another tetrapyrrole that contains magnesium and plays a vital role in photosynthesis, the process by which plants convert light energy into chemical energy. Cobalamin contains cobalt and is essential for DNA synthesis, fatty acid metabolism, and neurotransmitter synthesis.

Abnormalities in tetrapyrrole biosynthesis can lead to various diseases, such as porphyrias, which are characterized by the accumulation of toxic intermediates in the heme biosynthetic pathway.

Light-harvesting protein complexes are specialized structures in photosynthetic organisms, such as plants, algae, and some bacteria, that capture and transfer light energy to the reaction centers where the initial chemical reactions of photosynthesis occur. These complexes consist of proteins and pigments (primarily chlorophylls and carotenoids) arranged in a way that allows them to absorb light most efficiently. The absorbed light energy is then converted into electrical charges, which are transferred to the reaction centers for further chemical reactions leading to the production of organic compounds and oxygen. The light-harvesting protein complexes play a crucial role in initiating the process of photosynthesis and optimizing its efficiency by capturing and distributing light energy.

Saxitoxin (STX) is a potent neurotoxin that inhibits the sodium channels in nerve cells, leading to paralysis and potentially death. It is produced by certain species of marine dinoflagellates and cyanobacteria, and can accumulate in shellfish that feed on these organisms. Saxitoxin poisoning, also known as paralytic shellfish poisoning (PSP), is a serious medical condition that can cause symptoms such as numbness, tingling, and paralysis of the mouth and extremities, as well as respiratory failure and death in severe cases. It is important to note that saxitoxin is not used as a therapeutic agent in medicine and is considered a harmful substance.

Biofuels are defined as fuels derived from organic materials such as plants, algae, and animal waste. These fuels can be produced through various processes, including fermentation, esterification, and transesterification. The most common types of biofuels include biodiesel, ethanol, and biogas.

Biodiesel is a type of fuel that is produced from vegetable oils or animal fats through a process called transesterification. It can be used in diesel engines with little or no modification and can significantly reduce greenhouse gas emissions compared to traditional fossil fuels.

Ethanol is a type of alcohol that is produced through the fermentation of sugars found in crops such as corn, sugarcane, and switchgrass. It is typically blended with gasoline to create a fuel known as E85, which contains 85% ethanol and 15% gasoline.

Biogas is a type of fuel that is produced through the anaerobic digestion of organic materials such as food waste, sewage sludge, and agricultural waste. It is composed primarily of methane and carbon dioxide and can be used to generate electricity or heat.

Overall, biofuels offer a renewable and more sustainable alternative to traditional fossil fuels, helping to reduce greenhouse gas emissions and decrease dependence on non-renewable resources.

Anabaena variabilis is a species of cyanobacteria (blue-green algae) that can form filamentous colonies. It is capable of fixing atmospheric nitrogen, making it an important contributor to the nitrogen cycle in aquatic environments. The term 'variabilis' refers to the variable size and shape of its cells.

Here's a simple medical definition:

Anabaena variabilis: A species of filamentous cyanobacteria known for its ability to fix nitrogen, contributing to the nitrogen cycle in aquatic environments. Its cells can vary in size and shape.

Urobilin is a pigment produced in the liver as a byproduct of the breakdown of bilirubin, which is a waste product resulting from the breakdown of hemoglobin in red blood cells. Some urobilin is excreted through the bile into the intestines, where it can be converted by bacteria into stercobilin, another pigment responsible for the brown color of feces. A portion of the urobilin produced in the liver is reabsorbed into the bloodstream and eventually excreted through the urine, giving it a yellow color. Therefore, urobilin can be detected in both urine and feces.

A Harmful Algal Bloom (HAB) is a rapid growth or accumulation of toxic or harmful algae in aquatic environments, which can cause harm to humans, animals, and the environment. These algae produce toxins that can contaminate water supplies, shellfish, and other seafood, leading to illness or even death if ingested. HABs can also result in oxygen depletion in the water, creating "dead zones" where fish and other marine life cannot survive. They are often caused by nutrient pollution from agricultural runoff, sewage, and other human activities that increase the amount of nitrogen and phosphorus in the water.

Eukaryota is a domain that consists of organisms whose cells have a true nucleus and complex organelles. This domain includes animals, plants, fungi, and protists. The term "eukaryote" comes from the Greek words "eu," meaning true or good, and "karyon," meaning nut or kernel. In eukaryotic cells, the genetic material is housed within a membrane-bound nucleus, and the DNA is organized into chromosomes. This is in contrast to prokaryotic cells, which do not have a true nucleus and have their genetic material dispersed throughout the cytoplasm.

Eukaryotic cells are generally larger and more complex than prokaryotic cells. They have many different organelles, including mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus, that perform specific functions to support the cell's metabolism and survival. Eukaryotic cells also have a cytoskeleton made up of microtubules, actin filaments, and intermediate filaments, which provide structure and shape to the cell and allow for movement of organelles and other cellular components.

Eukaryotes are diverse and can be found in many different environments, ranging from single-celled organisms that live in water or soil to multicellular organisms that live on land or in aquatic habitats. Some eukaryotes are unicellular, meaning they consist of a single cell, while others are multicellular, meaning they consist of many cells that work together to form tissues and organs.

In summary, Eukaryota is a domain of organisms whose cells have a true nucleus and complex organelles. This domain includes animals, plants, fungi, and protists, and the eukaryotic cells are generally larger and more complex than prokaryotic cells.

In the context of medicine and biology, symbiosis is a type of close and long-term biological interaction between two different biological organisms. Generally, one organism, called the symbiont, lives inside or on another organism, called the host. This interaction can be mutually beneficial (mutualistic), harmful to the host organism (parasitic), or have no effect on either organism (commensal).

Examples of mutualistic symbiotic relationships in humans include the bacteria that live in our gut and help us digest food, as well as the algae that live inside corals and provide them with nutrients. Parasitic symbioses, on the other hand, involve organisms like viruses or parasitic worms that live inside a host and cause harm to it.

It's worth noting that while the term "symbiosis" is often used in popular culture to refer to any close relationship between two organisms, in scientific contexts it has a more specific meaning related to long-term biological interactions.

I'm sorry for any confusion, but the term "Atlantic Ocean" is a geographical term referring to one of the five oceans on Earth. It doesn't have a medical definition. The Atlantic Ocean is the second largest ocean, covering approximately 20% of the Earth's surface. It stretches from the Arctic Ocean in the north to the Southern Ocean (or, alternatively, to the Antarctica region) in the south, and is bounded by the Americas to the west and Europe and Africa to the east.

Cyclic peptides are a type of peptides in which the N-terminus and C-terminus of the peptide chain are linked to form a circular structure. This is in contrast to linear peptides, which have a straight peptide backbone with a free N-terminus and C-terminus. The cyclization of peptides can occur through various mechanisms, including the formation of an amide bond between the N-terminal amino group and the C-terminal carboxylic acid group (head-to-tail cyclization), or through the formation of a bond between side chain functional groups.

Cyclic peptides have unique structural and chemical properties that make them valuable in medical and therapeutic applications. For example, they are more resistant to degradation by enzymes compared to linear peptides, which can increase their stability and half-life in the body. Additionally, the cyclic structure allows for greater conformational rigidity, which can enhance their binding affinity and specificity to target molecules.

Cyclic peptides have been explored as potential therapeutics for a variety of diseases, including cancer, infectious diseases, and neurological disorders. They have also been used as tools in basic research to study protein-protein interactions and cell signaling pathways.

Biological pigments are substances produced by living organisms that absorb certain wavelengths of light and reflect others, resulting in the perception of color. These pigments play crucial roles in various biological processes such as photosynthesis, vision, and protection against harmful radiation. Some examples of biological pigments include melanin, hemoglobin, chlorophyll, carotenoids, and flavonoids.

Melanin is a pigment responsible for the color of skin, hair, and eyes in animals, including humans. Hemoglobin is a protein found in red blood cells that contains a porphyrin ring with an iron atom at its center, which gives blood its red color and facilitates oxygen transport. Chlorophyll is a green pigment found in plants, algae, and some bacteria that absorbs light during photosynthesis to convert carbon dioxide and water into glucose and oxygen. Carotenoids are orange, yellow, or red pigments found in fruits, vegetables, and some animals that protect against oxidative stress and help maintain membrane fluidity. Flavonoids are a class of plant pigments with antioxidant properties that have been linked to various health benefits.

Nitrogenase is not a medical term, but a biological term used in the field of microbiology and biochemistry. It refers to an enzyme complex found in certain bacteria and archaea that have the ability to fix nitrogen gas (N2) from the atmosphere into ammonia (NH3), a form of nitrogen that can be utilized by plants and other organisms for growth and development. This process is known as biological nitrogen fixation, which is essential for maintaining the global nitrogen cycle and supporting life on Earth.

The medical field may refer to nitrogenase in relation to human health in the context of understanding the role of nitrogen-fixing bacteria in soil fertility and their impact on agriculture and food production. However, there is no direct medical definition or application for nitrogenase.

I'm happy to help, but it seems there might be some confusion in your question. "Lakes" is not a medical term that has a specific definition in the context of medicine or healthcare. It is a geographical term used to describe large bodies of water surrounded by land. If you have any questions related to health, medicine, or healthcare, I would be happy to try and help answer those for you!

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

I apologize for any confusion, but "Zamiaceae" is not a medical term. It is a taxonomic category in botany, specifically a family of plants that includes cycads, which are seed plants with a long fossil history that date back to the Mesozoic Era. They are often mistaken for palms or ferns due to their tropical appearance. If you have any questions about medical terminology or concepts, I would be happy to help!

I'm sorry for any confusion, but the term "Pacific Ocean" is a geographical term referring to the largest single body of saltwater on Earth, extending from the Arctic in the north to the Antarctic in the south. It covers an area of about 63,800,000 square miles (165,200,000 square kilometers).

If you're looking for a medical term or definition, I'd be happy to help with that as well. Could you please provide more context?

Diamino acids are a type of modified amino acids that contain two amino groups (-NH2) in their side chain. In regular amino acids, the side chain is composed of a specific arrangement of carbon, hydrogen, oxygen, and sometimes sulfur atoms. However, in diamino acids, one or both of the hydrogen atoms attached to the central carbon atom (alpha carbon) are replaced by amino groups.

There are two types of diamino acids: symmetric and asymmetric. Symmetric diamino acids have identical side chains on both sides of the alpha carbon atom, while asymmetric diamino acids have different side chains on each side.

Diamino acids play a crucial role in various biological processes, such as protein synthesis, cell signaling, and neurotransmission. They can be found naturally in some proteins or can be synthesized artificially for use in research and medical applications.

It is important to note that diamino acids are not one of the twenty standard amino acids that make up proteins. Instead, they are considered non-proteinogenic amino acids, which means they are not typically encoded by DNA and are not directly involved in protein synthesis. However, some modified forms of diamino acids can be found in certain proteins as a result of post-translational modifications.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

Autotrophic processes refer to the ability of certain organisms, known as autotrophs, to synthesize their own organic nutrients from inorganic substances using light or chemical energy. This process is essential for the production of organic matter and the formation of the basis of food chains in ecosystems.

In autotrophic processes, organisms use energy to convert carbon dioxide into organic compounds, such as glucose, through a series of metabolic reactions known as carbon fixation. There are two main types of autotrophic processes: photosynthesis and chemosynthesis.

Photosynthesis is the process used by plants, algae, and some bacteria to convert light energy from the sun into chemical energy in the form of organic compounds. This process involves the use of chlorophyll and other pigments to capture light energy, which is then converted into ATP and NADPH through a series of reactions known as the light-dependent reactions. These energy carriers are then used to power the Calvin cycle, where carbon dioxide is fixed into organic compounds.

Chemosynthesis, on the other hand, is the process used by some bacteria to convert chemical energy from inorganic substances, such as hydrogen sulfide or methane, into organic compounds. This process does not require light energy and typically occurs in environments with limited access to sunlight, such as deep-sea vents or soil.

Overall, autotrophic processes are critical for the functioning of ecosystems and the production of food for both plants and animals.

An "ecosystem" is not a term that has a specific medical definition, as it is a concept that is more commonly used in the fields of ecology and environmental science. However, I can provide you with the general ecological definition of an ecosystem:

An ecosystem is a community of living organisms interacting with each other and their non-living environment, including both biotic factors (plants, animals, microorganisms) and abiotic factors (climate, soil, water, and air). These interactions create a complex network of relationships that form the foundation of ecological processes, such as energy flow, nutrient cycling, and population dynamics.

While there is no direct medical definition for an ecosystem, understanding the principles of ecosystems can have important implications for human health. For example, healthy ecosystems can provide clean air and water, regulate climate, support food production, and offer opportunities for recreation and relaxation, all of which contribute to overall well-being. Conversely, degraded ecosystems can lead to increased exposure to environmental hazards, reduced access to natural resources, and heightened risks of infectious diseases. Therefore, maintaining the health and integrity of ecosystems is crucial for promoting human health and preventing disease.

Plastids are membrane-bound organelles found in the cells of plants and algae. They are responsible for various cellular functions, including photosynthesis, storage of starch, lipids, and proteins, and the production of pigments that give plants their color. The most common types of plastids are chloroplasts (which contain chlorophyll and are involved in photosynthesis), chromoplasts (which contain pigments such as carotenoids and are responsible for the yellow, orange, and red colors of fruits and flowers), and leucoplasts (which do not contain pigments and serve mainly as storage organelles). Plastids have their own DNA and can replicate themselves within the cell.

I'm sorry for any confusion, but "sculpture" is a term related to art and refers to the creation of three-dimensional objects by carving, modeling, casting, or other shaping techniques. It does not have a medical definition. If you have any questions about medical terminology or concepts, I would be happy to try to help answer those for you!

Heterotrophic processes refer to the metabolic activities carried out by organisms that cannot produce their own food and have to obtain energy by consuming other organisms or organic substances. These organisms include animals, fungi, and most bacteria. They obtain energy by breaking down complex organic molecules from their environment using enzymes, a process known as respiration or fermentation. The end products of this process are often carbon dioxide, water, and waste materials. This is in contrast to autotrophic processes, where organisms (like plants) synthesize their own food through photosynthesis.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a crucial enzyme in the Calvin cycle, which is a process that plants use to convert carbon dioxide into glucose during photosynthesis. RuBisCO catalyzes the reaction between ribulose-1,5-bisphosphate and carbon dioxide, resulting in the formation of two molecules of 3-phosphoglycerate, which can then be converted into glucose.

RuBisCO is considered to be the most abundant enzyme on Earth, making up as much as 50% of the soluble protein found in leaves. It is a large and complex enzyme, consisting of eight small subunits and eight large subunits that are arranged in a barrel-shaped structure. The active site of the enzyme, where the reaction between ribulose-1,5-bisphosphate and carbon dioxide takes place, is located at the interface between two large subunits.

RuBisCO also has a secondary function as an oxygenase, which can lead to the production of glycolate, a toxic compound for plants. This reaction occurs when the enzyme binds with oxygen instead of carbon dioxide and is more prevalent in environments with low carbon dioxide concentrations and high oxygen concentrations. The glycolate produced during this process needs to be recycled through a series of reactions known as photorespiration, which can result in significant energy loss for the plant.

A desert climate, also known as a hot desert climate or a BWh climate in the Köppen climate classification system, is characterized by extremely low rainfall, typically less than 10 inches (250 mm) per year. This type of climate is found in the world's desert areas, such as the Sahara Desert in Africa, the Mojave Desert in North America, and the Simpson Desert in Australia.

In a desert climate, temperatures can vary greatly between day and night, as well as between summer and winter. During the day, temperatures can reach extremely high levels, often above 100°F (38°C), while at night, they can drop significantly, sometimes below freezing in the winter months.

Desert climates are caused by a combination of factors, including geographical location, topography, and large-scale weather patterns. They typically occur in regions that are located far from sources of moisture, such as bodies of water, and are situated in the interior of continents or on the leeward side of mountain ranges.

Living things in desert climates have adapted to the harsh conditions through various means, such as storing water, reducing evaporation, and limiting activity during the hottest parts of the day. Despite the challenging conditions, deserts support a diverse array of plant and animal life that has evolved to thrive in this unique environment.

Chloroplasts are specialized organelles found in the cells of green plants, algae, and some protists. They are responsible for carrying out photosynthesis, which is the process by which these organisms convert light energy from the sun into chemical energy in the form of organic compounds, such as glucose.

Chloroplasts contain the pigment chlorophyll, which absorbs light energy from the sun. They also contain a system of membranes and enzymes that convert carbon dioxide and water into glucose and oxygen through a series of chemical reactions known as the Calvin cycle. This process not only provides energy for the organism but also releases oxygen as a byproduct, which is essential for the survival of most life forms on Earth.

Chloroplasts are believed to have originated from ancient cyanobacteria that were engulfed by early eukaryotic cells and eventually became integrated into their host's cellular machinery through a process called endosymbiosis. Over time, chloroplasts evolved to become an essential component of plant and algal cells, contributing to their ability to carry out photosynthesis and thrive in a wide range of environments.

I am not aware of a medical definition for the term "darkness." In general, darkness refers to the absence of light. It is not a term that is commonly used in the medical field, and it does not have a specific clinical meaning. If you have a question about a specific medical term or concept, I would be happy to try to help you understand it.

A circadian rhythm is a roughly 24-hour biological cycle that regulates various physiological and behavioral processes in living organisms. It is driven by the body's internal clock, which is primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus in the brain.

The circadian rhythm controls many aspects of human physiology, including sleep-wake cycles, hormone secretion, body temperature, and metabolism. It helps to synchronize these processes with the external environment, particularly the day-night cycle caused by the rotation of the Earth.

Disruptions to the circadian rhythm can have negative effects on health, leading to conditions such as insomnia, sleep disorders, depression, bipolar disorder, and even increased risk of chronic diseases like cancer, diabetes, and cardiovascular disease. Factors that can disrupt the circadian rhythm include shift work, jet lag, irregular sleep schedules, and exposure to artificial light at night.

Plastocyanin is a small, copper-containing protein that plays a crucial role in the photosynthetic electron transport chain. It functions as an electron carrier, facilitating the movement of electrons between two key protein complexes (cytochrome b6f and photosystem I) located in the thylakoid membrane of chloroplasts. Plastocyanin is a soluble protein found in the lumen of the thylakoids, and its copper ion serves as the site for electron transfer. The oxidized form of plastocyanin accepts an electron from cytochrome b6f and then donates it to photosystem I, helping to maintain the flow of electrons during light-dependent reactions in photosynthesis.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Diuron is a pesticide and herbicide that is used to control weeds in various settings, such as agriculture, landscaping, and forestry. Its chemical name is 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Diuron works by inhibiting photosynthesis in plants, which prevents them from growing and eventually kills them.

While diuron is effective at controlling weeds, it can also have harmful effects on non-target organisms, including aquatic life and pollinators. Additionally, there are concerns about the potential for diuron to contaminate water sources and pose risks to human health. As a result, its use is regulated in many countries, and there are restrictions on how it can be applied and disposed of.

It's worth noting that Diuron is not a medical term or a drug used for treating any medical condition in humans or animals.

Myoviridae is a family of bacteriophages, which are viruses that infect and replicate within bacteria. Here is the medical definition of Myoviridae:

Myoviridae is a family of tailed bacteriophages characterized by a contractile sheath surrounding the tail structure. The members of this family have a double-stranded DNA (dsDNA) genome, which is relatively large, ranging from 40 to over 200 kilobases in size. Myoviridae viruses typically infect Gram-negative bacteria and are known to cause lysis of the host cell upon replication. The family includes many well-known bacteriophages such as T4, T5, and λ phages, which have been extensively studied for their biological properties and potential applications in molecular biology and medicine.

It's worth noting that while Myoviridae viruses can be useful tools in scientific research, they are not used in clinical practice as therapeutic agents. However, there is ongoing research into the use of bacteriophages, including those from the family Myoviridae, for the treatment of bacterial infections that are resistant to antibiotics.

Proteobacteria is a major class of Gram-negative bacteria that includes a wide variety of pathogens and free-living organisms. This class is divided into six subclasses: Alpha, Beta, Gamma, Delta, Epsilon, and Zeta proteobacteria. Proteobacteria are characterized by their single circular chromosome and the presence of lipopolysaccharide (LPS) in their outer membrane. They can be found in a wide range of environments, including soil, water, and the gastrointestinal tracts of animals. Some notable examples of Proteobacteria include Escherichia coli, Salmonella enterica, and Yersinia pestis.

I apologize for the confusion, but "Marine Biology" is not a medical term. Instead, it is a branch of biology that deals with the study of marine organisms, their behaviors, and their interactions with the marine environment. Marine biologists investigate various aspects of marine life, such as the ecology, physiology, and genetics of marine plants, animals, and microorganisms. They also study the impact of human activities on marine ecosystems and work towards conservation efforts to protect these environments.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

Biodiversity is the variety of different species of plants, animals, and microorganisms that live in an ecosystem. It also includes the variety of genes within a species and the variety of ecosystems (such as forests, grasslands, deserts, and oceans) that exist in a region or on Earth as a whole. Biodiversity is important for maintaining the health and balance of ecosystems, providing resources and services such as food, clean water, and pollination, and contributing to the discovery of new medicines and other useful products. The loss of biodiversity can have negative impacts on the functioning of ecosystems and the services they provide, and can threaten the survival of species and the livelihoods of people who depend on them.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

I'm sorry for any confusion, but "Oceans and Seas" are not medical terms. Generally speaking, an ocean is a large body of saltwater that covers a majority of the Earth's surface, and a sea is a smaller body of saltwater that may be partially enclosed by land. However, if you have any questions related to marine biology or environmental science, I would be happy to try and help answer those for you!

Carotenoids are a class of pigments that are naturally occurring in various plants and fruits. They are responsible for the vibrant colors of many vegetables and fruits, such as carrots, pumpkins, tomatoes, and leafy greens. There are over 600 different types of carotenoids, with beta-carotene, alpha-carotene, lycopene, lutein, and zeaxanthin being some of the most well-known.

Carotenoids have antioxidant properties, which means they can help protect the body's cells from damage caused by free radicals. Some carotenoids, such as beta-carotene, can be converted into vitamin A in the body, which is important for maintaining healthy vision, skin, and immune function. Other carotenoids, such as lycopene and lutein, have been studied for their potential role in preventing chronic diseases, including cancer and heart disease.

In addition to being found in plant-based foods, carotenoids can also be taken as dietary supplements. However, it is generally recommended to obtain nutrients from whole foods rather than supplements whenever possible, as food provides a variety of other beneficial compounds that work together to support health.

Bacterial toxins are poisonous substances produced and released by bacteria. They can cause damage to the host organism's cells and tissues, leading to illness or disease. Bacterial toxins can be classified into two main types: exotoxins and endotoxins.

Exotoxins are proteins secreted by bacterial cells that can cause harm to the host. They often target specific cellular components or pathways, leading to tissue damage and inflammation. Some examples of exotoxins include botulinum toxin produced by Clostridium botulinum, which causes botulism; diphtheria toxin produced by Corynebacterium diphtheriae, which causes diphtheria; and tetanus toxin produced by Clostridium tetani, which causes tetanus.

Endotoxins, on the other hand, are components of the bacterial cell wall that are released when the bacteria die or divide. They consist of lipopolysaccharides (LPS) and can cause a generalized inflammatory response in the host. Endotoxins can be found in gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa.

Bacterial toxins can cause a wide range of symptoms depending on the type of toxin, the dose, and the site of infection. They can lead to serious illnesses or even death if left untreated. Vaccines and antibiotics are often used to prevent or treat bacterial infections and reduce the risk of severe complications from bacterial toxins.

Plankton is not a medical term, but it is a term used in the field of marine biology. Plankton are tiny organisms that live in water and are unable to move independently against the current or tide. They include both plants (phytoplankton) and animals (zooplankton). Phytoplankton are photosynthetic and serve as the base of the ocean food chain, while zooplankton consume phytoplankton and in turn serve as a food source for larger animals. Plankton are important for understanding the health and productivity of aquatic ecosystems.

The Baltic States, also known as the Baltic countries, refer to a geopolitical region in Northern Europe that comprises three sovereign states: Estonia, Latvia, and Lithuania. These nations are located along the eastern coast of the Baltic Sea, hence their name. The term "Baltic States" became widely used during the 20th century to refer to these countries, which share historical, cultural, and linguistic ties.

It is important to note that the Baltic States should not be confused with the geographical region known as the Baltic region or Balticum, which includes parts of Russia, Poland, Belarus, Finland, Sweden, and Denmark, in addition to the three Baltic States.

The medical relevance of the Baltic States may include:

1. Sharing similar public health issues and challenges due to geographical proximity and historical context.
2. Collaboration in medical research, education, and healthcare policies.
3. Participation in international health organizations and agreements.
4. Exposure to common environmental factors that might impact public health, such as pollution in the Baltic Sea.

Peptide synthases are a group of enzymes that catalyze the formation of peptide bonds between specific amino acids to produce peptides or proteins. They are responsible for the biosynthesis of many natural products, including antibiotics, bacterial toxins, and immunomodulatory peptides.

Peptide synthases are large, complex enzymes that consist of multiple domains and modules, each of which is responsible for activating and condensing specific amino acids. The activation of amino acids involves the formation of an aminoacyl-adenylate intermediate, followed by transfer of the activated amino acid to a thiol group on the enzyme. The condensation of two activated amino acids results in the formation of a peptide bond and release of adenosine monophosphate (AMP) and pyrophosphate.

Peptide synthases are found in all three domains of life, but are most commonly associated with bacteria and fungi. They play important roles in the biosynthesis of many natural products that have therapeutic potential, making them targets for drug discovery and development.

## I'm sorry for any confusion, but the term 'Bahamas' is not a medical definition. It refers to a country in the Atlantic Ocean, north of Cuba and northwest of the Turks and Caicos Islands. The Bahamas is an archipelago of about 700 islands and cays, and is known for its beautiful beaches, coral reefs, and tropical climate.

If you have any medical question or looking for a medical term, please provide more information so I can give you accurate and helpful information.

Biomass is defined in the medical field as a renewable energy source derived from organic materials, primarily plant matter, that can be burned or converted into fuel. This includes materials such as wood, agricultural waste, and even methane gas produced by landfills. Biomass is often used as a source of heat, electricity, or transportation fuels, and its use can help reduce greenhouse gas emissions and dependence on fossil fuels.

In the context of human health, biomass burning can have both positive and negative impacts. On one hand, biomass can provide a source of heat and energy for cooking and heating, which can improve living standards and reduce exposure to harmful pollutants from traditional cooking methods such as open fires. On the other hand, biomass burning can also produce air pollution, including particulate matter and toxic chemicals, that can have negative effects on respiratory health and contribute to climate change.

Therefore, while biomass has the potential to be a sustainable and low-carbon source of energy, it is important to consider the potential health and environmental impacts of its use and implement appropriate measures to minimize any negative effects.

Horizontal gene transfer (HGT), also known as lateral gene transfer, is the movement of genetic material between organisms in a manner other than from parent to offspring (vertical gene transfer). In horizontal gene transfer, an organism can take up genetic material directly from its environment and incorporate it into its own genome. This process is common in bacteria and archaea, but has also been observed in eukaryotes including plants and animals.

Horizontal gene transfer can occur through several mechanisms, including:

1. Transformation: the uptake of free DNA from the environment by a cell.
2. Transduction: the transfer of genetic material between cells by a virus (bacteriophage).
3. Conjugation: the direct transfer of genetic material between two cells in physical contact, often facilitated by a conjugative plasmid or other mobile genetic element.

Horizontal gene transfer can play an important role in the evolution and adaptation of organisms, allowing them to acquire new traits and functions rapidly. It is also of concern in the context of genetically modified organisms (GMOs) and antibiotic resistance, as it can facilitate the spread of genes that confer resistance or other undesirable traits.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

"Nostoc commune" is not a medical term, but a scientific name for a type of cyanobacteria (blue-green algae). It's commonly found in various environments such as freshwater, soil, and on rocks. This organism can form colonies that appear as slimy, dark green or black mats.

While not a direct medical term, certain species of cyanobacteria, including Nostoc commune, can produce toxins that may pose health risks to humans and animals if ingested, inhaled, or contact skin. These toxins can cause various symptoms, such as rashes, nausea, vomiting, diarrhea, and liver damage. However, not all strains of Nostoc commune produce toxins, and the health risks associated with this specific species are relatively low compared to other cyanobacteria.

Nonetheless, it is essential to be aware of potential health hazards when encountering cyanobacterial blooms in recreational water bodies or drinking water sources and follow local guidelines for reporting and managing such incidents.

Diatoms are a major group of microscopic algae (single-celled organisms) that are widely distributed in both marine and freshwater environments. They are an important part of the aquatic food chain, serving as primary producers that convert sunlight and nutrients into organic matter through photosynthesis.

Diatoms have unique cell walls made of biogenic silica, which gives them a glass-like appearance. These cell walls often have intricate patterns and structures, making diatoms an important group in the study of nanotechnology and materials science. Additionally, diatomaceous earth, a sedimentary rock formed from fossilized diatom shells, has various industrial uses such as filtration, abrasives, and insecticides.

Diatoms are also significant in the Earth's carbon cycle, contributing to the sequestration of atmospheric carbon dioxide through their photosynthetic activities. They play a crucial role in the ocean's biological pump, which helps regulate the global climate by transporting carbon from the surface ocean to the deep sea.

Dinoflagellida is a large group of mostly marine planktonic protists, many of which are bioluminescent. Some dinoflagellates are responsible for harmful algal blooms (HABs), also known as "red tides," which can produce toxins that affect marine life and human health.

Dinoflagellates are characterized by two flagella, or whip-like structures, that they use for movement. They have complex cell structures, including a unique structure called the nucleomorph, which is the remnant of a former endosymbiotic event where another eukaryotic cell was engulfed and became part of the dinoflagellate's cell.

Dinoflagellates are important contributors to the marine food chain, serving as both primary producers and consumers. Some species form symbiotic relationships with other marine organisms, such as corals, providing them with nutrients in exchange for protection and other benefits.

'Daphnia' is not a medical term, but rather it refers to a group of small, planktonic crustaceans commonly known as water fleas. They are widely distributed in various freshwater environments and play an important role in the aquatic food chain as they serve as a food source for many larger animals such as fish.

While Daphnia may not have a direct medical definition, there has been some research into their potential use in biomedical applications due to their sensitivity to environmental changes. For instance, they have been used as indicators of water quality and toxicity levels in ecotoxicological studies. However, it is important to note that Daphnia itself is not a medical term or concept.

I believe there may be some confusion in your question as "caves" are not a medical term. A cave is a natural underground space that is large enough for a person to enter and can form in a variety of ways, such as the dissolution of limestone by acidic groundwater or the collapse of a volcanic tube. If you have any questions about geology or speleology (the study of caves), I would be happy to try to help answer those!

Biological evolution is the change in the genetic composition of populations of organisms over time, from one generation to the next. It is a process that results in descendants differing genetically from their ancestors. Biological evolution can be driven by several mechanisms, including natural selection, genetic drift, gene flow, and mutation. These processes can lead to changes in the frequency of alleles (variants of a gene) within populations, resulting in the development of new species and the extinction of others over long periods of time. Biological evolution provides a unifying explanation for the diversity of life on Earth and is supported by extensive evidence from many different fields of science, including genetics, paleontology, comparative anatomy, and biogeography.

Cycadophyta, also known as cycads, is a division of plants that includes several species of mostly tropical and subtropical gymnosperms. These plants are characterized by a large crown of compound leaves, a stout trunk often undergrown by other plants, and a cone-like reproductive structure. Cycads are considered to be living fossils because they have remained relatively unchanged for millions of years and are thought to resemble some of the earliest seed plants. They are found in scattered locations around the world, particularly in the Americas, Africa, Asia, and the Pacific Islands. Some cycad species are endangered due to habitat loss and overcollection for ornamental purposes.

I'm sorry for any confusion, but "Prochloron" does not have a widely accepted medical definition in the context of human health or diseases. It is a genus name in prokaryotic taxonomy, referring to a group of cyanobacteria (blue-green algae) that are capable of photosynthesis and contain chlorophyll a and b, similar to plants. They are often found as symbionts in marine animals, particularly in certain species of ascidians (sea squirts). If you have any questions related to healthcare, medicine, or biology, please feel free to ask!

"Nuphar" is a genus of aquatic plants in the family Nymphaeaceae, also known as water lilies. It includes several species that are found in freshwater habitats around the world. These plants have large, round leaves that float on the surface of the water and white or yellow flowers that bloom above the water's surface.

However, "Nuphar" is not a medical term and does not have a specific medical definition. If you are looking for information about a medical condition or treatment, I would be happy to help if you can provide more context or clarify your question.

Biosynthetic pathways refer to the series of biochemical reactions that occur within cells and living organisms, leading to the production (synthesis) of complex molecules from simpler precursors. These pathways involve a sequence of enzyme-catalyzed reactions, where each reaction builds upon the product of the previous one, ultimately resulting in the formation of a specific biomolecule.

Examples of biosynthetic pathways include:

1. The Krebs cycle (citric acid cycle) - an essential metabolic pathway that generates energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins.
2. Glycolysis - a process that breaks down glucose into pyruvate to generate ATP and NADH.
3. Gluconeogenesis - the synthesis of glucose from non-carbohydrate precursors such as lactate, pyruvate, glycerol, and certain amino acids.
4. Fatty acid synthesis - a process that produces fatty acids from acetyl-CoA and malonyl-CoA through a series of reduction reactions.
5. Amino acid synthesis - the production of various amino acids from simpler precursors, often involving intermediates in central metabolic pathways like the Krebs cycle or glycolysis.
6. Steroid biosynthesis - the formation of steroids from simple precursors such as cholesterol and its derivatives.
7. Terpenoid biosynthesis - the production of terpenes, terpenoids, and sterols from isoprene units (isopentenyl pyrophosphate).
8. Nucleotide synthesis - the generation of nucleotides, the building blocks of DNA and RNA, through complex biochemical pathways involving various precursors and cofactors.

Understanding biosynthetic pathways is crucial for comprehending cellular metabolism, developing drugs that target specific metabolic processes, and engineering organisms with desired traits in synthetic biology and metabolic engineering applications.

I'm sorry for any confusion, but "Palau" is not a medical term. It is the name of a country in the Western Pacific Ocean, consisting of around 340 islands. If you have any questions about medical terminology or health-related topics, please let me know and I would be happy to help.

Water pollutants refer to any substances or materials that contaminate water sources and make them unsafe or unsuitable for use. These pollutants can include a wide range of chemicals, microorganisms, and physical particles that can have harmful effects on human health, aquatic life, and the environment as a whole. Examples of water pollutants include heavy metals like lead and mercury, industrial chemicals such as polychlorinated biphenyls (PCBs) and dioxins, agricultural runoff containing pesticides and fertilizers, sewage and wastewater, oil spills, and microplastics. Exposure to water pollutants can cause a variety of health problems, ranging from minor irritations to serious illnesses or even death in extreme cases. Additionally, water pollution can have significant impacts on the environment, including harming or killing aquatic life, disrupting ecosystems, and reducing biodiversity.

Tropane alkaloids are a class of naturally occurring compounds that contain a tropane ring in their chemical structure. This ring is composed of a seven-membered ring with two nitrogen atoms, one of which is part of a piperidine ring. Tropane alkaloids are found in various plants, particularly those in the Solanaceae family, which includes nightshade, belladonna, and datura. Some well-known tropane alkaloids include atropine, scopolamine, and cocaine. These compounds have diverse pharmacological activities, such as anticholinergic, local anesthetic, and central nervous system stimulant effects.

Zooplankton are not a medical term, but they are an important concept in biology and ecology. Zooplankton refer to small, drifting or floating animals that live in watery environments such as oceans, seas, and freshwater bodies. They include various organisms like tiny crustaceans (such as copepods and krill), jellyfish, arrow worms, and larvae of larger aquatic animals. Zooplankton play a crucial role in food chains and nutrient cycling within aquatic ecosystems.

I'm sorry for any confusion, but "Wyoming" is not a medical term or condition. It is the name of a state, the 44th state to be admitted into the United States of America. Wyoming is located in the western part of the country and is known for its natural beauty, including Yellowstone National Park, which is partially located within its borders. If you have any questions about medical terms or conditions, I'd be happy to try to help answer those for you!

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

'Beggiatoa' is a genus of large, filamentous, sulfur-oxidizing bacteria that are commonly found in aquatic and terrestrial environments. These bacteria are capable of oxidizing reduced sulfur compounds, such as hydrogen sulfide (H2S), to produce elemental sulfur (S) and sulfate (SO42-). The deposited sulfur granules can often be seen inside the cells, giving them a characteristic appearance.

Beggiatoa species are typically found in habitats with fluctuating redox conditions, such as sediments, microbial mats, and decaying organic matter. They play an essential role in the biogeochemical cycling of sulfur and carbon in these environments. Some species can also fix atmospheric nitrogen, contributing to the nitrogen cycle.

These bacteria can form extensive mats or filamentous networks, which can be visible to the naked eye. They are often associated with other microorganisms, forming complex consortia known as microbial mats or biofilms. The study of Beggiatoa species and their ecology has provided valuable insights into the functioning of microbially mediated processes in various environments.

Carbon-nitrogen (C-N) lyases are a class of enzymes that catalyze the breakdown of a carbon-nitrogen bond, releasing an ammonia molecule and leaving a double bond. These enzymes play important roles in various biological processes, such as the biosynthesis and degradation of amino acids, nucleotides, and other biomolecules.

C-N lyases are classified based on the type of bond they cleave and the cofactors or prosthetic groups they use to catalyze the reaction. Some examples of C-N lyases include:

1. Alanine racemase: This enzyme catalyzes the conversion of L-alanine to D-alanine, which is an important component of bacterial cell walls.
2. Aspartate transcarbamylase: This enzyme catalyzes the transfer of a carbamoyl group from carbamoyl phosphate to aspartate, forming N-carbamoyl aspartate and inorganic phosphate. It is an important enzyme in the biosynthesis of pyrimidines.
3. Diaminopimelate decarboxylase: This enzyme catalyzes the decarboxylation of meso-diaminopimelate to form L-lysine, which is an essential amino acid for humans.
4. Glutamate decarboxylase: This enzyme catalyzes the decarboxylation of glutamate to form γ-aminobutyric acid (GABA), a neurotransmitter in the brain.
5. Histidine decarboxylase: This enzyme catalyzes the decarboxylation of histidine to form histamine, which is involved in various physiological processes such as immune response and allergic reactions.

C-N lyases are important targets for drug development, particularly in the treatment of bacterial infections and neurological disorders.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

Anthozoa is a major class of marine animals, which are exclusively aquatic and almost entirely restricted to shallow waters. They are classified within the phylum Cnidaria, which also includes corals, jellyfish, sea anemones, and hydroids. Anthozoans are characterized by their lack of medusa stage in their life cycle, as they exist solely as polyps.

This class is divided into two main subclasses: Hexacorallia (also known as Zoantharia) and Octocorallia (also known as Alcyonaria). The primary differences between these subclasses lie in the structure of their polyps and the composition of their skeletons.

1. Hexacorallia: These are commonly referred to as 'stony' or 'hard' corals, due to their calcium carbonate-based skeletons. They have a simple polyp structure with six-fold symmetry (hence the name Hexacorallia), featuring 6 tentacles around the mouth opening. Examples of Hexacorallia include reef-building corals, sea fans, and black corals.
2. Octocorallia: These are also called 'soft' corals or 'leather' corals because they lack a calcium carbonate skeleton. Instead, their supporting structures consist of proteins and other organic compounds. Octocorallia polyps exhibit eight-fold symmetry (hence the name Octocorallia), with eight tentacles around the mouth opening. Examples of Octocorallia include sea fans, sea whips, and blue corals.

Anthozoa species are primarily found in tropical and subtropical oceans, but some can be found in colder, deeper waters as well. They play a crucial role in marine ecosystems by providing habitats and shelter for various other marine organisms, particularly on coral reefs. Additionally, they contribute to the formation of limestone deposits through their calcium carbonate-based skeletons.

The ribosomal spacer in DNA refers to the non-coding sequences of DNA that are located between the genes for ribosomal RNA (rRNA). These spacer regions are present in the DNA of organisms that have a nuclear genome, including humans and other animals, plants, and fungi.

In prokaryotic cells, such as bacteria, there are two ribosomal RNA genes, 16S and 23S, separated by a spacer region known as the intergenic spacer (IGS). In eukaryotic cells, there are multiple copies of ribosomal RNA genes arranged in clusters called nucleolar organizer regions (NORs), which are located on the short arms of several acrocentric chromosomes. Each cluster contains hundreds to thousands of copies of the 18S, 5.8S, and 28S rRNA genes, separated by non-transcribed spacer regions known as internal transcribed spacers (ITS) and external transcribed spacers (ETS).

The ribosomal spacer regions in DNA are often used as molecular markers for studying evolutionary relationships among organisms because they evolve more rapidly than the rRNA genes themselves. The sequences of these spacer regions can be compared among different species to infer their phylogenetic relationships and to estimate the time since they diverged from a common ancestor. Additionally, the length and composition of ribosomal spacers can vary between individuals within a species, making them useful for studying genetic diversity and population structure.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

'Biota' is a term that refers to the total collection of living organisms in a particular habitat, ecosystem, or region. It includes all forms of life such as plants, animals, fungi, bacteria, and other microorganisms. Biota can be used to describe the communities of living things in a specific area, like a forest biota or marine biota, and it can also refer to the study of these organisms and their interactions with each other and their environment. In medical contexts, 'biota' may specifically refer to the microorganisms that inhabit the human body, such as the gut microbiota.

Archaea are a domain of single-celled microorganisms that lack membrane-bound nuclei and other organelles. They are characterized by the unique structure of their cell walls, membranes, and ribosomes. Archaea were originally classified as bacteria, but they differ from bacteria in several key ways, including their genetic material and metabolic processes.

Archaea can be found in a wide range of environments, including some of the most extreme habitats on Earth, such as hot springs, deep-sea vents, and highly saline lakes. Some species of Archaea are able to survive in the absence of oxygen, while others require oxygen to live.

Archaea play important roles in global nutrient cycles, including the nitrogen cycle and the carbon cycle. They are also being studied for their potential role in industrial processes, such as the production of biofuels and the treatment of wastewater.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Acetylene is defined as a colorless, highly flammable gas with a distinctive odor, having the chemical formula C2H2. It is the simplest and lightest hydrocarbon in which two carbon atoms are bonded together by a triple bond. Acetylene is used as a fuel in welding and cutting torches, and it can also be converted into other chemicals, such as vinyl acetate and acetic acid. In medical terms, acetylene is not a substance that is commonly used or discussed.

I'm sorry for any confusion, but "Solar Energy" is not a term typically used in medical definitions. Solar energy refers to the energy that comes from the sun and can be captured and converted into thermal or electrical energy. It is not a medical concept or treatment. If you have any questions related to health or medicine, I'd be happy to try to help answer those for you!

Intramolecular lyases are a type of enzyme that catalyzes the breakdown of a molecule by removing a group of atoms from within the same molecule, creating a new chemical bond in the process. These enzymes specifically cleave a molecule through an intramolecular mechanism, meaning they act on a single substrate molecule. Intramolecular lyases are involved in various biological processes, such as DNA replication, repair, and recombination. They play a crucial role in maintaining the integrity of genetic material by removing or adding specific groups of atoms to DNA or RNA molecules.

"Energy transfer" is a general term used in the field of physics and physiology, including medical sciences, to describe the process by which energy is passed from one system, entity, or location to another. In the context of medicine, energy transfer often refers to the ways in which cells and organ systems exchange and utilize various forms of energy for proper functioning and maintenance of life.

In a more specific sense, "energy transfer" may refer to:

1. Bioenergetics: This is the study of energy flow through living organisms, including the conversion, storage, and utilization of energy in biological systems. Key processes include cellular respiration, photosynthesis, and metabolic pathways that transform energy into forms useful for growth, maintenance, and reproduction.
2. Electron transfer: In biochemistry, electrons are transferred between molecules during redox reactions, which play a crucial role in energy production and consumption within cells. Examples include the electron transport chain (ETC) in mitochondria, where high-energy electrons from NADH and FADH2 are passed along a series of protein complexes to generate an electrochemical gradient that drives ATP synthesis.
3. Heat transfer: This is the exchange of thermal energy between systems or objects due to temperature differences. In medicine, heat transfer can be relevant in understanding how body temperature is regulated and maintained, as well as in therapeutic interventions such as hyperthermia or cryotherapy.
4. Mechanical energy transfer: This refers to the transmission of mechanical force or motion from one part of the body to another. For instance, muscle contractions generate forces that are transmitted through tendons and bones to produce movement and maintain posture.
5. Radiation therapy: In oncology, ionizing radiation is used to treat cancer by transferring energy to malignant cells, causing damage to their DNA and leading to cell death or impaired function.
6. Magnetic resonance imaging (MRI): This non-invasive diagnostic technique uses magnetic fields and radio waves to excite hydrogen nuclei in the body, which then release energy as they return to their ground state. The resulting signals are used to generate detailed images of internal structures and tissues.

In summary, "energy transfer" is a broad term that encompasses various processes by which different forms of energy (thermal, mechanical, electromagnetic, etc.) are exchanged or transmitted between systems or objects in the context of medicine and healthcare.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Extreme cold is a term used to describe abnormally low temperatures that can be harmful or dangerous to human health. According to the National Weather Service, "extreme cold" is defined as temperatures that fall below 0 degrees Fahrenheit (-18 degrees Celsius) or wind chill readings that are lower than -20 degrees Fahrenheit (-29 degrees Celsius).

Prolonged exposure to extreme cold can lead to hypothermia, which occurs when the body loses heat faster than it can produce it, causing a dangerously low body temperature. Symptoms of hypothermia include shivering, exhaustion, confusion, fumbling hands, memory loss, slurred speech, and eventually unconsciousness.

Extreme cold can also cause frostbite, which is the freezing of the skin and underlying tissues. Frostbite typically affects the extremities, such as the fingers, toes, ears, and nose, and can cause numbness, tingling, aching, and blistering of the skin. In severe cases, frostbite can lead to tissue damage and loss of limbs.

To protect against extreme cold, it is important to dress in layers, wear warm clothing, cover exposed skin, stay dry, and avoid prolonged exposure to cold temperatures. It is also recommended to stay indoors during extreme cold weather events and to have a emergency plan in place in case of power outages or other emergencies.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Chlorobi, also known as green sulfur bacteria, are a group of anaerobic, phototrophic bacteria that contain chlorophylls a and b, as well as bacteriochlorophyll c, d, or e. They obtain energy through photosynthesis, using light as an energy source and sulfide or other reduced sulfur compounds as electron donors. These bacteria are typically found in environments with limited sunlight and high sulfide concentrations, such as in sediments of stratified water bodies or in microbial mats. They play a significant role in the global carbon and sulfur cycles.

I'm sorry for any confusion, but "geologic sediments" is not a term used in medical definitions. Geological sediments are deposits of material that accumulate over time, usually in layers, as a result of natural geological processes such as weathering, erosion, and deposition. These sediments can eventually become rock formations and provide important clues about the Earth's history, including information about past climates, environments, and life on Earth.

Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks and in the shells of many marine animals. As a mineral, it is known as calcite or aragonite.

In the medical field, calcium carbonate is often used as a dietary supplement to prevent or treat calcium deficiency. It is also commonly used as an antacid to neutralize stomach acid and relieve symptoms of heartburn, acid reflux, and indigestion.

Calcium carbonate works by reacting with hydrochloric acid in the stomach to form water, carbon dioxide, and calcium chloride. This reaction helps to raise the pH level in the stomach and neutralize excess acid.

It is important to note that excessive use of calcium carbonate can lead to hypercalcemia, a condition characterized by high levels of calcium in the blood, which can cause symptoms such as nausea, vomiting, constipation, confusion, and muscle weakness. Therefore, it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Desiccation is a medical term that refers to the process of extreme dryness or the state of being dried up. It is the removal of water or moisture from an object or tissue, which can lead to its dehydration and preservation. In medicine, desiccation may be used as a therapeutic technique for treating certain conditions, such as drying out wet wounds or preventing infection in surgical instruments. However, desiccation can also have harmful effects on living tissues, leading to cell damage or death.

In a broader context, desiccation is also used to describe the process of drying up of an organ, tissue, or body part due to various reasons such as exposure to air, heat, or certain medical conditions that affect moisture regulation in the body. For example, diabetic patients may experience desiccation of their skin due to decreased moisture production and increased evaporation caused by high blood sugar levels. Similarly, people living in dry climates or using central heating systems may experience desiccation of their mucous membranes, leading to dryness of the eyes, nose, and throat.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Algal proteins are a type of protein that are derived from algae, which are simple, plant-like organisms that live in water. These proteins can be extracted and isolated from the algae through various processing methods and can then be used as a source of nutrition for both humans and animals.

Algal proteins are considered to be a complete protein source because they contain all of the essential amino acids that the body cannot produce on its own. They are also rich in other nutrients, such as vitamins, minerals, and antioxidants. Some species of algae, such as spirulina and chlorella, have particularly high protein contents, making them a popular choice for use in dietary supplements and functional foods.

In addition to their nutritional benefits, algal proteins are also being studied for their potential therapeutic uses. For example, some research suggests that they may have anti-inflammatory, antioxidant, and immune-boosting properties. However, more research is needed to confirm these potential health benefits and to determine the optimal dosages and methods of use.

Carbon dioxide (CO2) is a colorless, odorless gas that is naturally present in the Earth's atmosphere. It is a normal byproduct of cellular respiration in humans, animals, and plants, and is also produced through the combustion of fossil fuels such as coal, oil, and natural gas.

In medical terms, carbon dioxide is often used as a respiratory stimulant and to maintain the pH balance of blood. It is also used during certain medical procedures, such as laparoscopic surgery, to insufflate (inflate) the abdominal cavity and create a working space for the surgeon.

Elevated levels of carbon dioxide in the body can lead to respiratory acidosis, a condition characterized by an increased concentration of carbon dioxide in the blood and a decrease in pH. This can occur in conditions such as chronic obstructive pulmonary disease (COPD), asthma, or other lung diseases that impair breathing and gas exchange. Symptoms of respiratory acidosis may include shortness of breath, confusion, headache, and in severe cases, coma or death.

Cytochrome c6 is a type of cytochrome protein that contains heme as a cofactor and functions as an electron transporter in the electron transport chain during photosynthesis. It is found primarily in certain bacteria, algae, and some lower eukaryotes. The "c6" designation refers to its molecular weight and structure, which is similar to that of cytochrome c found in mitochondria. However, cytochrome c6 has a higher redox potential than cytochrome c and plays a role in the water-splitting reaction during photosynthesis. It is involved in the transfer of electrons from the cytochrome b6f complex to the photosystem I.

Fluorescence is not a medical term per se, but it is widely used in the medical field, particularly in diagnostic tests, medical devices, and research. Fluorescence is a physical phenomenon where a substance absorbs light at a specific wavelength and then emits light at a longer wavelength. This process, often referred to as fluorescing, results in the emission of visible light that can be detected and measured.

In medical terms, fluorescence is used in various applications such as:

1. In-vivo imaging: Fluorescent dyes or probes are introduced into the body to highlight specific structures, cells, or molecules during imaging procedures. This technique can help doctors detect and diagnose diseases such as cancer, inflammation, or infection.
2. Microscopy: Fluorescence microscopy is a powerful tool for visualizing biological samples at the cellular and molecular level. By labeling specific proteins, nucleic acids, or other molecules with fluorescent dyes, researchers can observe their distribution, interactions, and dynamics within cells and tissues.
3. Surgical guidance: Fluorescence-guided surgery is a technique where surgeons use fluorescent markers to identify critical structures such as blood vessels, nerves, or tumors during surgical procedures. This helps ensure precise and safe surgical interventions.
4. Diagnostic tests: Fluorescence-based assays are used in various diagnostic tests to detect and quantify specific biomarkers or analytes. These assays can be performed using techniques such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), or flow cytometry.

In summary, fluorescence is a physical process where a substance absorbs and emits light at different wavelengths. In the medical field, this phenomenon is harnessed for various applications such as in-vivo imaging, microscopy, surgical guidance, and diagnostic tests.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

Biliverdine is a greenish pigment that is a byproduct of the breakdown of heme, which is a component of hemoglobin in red blood cells. It is formed when bilirubin, another byproduct of heme degradation, is reduced in the liver. Biliverdine is then converted back to bilirubin and excreted from the body as part of bile.

Elevated levels of biliverdine in the blood can indicate liver dysfunction or other medical conditions that affect the breakdown of heme. It may also be present in high concentrations in certain types of hemolytic anemia, where there is excessive destruction of red blood cells and subsequent release of large amounts of heme into the circulation.

Cytochrome f is a type of cytochrome protein that contains heme as a cofactor and plays a role in the electron transport chain during photosynthesis. It is specifically located in the cytochrome b6f complex, which is found in the thylakoid membrane of chloroplasts in plants and algae.

Cytochrome f functions as a ubiquinol-plastoquinone oxidoreductase, accepting electrons from ubiquinol and transferring them to plastoquinone. This electron transfer process is an essential step in the generation of a proton gradient across the thylakoid membrane, which drives the synthesis of ATP during photosynthesis.

Deficiency or mutation in cytochrome f can lead to impaired photosynthetic efficiency and reduced growth in plants.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

I'm sorry for any confusion, but "bornanes" is not a medical term or concept. It is a chemical term that refers to a class of compounds called bornane derivatives, which are structurally related to the naturally occurring compound bornane. These compounds have various uses in chemistry and materials science, but they do not have specific relevance to medicine or human health.

Hydrogenase is not a medical term per se, but a biochemical term. It is used to describe an enzyme that catalyzes the reversible conversion between molecular hydrogen (H2) and protons (H+) or vice versa. These enzymes are found in certain bacteria, algae, and archaea, and they play a crucial role in their energy metabolism, particularly in processes like hydrogen production and consumption.

While not directly related to medical terminology, understanding the function of hydrogenase can be important in fields such as microbiology, molecular biology, and environmental science, which can have implications for human health in areas like infectious diseases, biofuels, and waste management.

Plastoquinone is a lipid-soluble electron carrier in the photosynthetic electron transport chain located in the thylakoid membrane of chloroplasts. It plays a crucial role in both the light-dependent reactions of photosynthesis and cyclic photophosphorylation.

In more detail, plastoquinone exists in an oxidized (PQ) and reduced form (PQH2). In its oxidized state, it accepts electrons from cytochrome b6f complex during the transfer of electrons from photosystem II to photosystem I. Once plastoquinone accepts two electrons and two protons, it converts into its reduced form, plastoquinol (PQH2). Plastoquinol then donates the electrons to the cytochrome b6f complex, which in turn passes them on to the next carrier in the electron transport chain.

Plastoquinone is a member of the quinone family and is synthesized via the methylerythritol 4-phosphate (MEP) pathway, also known as the non-mevalonate pathway.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

The carbon cycle is a biogeochemical cycle that describes the movement of carbon atoms between the Earth's land, atmosphere, and oceans. It involves the exchange of carbon between various reservoirs, including the biosphere (living organisms), pedosphere (soil), lithosphere (rocks and minerals), hydrosphere (water), and atmosphere.

The carbon cycle is essential for the regulation of Earth's climate and the functioning of ecosystems. Carbon moves between these reservoirs through various processes, including photosynthesis, respiration, decomposition, combustion, and weathering. Plants absorb carbon dioxide from the atmosphere during photosynthesis and convert it into organic matter, releasing oxygen as a byproduct. When plants and animals die, they decompose, releasing the stored carbon back into the atmosphere or soil.

Human activities, such as burning fossil fuels and deforestation, have significantly altered the natural carbon cycle, leading to an increase in atmospheric carbon dioxide concentrations and contributing to global climate change. Therefore, understanding the carbon cycle and its processes is crucial for developing strategies to mitigate the impacts of climate change and promote sustainable development.

Porifera, also known as sponges, is a phylum of multicellular aquatic organisms characterized by having pores in their bodies. These pores allow water to circulate through the body, bringing in food and oxygen while expelling waste products. Sponges do not have true tissues or organs; instead, they are composed of specialized cells that perform specific functions. They are generally sessile (non-mobile) and live attached to rocks, coral reefs, or other underwater structures. Some species can be quite large, while others are microscopic in size. Sponges have a long fossil record dating back over 500 million years and play important roles in marine ecosystems as filter feeders and habitat providers for many other marine organisms.

Shellfish poisoning refers to illnesses caused by the consumption of shellfish contaminated with harmful toxins produced by certain types of microscopic algae. These toxins can accumulate in various species of shellfish, including mussels, clams, oysters, and scallops, and can cause a range of symptoms depending on the specific type of toxin involved.

There are several types of shellfish poisoning, each caused by different groups of algal toxins:

1. Paralytic Shellfish Poisoning (PSP): Caused by saxitoxins produced by dinoflagellates such as Alexandrium spp., Gymnodinium catenatum, and Pyrodinium bahamense. Symptoms include tingling or numbness of the lips, tongue, and fingers, followed by weakness, difficulty swallowing, and potentially paralysis and respiratory failure in severe cases.
2. Amnesic Shellfish Poisoning (ASP): Caused by domoic acid produced by diatoms such as Pseudo-nitzschia spp. Symptoms include gastrointestinal distress, memory loss, disorientation, seizures, and in severe cases, coma or death.
3. Diarrheal Shellfish Poisoning (DSP): Caused by okadaic acid and its derivatives produced by dinoflagellates such as Dinophysis spp. and Prorocentrum spp. Symptoms include diarrhea, nausea, vomiting, abdominal cramps, and occasionally chills and fever.
4. Neurotoxic Shellfish Poisoning (NSP): Caused by brevetoxins produced by dinoflagellates such as Karenia brevis. Symptoms include reversible neurological symptoms like tingling or numbness of the lips, tongue, and fingers, as well as respiratory irritation, coughing, and chest tightness in severe cases.
5. Azaspiracid Shellfish Poisoning (AZP): Caused by azaspiracids produced by dinoflagellates such as Azadinium spp. Symptoms include gastrointestinal distress, nausea, vomiting, diarrhea, and abdominal pain.

It is essential to note that shellfish contaminated with these toxins may not show visible signs of spoilage or illness-causing bacteria; therefore, it is crucial to avoid consuming them during harmful algal blooms (HABs) or red tide events. Public health authorities often issue warnings and close shellfish beds when HABs are detected in the water. Always check local advisories before consuming shellfish, especially if you have harvested them yourself. Cooking does not destroy these toxins, so they remain harmful even after cooking.

'Hot Springs' are a type of geothermal feature where water is heated by the Earth's internal heat and emerges from the ground at temperatures greater than the surrounding air temperature. The water in hot springs can range in temperature from warm to extremely hot, and it is often rich in minerals such as calcium, magnesium, sulfur, and sodium.

People have been using hot springs for thousands of years for various purposes, including relaxation, recreation, and therapeutic benefits. The heat and mineral content of the water can help to soothe sore muscles, improve circulation, and promote healing in some cases. However, it is important to note that not all hot springs are safe for bathing, as some may contain harmful bacteria or pollutants. It is always recommended to check with local authorities before using a hot spring for therapeutic purposes.

Cladocera is a order of small, freshwater crustaceans that are characterized by their compound eyes and leaf-like appendages. They are also known as water fleas due to their jumping motion in the water. Cladocerans are an important part of the aquatic food chain, serving as a food source for larger animals such as fish. They are often used as bioindicators of water quality due to their sensitivity to environmental changes.

I'm sorry for any confusion, but "Rivers" is not a medical term or concept. It is a geographical term referring to large, flowing bodies of water that usually empty into a sea or an ocean. If you have any medical questions or terms you would like defined, I'd be happy to help!

Bile pigments are the yellow-brown colored end products of hemoglobin breakdown in the liver. Hemoglobin is a protein found in red blood cells that carries oxygen throughout the body. When these cells are broken down, heme (the non-protein part of hemoglobin) is converted into biliverdin, which is then converted into bilirubin. Bilirubin is further metabolized and excreted by the liver as a component of bile, a digestive fluid that helps break down fats in the small intestine.

Under normal conditions, the liver effectively removes and excretes bilirubin from the body through the bile ducts into the small intestine. However, when there is an overproduction of bilirubin or a problem with its elimination, it can accumulate in the blood, leading to jaundice (yellowing of the skin and eyes) and other symptoms associated with liver dysfunction.

In summary, bile pigments are the waste products formed during the breakdown of hemoglobin, primarily consisting of bilirubin, which is eliminated from the body via the liver and bile ducts.

I'm sorry for any confusion, but "Hydrogen" is not a medical term. It is a chemical element with the symbol H and atomic number 1. It is the lightest and most abundant chemical element in the universe, making up about 75% of its elemental mass.

In a medical context, hydrogen can be discussed in terms of molecular hydrogen (H2) which has been studied for potential therapeutic benefits. Some research explores its use as an antioxidant and anti-inflammatory agent, but more studies are needed to confirm these effects and understand the mechanisms behind them.

"Spinacia oleracea" is the scientific name for a plant species, not a medical term. It is commonly known as spinach, a leafy green vegetable. While spinach has many health benefits and is often recommended as part of a balanced diet, it does not have a specific medical definition.

Spinach is rich in various nutrients such as iron, calcium, vitamin A, vitamin C, and folic acid. It can contribute to overall health, support immune function, and provide antioxidant benefits. However, it is important to note that 'Spinacia oleracea' itself does not have a medical definition.

Cyanobacteria produce a range of toxins known as cyanotoxins that can pose a danger to humans and animals. Cyanobacteria are a ... Cyanobacteria have been found to play an important role in terrestrial habitats. It has been widely reported that cyanobacteria ... Cyanobacteria possess numerous E. coli-like DNA repair genes. Several DNA repair genes are highly conserved in cyanobacteria, ... Within the cyanobacteria, only a few lineages colonized the open ocean: Crocosphaera and relatives, cyanobacterium UCYN-A, ...
Recent studies have revealed that the spherical unicellular cyanobacterium Synechocystis sp. PCC 6803 exhibits a cell polarity ... Cyanobacteria are able to move directly towards or away from a light source, a process called phototaxis. ... Cyanobacteria in motion Curr Opin Plant Biol. 2017 Jun:37:109-115. doi: 10.1016/j.pbi.2017.03.018. Epub 2017 May 1. ... Cyanobacteria are able to move directly towards or away from a light source, a process called phototaxis. Recent studies have ...
Algae and cyanobacteria are simple, plant-like organisms that live in water. Algae and cyanobacteria can quickly grow out of ... Harmful algae and cyanobacteria, sometimes called blue-green algae, can produce toxins (poisons) that can make people and ... If you are notified that harmful algae or cyanobacteria are in a nearby body of water or in your drinking water supply, follow ... Learn more about symptoms caused by algae, cyanobacteria, and their toxins.. Animals can get very sick or even die within ...
Here we add to the discussion by combining, for the first time, satellite estimates of cyanobacteria blooms with output of a ... Despite their critical role, the controls on cyanobacteria blooms are not comprehensively understood yet. This limits the ... massive blooms and surface scums of cyanobacteria emerge regularly in the Baltic Sea. The bacteria can produce toxins and add ... Mazur-Marzec, H. et al. Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filam. cyanobacteria versus ...
Each of our cyanobacteria (blue-green algae) has enough material to use for a class of 30. Our cultures are viable, reliable, ...
Discover the potential of cyanobacteria in drug discovery and research. Explore their unique cell wall composition and innate ... Lipopolysaccharides in Cyanobacteria: A Brief Overview () Sabrina Gemma, Monica Molteni, Carlo Rossetti Dipartimento di ... LPSs from cyanobacteria have been studied to a minor extent than those from Gram-negative bacteria both from structural and ... Cyanobacteria are among the oldest and most successful living organisms on earth. They are a highly diversified group of ...
... cyanobacteria - Sharing our stories on preparing for and responding to public health events ... Tags #prepyourhealth, algae, beach, cyanobacteria, earthquake, evacuation, Skin Cancer, sun safety, Sunscreen, tsunami, water ...
In this Special Issue, we want to showcase cyanobacteria, cyanotoxins and other cyanobacteria secondary metabolites aside from ... Special Issue in Applied Sciences: Cyanobacteria and Their Toxins in the Environment. Special Issue in Plants: Learn from Plant ... Special Issue in Toxins: Bioactivity and Toxicity in Marine Cyanobacteria. Special Issue in Marine Drugs: Bioactive Compounds ... Cyanobacteria are well-known to inhabit and thrive in a wide variety of environments, however studies of these organisms and ...
A solution to these problems may lie in a strain of cyanobacteria with surprising properties. Cyanobacteria of the genus ... Cyanobacteria, also known as microalgae or blue-green algae, are among the most inconspicuous yet powerful players on our ... Cyanobacteria produce plastic naturally as a by-product of photosynthesis - and they do it in a sustainable and environmentally ... "Cyanobacteria are, in a sense, the hidden champions of our planet," Koch emphasizes. "This underscores the enormous potential ...
Article A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. SUMMARY A novel ... No comments were found for A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Be ... A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron 0 ... When light and temperature are physiologically suitable for cyanobacteria growth, bloom onset is regulated by the onset of ...
Select Cyanobacteria image collections. Phycotech Cyanobacteria (Blue Green) Genera Image Gallery. Toxic Cyanobacteria of New ... Identification Guide to the blooms of Cyanobacteria (French site). Submit your Cyanobacteria image to be identified. CyanoScope ... Bird Hugger Podcast: Preventing Cyanobacteria Outbreaks in Lakes and Ponds. *Determining the Potential Danger of Cyanobacteria ... The process of assessing the potential danger of cyanobacteria in a water body includes several steps. Step 3 focuses on the ...
Cyanobacteria belong to the Earths oldest organisms. They are still present today in oceans and waters and even in hot springs ... Cyanobacteria belong to the Earths oldest organisms. They are still present today in oceans and waters and even in hot springs ... The researchers are thus proposing the theory that the newly developed multicellularity of the cyanobacteria played a role in ... The scientists analyzed the phylogenies of living cyanobacteria and combined their findings with data from fossil records for ...
Researchers: Cyanobacteria responsible for Earths early oxygen. Denyse OLeary. November 28, 2015. Evolution, News, Origin Of ... cyanobacteria haven in Yellowstone/samspicerphoto, Fotolia. From ScienceDaily:. Earths oxygen-rich atmosphere emerged in ... whiffs from a kind of cyanobacteria in shallow oceans around 2.5 billion years ago, according to new research. ...
Poisoning Solved After Millions Of Years: Did Death-dealing Cyanobacteria Cause The Mass Deaths Of Messel?. Date:. November 25 ... From Canada we know that during algal bloom cyanobacteria cause toxic foam to collect in the surface water. Anything that ... "Poisoning Solved After Millions Of Years: Did Death-dealing Cyanobacteria Cause The Mass Deaths Of Messel?." ScienceDaily. www. ... 2004, November 25). Poisoning Solved After Millions Of Years: Did Death-dealing Cyanobacteria Cause The Mass Deaths Of Messel ...
thylakoid biogenesis, chloroplasts, cyanobacteria, Vipp1. Subjects:. 500 Natural sciences and mathematics. 500 Natural sciences ... Vipp1 structure and function in cyanobacteria and chloroplasts The vesicle inducing protein in plastids 1 (Vipp1) is an ... The presence of the Vipp1 complex was detected in cyanobacteria, green algae and higher plants, thereby identifying ... The presence of the Vipp1 complex was detected in cyanobacteria, green algae and higher plants, thereby identifying ...
Cyanobacteria, also referred to as blue-green algae, are a common and natural component of the microscopic plants (plankton) in ... Cyanobacteria, also referred to as blue-green algae, are a common and natural component of the microscopic plants (plankton) in ...
Cyanobacteria, phototrophic and heterotrophic pico-nanoplankton at station TT012_5-CTD45 Citation. Sieracki M (2003). ... Cyanobacteria, phototrophic and heterotrophic pico-nanoplankton at station TT012_5-CTD45. PANGAEA - Data Publisher for Earth & ...
Synthetic Biology Toolboxes for Cyanobacteria. Author: Anar Murphy. Cyanobacteria are autotrophic prokaryotes, i.e., organisms ... Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain ... This synthetic biology tool can be used to study the metabolism and generate new industrial strains of cyanobacteria. ... However, the synthetic biology tools to predictably control gene expression in cyanobacteria are far behind those developed for ...
a leafy liverwort, bryophyte plant) and cyanobacteria. Magdalena Turzańska Affiliation. University of Wroclaw. Institute of ... a leafy liverwort, bryophyte plant) and cyanobacteria ...
This past fall a cyanobacteria known as, Microcystis aeruginosa, spiked toxin levels above the states safe recreational ... The Rise of Cyanobacteria at Pinto Lake. by Patricia Waldron January 2, 2014 ... The cyanobacteria prevent the lake water from mixing, thus preserving their preferred warm habitat at the surface. ... Signs warn lake visitors to stay out of the water because of the cyanobacteria blooms. Photo: Patricia Waldron. Some four miles ...
More information: Yi Liao et al, The circadian clock ensures successful DNA replication in cyanobacteria, Proceedings of the ... Circadian oscillation of a cyanobacterium doesnt need all three Kai proteins to keep going. May 27, 2020 ... Successful DNA replication in cyanobacteria depends on the circadian clock. by University of Chicago Medical Center ... Despite the large evolutionary gap between humans and cyanobacteria, these tiny organisms can provide insights into critical ...
Nostocales, Cyanobacteria) and formation of Geitleriaceae fam. nov." Fottea, Olomouc (2018) Available at: http://works.bepress. ...
Cyanobacteria populations observed in Willow Creek Lake during 2012 through 2014 were compared to external nutrient loading ... Cyanobacteria (also referred to as blue-green algae) are naturally present members of phytoplankton assemblages that may ... Relating cyanobacteria and physicochemical water-quality properties in Willow Creek Lake, Nebraska, 2012-14 November 19, 2018 ... Cyanobacteria (also referred to as blue-green algae) are naturally present members of phytoplankton assemblages that may ...
Can cyanobacteria and toxins spread through air?. Surface water with harmful algal blooms (HABs, notably cyanobacteria) and ... Although the authors emphasize the atmospheric effects of HABs, the article also points at possible exposure to cyanobacteria ... This was investigated through sampling locations differing in cyanobacteria abundance at the American Great Lakes. Sites with ...
The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated ... The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated ... showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. ... showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. ...
He and his team are trying to address a critical challenge in studying cyanobacteria here in the Northeast: a lack of data. ... The water is murkier now, and a big worry - the reason shes out here sampling every morning - is cyanobacteria. ...
Chiu, Y.T.; Chen, Y.H.; Wang, T.S.; Yen, H.K.; Lin, T.F. A qPCR-based tool to diagnose the presence of harmful cyanobacteria ... Cyanobacteria can also produce nuisance taste and odor (T&O) compounds in distributed water, which may reduce water aesthetic ... Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349-1363. [ ... cyanobacteria; phycocyanin fluorescence probe; natural organic matter; temperature; biovolume; drinking water treatment plant ...
Connecticuts lakes lack funding: the threat of cyanobacteria in your backyard by Skye Embray November 30, 2022 @ 12:01 pm. ... Cyanobacteria blooms can cause a range of symptoms, including mild rash and irritation to the liver or signs of nervous system ... For the first time, Coventry Lake experienced an abundance of cyanobacteria, a photosynthetic microorganism, resulting in a two ... Eric Trott, Director of Planning and Development for the town of Coventry, told me, "Inhalation of cyanobacteria causes damage ...
Cyanobacteria Agmenellum quadruplicatum. Reference. Belkin S, Packer L. Determination of pH gradients in intact cyanobacteria ...

No FAQ available that match "cyanobacteria"