Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY).
A species of gram-negative bacteria and causative agent of severe bovine ANAPLASMOSIS. It is the most pathogenic of the ANAPLASMA species.
The sequential activation of serum COMPLEMENT PROTEINS to create the COMPLEMENT MEMBRANE ATTACK COMPLEX. Factors initiating complement activation include ANTIGEN-ANTIBODY COMPLEXES, microbial ANTIGENS, or cell surface POLYSACCHARIDES.
A group of enzymes that catalyzes the transfer of a phosphate group onto a nitrogenous group acceptor. EC 2.7.3.
A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase.
The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-.
A glycoprotein that is important in the activation of CLASSICAL COMPLEMENT PATHWAY. C4 is cleaved by the activated COMPLEMENT C1S into COMPLEMENT C4A and COMPLEMENT C4B.
Proteins found in any species of bacterium.
Complement activation initiated by the binding of COMPLEMENT C1 to ANTIGEN-ANTIBODY COMPLEXES at the COMPLEMENT C1Q subunit. This leads to the sequential activation of COMPLEMENT C1R and COMPLEMENT C1S subunits. Activated C1s cleaves COMPLEMENT C4 and COMPLEMENT C2 forming the membrane-bound classical C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
Complement activation initiated by the interaction of microbial ANTIGENS with COMPLEMENT C3B. When COMPLEMENT FACTOR B binds to the membrane-bound C3b, COMPLEMENT FACTOR D cleaves it to form alternative C3 CONVERTASE (C3BBB) which, stabilized by COMPLEMENT FACTOR P, is able to cleave multiple COMPLEMENT C3 to form alternative C5 CONVERTASE (C3BBB3B) leading to cleavage of COMPLEMENT C5 and the assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
C5 plays a central role in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C5 is cleaved by C5 CONVERTASE into COMPLEMENT C5A and COMPLEMENT C5B. The smaller fragment C5a is an ANAPHYLATOXIN and mediator of inflammatory process. The major fragment C5b binds to the membrane initiating the spontaneous assembly of the late complement components, C5-C9, into the MEMBRANE ATTACK COMPLEX.
Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors.
The larger fragment generated from the cleavage of COMPLEMENT C3 by C3 CONVERTASE. It is a constituent of the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb), and COMPLEMENT C5 CONVERTASES in both the classical (C4b2a3b) and the alternative (C3bBb3b) pathway. C3b participates in IMMUNE ADHERENCE REACTION and enhances PHAGOCYTOSIS. It can be inactivated (iC3b) or cleaved by various proteases to yield fragments such as COMPLEMENT C3C; COMPLEMENT C3D; C3e; C3f; and C3g.
A glycine-rich, heat-labile serum glycoprotein that contains a component of the C3 CONVERTASE ALTERNATE PATHWAY (C3bBb). Bb, a serine protease, is generated when factor B is cleaved by COMPLEMENT FACTOR D into Ba and Bb.
A subcomponent of complement C1, composed of six copies of three polypeptide chains (A, B, and C), each encoded by a separate gene (C1QA; C1QB; C1QC). This complex is arranged in nine subunits (six disulfide-linked dimers of A and B, and three disulfide-linked homodimers of C). C1q has binding sites for antibodies (the heavy chain of IMMUNOGLOBULIN G or IMMUNOGLOBULIN M). The interaction of C1q and immunoglobulin activates the two proenzymes COMPLEMENT C1R and COMPLEMENT C1S, thus initiating the cascade of COMPLEMENT ACTIVATION via the CLASSICAL COMPLEMENT PATHWAY.
The smaller fragment generated from the cleavage of complement C3 by C3 CONVERTASE. C3a, a 77-amino acid peptide, is a mediator of local inflammatory process. It induces smooth MUSCLE CONTRACTION, and HISTAMINE RELEASE from MAST CELLS and LEUKOCYTES. C3a is considered an anaphylatoxin along with COMPLEMENT C4A; COMPLEMENT C5A; and COMPLEMENT C5A, DES-ARGININE.
A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC.
Molecules on the surface of some B-lymphocytes and macrophages, that recognize and combine with the C3b, C3d, C1q, and C4b components of complement.
A component of the CLASSICAL COMPLEMENT PATHWAY. C2 is cleaved by activated COMPLEMENT C1S into COMPLEMENT C2B and COMPLEMENT C2A. C2a, the COOH-terminal fragment containing a SERINE PROTEASE, combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
The minor fragment formed when C5 convertase cleaves C5 into C5a and COMPLEMENT C5B. C5a is a 74-amino-acid glycopeptide with a carboxy-terminal ARGININE that is crucial for its spasmogenic activity. Of all the complement-derived anaphylatoxins, C5a is the most potent in mediating immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE), smooth MUSCLE CONTRACTION; HISTAMINE RELEASE; and migration of LEUKOCYTES to site of INFLAMMATION.
Serum peptides derived from certain cleaved COMPLEMENT PROTEINS during COMPLEMENT ACTIVATION. They induce smooth MUSCLE CONTRACTION; mast cell HISTAMINE RELEASE; PLATELET AGGREGATION; and act as mediators of the local inflammatory process. The order of anaphylatoxin activity from the strongest to the weakest is C5a, C3a, C4a, and C5a des-arginine.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
The large fragment formed when COMPLEMENT C4 is cleaved by COMPLEMENT C1S. The membrane-bound C4b binds COMPLEMENT C2A, a SERINE PROTEASE, to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE).
Compounds that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host.
A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections.
A screening assay for circulating COMPLEMENT PROTEINS. Diluted SERUM samples are added to antibody-coated ERYTHROCYTES and the percentage of cell lysis is measured. The values are expressed by the so called CH50, in HEMOLYTIC COMPLEMENT units per milliliter, which is the dilution of serum required to lyse 50 percent of the erythrocytes in the assay.
The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION.
An important soluble regulator of the alternative pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It is a 139-kDa glycoprotein expressed by the liver and secreted into the blood. It binds to COMPLEMENT C3B and makes iC3b (inactivated complement 3b) susceptible to cleavage by COMPLEMENT FACTOR I. Complement factor H also inhibits the association of C3b with COMPLEMENT FACTOR B to form the C3bB proenzyme, and promotes the dissociation of Bb from the C3bBb complex (COMPLEMENT C3 CONVERTASE, ALTERNATIVE PATHWAY).
Serine proteases that cleave COMPLEMENT C3 into COMPLEMENT C3A and COMPLEMENT C3B, or cleave COMPLEMENT C5 into COMPLEMENT C5A and COMPLEMENT C5B. These include the different forms of C3/C5 convertases in the classical and the alternative pathways of COMPLEMENT ACTIVATION. Both cleavages take place at the C-terminal of an ARGININE residue.
A 105-kDa serum glycoprotein with significant homology to the other late complement components, C7-C9. It is a polypeptide chain cross-linked by 32 disulfide bonds. C6 is the next complement component to bind to the membrane-bound COMPLEMENT C5B in the assembly of MEMBRANE ATTACK COMPLEX. It is encoded by gene C6.
Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways.
A 302-amino-acid fragment in the alpha chain (672-1663) of C3b. It is generated when C3b is inactivated (iC3b) and its alpha chain is cleaved by COMPLEMENT FACTOR I into C3c, and C3dg (955-1303) in the presence COMPLEMENT FACTOR H. Serum proteases further degrade C3dg into C3d (1002-1303) and C3g (955-1001).
The smaller fragment formed when complement C4 is cleaved by COMPLEMENT C1S. It is an anaphylatoxin that causes symptoms of immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE) but its activity is weaker than that of COMPLEMENT C3A or COMPLEMENT C5A.
Molecular sites on or in some B-lymphocytes and macrophages that recognize and combine with COMPLEMENT C3B. The primary structure of these receptors reveal that they contain transmembrane and cytoplasmic domains, with their extracellular portion composed entirely of thirty short consensus repeats each having 60 to 70 amino acids.
A 206-amino-acid fragment in the alpha chain (672-1663) of C3b. It is generated when C3b is inactivated (iC3b) and its alpha chain is cleaved by COMPLEMENT FACTOR I into C3c (749-954), and C3dg (955-1303) in the presence COMPLEMENT FACTOR H.
A plasma serine proteinase that cleaves the alpha-chains of C3b and C4b in the presence of the cofactors COMPLEMENT FACTOR H and C4-binding protein, respectively. It is a 66-kDa glycoprotein that converts C3b to inactivated C3b (iC3b) followed by the release of two fragments, C3c (150-kDa) and C3dg (41-kDa). It was formerly called KAF, C3bINF, or enzyme 3b inactivator.
An endogenous 105-kDa plasma glycoprotein produced primarily by the LIVER and MONOCYTES. It inhibits a broad spectrum of proteases, including the COMPLEMENT C1R and the COMPLEMENT C1S proteases of the CLASSICAL COMPLEMENT PATHWAY, and the MANNOSE-BINDING PROTEIN-ASSOCIATED SERINE PROTEASES. C1-INH-deficient individuals suffer from HEREDITARY ANGIOEDEMA TYPES I AND II.
A G-protein-coupled receptor that signals an increase in intracellular calcium in response to the potent ANAPHYLATOXIN peptide COMPLEMENT C5A.
A serum protein which is important in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY. This enzyme cleaves the COMPLEMENT C3B-bound COMPLEMENT FACTOR B to form C3bBb which is ALTERNATIVE PATHWAY C3 CONVERTASE.
GPI-linked membrane proteins broadly distributed among hematopoietic and non-hematopoietic cells. CD55 prevents the assembly of C3 CONVERTASE or accelerates the disassembly of preformed convertase, thus blocking the formation of the membrane attack complex.
Serum proteins that inhibit, antagonize, or inactivate COMPLEMENT C1 or its subunits.
Complement activation triggered by the interaction of microbial POLYSACCHARIDES with serum MANNOSE-BINDING LECTIN resulting in the activation of MANNOSE-BINDING PROTEIN-ASSOCIATED SERINE PROTEASES. As in the classical pathway, MASPs cleave COMPLEMENT C4 and COMPLEMENT C2 to form C3 CONVERTASE (C4B2A) and the subsequent C5 CONVERTASE (C4B2A3B) leading to cleavage of COMPLEMENT C5 and assembly of COMPLEMENT MEMBRANE ATTACK COMPLEX.
Serum serine proteases which participate in COMPLEMENT ACTIVATION. They are activated when complexed with the MANNOSE-BINDING LECTIN, therefore also known as Mannose-binding protein-Associated Serine Proteases (MASPs). They cleave COMPLEMENT C4 and COMPLEMENT C2 to form C4b2a, the CLASSICAL PATHWAY C3 CONVERTASE.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
A 150-kDa serum glycoprotein composed of three subunits with each encoded by a different gene (C8A; C8B; and C8G). This heterotrimer contains a disulfide-linked C8alpha-C8gamma heterodimer and a noncovalently associated C8beta chain. C8 is the next component to bind the C5-7 complex forming C5b-8 that binds COMPLEMENT C9 and acts as a catalyst in the polymerization of C9.
A serum protein that regulates the CLASSICAL COMPLEMENT ACTIVATION PATHWAY. It binds as a cofactor to COMPLEMENT FACTOR I which then hydrolyzes the COMPLEMENT C4B in the CLASSICAL PATHWAY C3 CONVERTASE (C4bC2a).
Endogenous proteins that inhibit or inactivate COMPLEMENT C3B. They include COMPLEMENT FACTOR H and COMPLEMENT FACTOR I (C3b/C4b inactivator). They cleave or promote the cleavage of C3b into inactive fragments, and thus are important in the down-regulation of COMPLEMENT ACTIVATION and its cytolytic sequence.
The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity.
A 93-kDa serum glycoprotein encoded by C7 gene. It is a polypeptide chain with 28 disulfide bridges. In the formation of MEMBRANE ATTACK COMPLEX; C7 is the next component to bind the C5b-6 complex forming a trimolecular complex C5b-7 which is lipophilic, resembles an integral membrane protein, and serves as an anchor for the late complement components, C8 and C9.
A specific mannose-binding member of the collectin family of lectins. It binds to carbohydrate groups on invading pathogens and plays a key role in the MANNOSE-BINDING LECTIN COMPLEMENT PATHWAY.
Molecular sites on or in B-lymphocytes, follicular dendritic cells, lymphoid cells, and epithelial cells that recognize and combine with COMPLEMENT C3D. Human complement receptor 2 (CR2) serves as a receptor for both C3dg and the gp350/220 glycoprotein of HERPESVIRUS 4, HUMAN, and binds the monoclonal antibody OKB7, which blocks binding of both ligands to the receptor.
Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1.
Small glycoproteins found on both hematopoietic and non-hematopoietic cells. CD59 restricts the cytolytic activity of homologous complement by binding to C8 and C9 and blocking the assembly of the membrane attack complex. (From Barclay et al., The Leukocyte Antigen FactsBook, 1993, p234)
A 53-kDa protein that is a positive regulator of the alternate pathway of complement activation (COMPLEMENT ACTIVATION PATHWAY, ALTERNATIVE). It stabilizes the ALTERNATIVE PATHWAY C3 CONVERTASE (C3bBb) and protects it from rapid inactivation, thus facilitating the cascade of COMPLEMENT ACTIVATION and the formation of MEMBRANE ATTACK COMPLEX. Individuals with mutation in the PFC gene exhibit properdin deficiency and have a high susceptibility to infections.
A ubiquitously expressed complement receptor that binds COMPLEMENT C3B and COMPLEMENT C4B and serves as a cofactor for their inactivation. CD46 also interacts with a wide variety of pathogens and mediates immune response.
A 77-kDa subcomponent of complement C1, encoded by gene C1S, is a SERINE PROTEASE existing as a proenzyme (homodimer) in the intact complement C1 complex. Upon the binding of COMPLEMENT C1Q to antibodies, the activated COMPLEMENT C1R cleaves C1s into two chains, A (heavy) and B (light, the serine protease), linked by disulfide bonds yielding the active C1s. The activated C1s, in turn, cleaves COMPLEMENT C2 and COMPLEMENT C4 to form C4b2a (CLASSICAL C3 CONVERTASE).
A 80-kDa subcomponent of complement C1, existing as a SERINE PROTEASE proenzyme in the intact complement C1 complex. When COMPLEMENT C1Q is bound to antibodies, the changed tertiary structure causes autolytic activation of complement C1r which is cleaved into two chains, A (heavy) and B (light, the serine protease), connected by disulfide bonds. The activated C1r serine protease, in turn, activates COMPLEMENT C1S proenzyme by cleaving the Arg426-Ile427 bond. No fragment is released when either C1r or C1s is cleaved.
The larger fragment generated from the cleavage of C5 by C5 CONVERTASE that yields COMPLEMENT C5A and C5b (beta chain + alpha' chain, the residual alpha chain, bound by disulfide bond). C5b remains bound to the membrane and initiates the spontaneous assembly of the late complement components to form C5b-8-poly-C9, the MEMBRANE ATTACK COMPLEX.
The N-terminal fragment of COMPLEMENT 2, released by the action of activated COMPLEMENT C1S.
A serine protease that is the complex of COMPLEMENT C3B and COMPLEMENT FACTOR BB. It cleaves multiple COMPLEMENT C3 into COMPLEMENT C3A (anaphylatoxin) and COMPLEMENT C3B in the ALTERNATIVE COMPLEMENT ACTIVATION PATHWAY.
Proteins that bind to particles and cells to increase susceptibility to PHAGOCYTOSIS, especially ANTIBODIES bound to EPITOPES that attach to FC RECEPTORS. COMPLEMENT C3B may also participate.
A class of C-type lectins that target the carbohydrate structures found on invading pathogens. Binding of collectins to microorganisms results in their agglutination and enhanced clearance. Collectins form trimers that may assemble into larger oligomers. Each collectin polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen-like region, an alpha-helical coiled-coil region, and carbohydrate-binding region.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition.
Zymosan is a polysaccharide derived from the cell walls of Saccharomyces cerevisiae, commonly used in research as an immunostimulant to induce inflammation and study phagocytosis, complement activation, and oxidative burst in neutrophils and macrophages.
The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST.
Phthalic acid anhydrides. Can be substituted on any carbon atom. Used extensively in industry and as a reagent in the acylation of amino- and hydroxyl groups.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A species of mite that causes SCABIES in humans and sarcoptic mange in other animals. Specific variants of S. scabiei exist for humans and animals, but many have the ability to cross species and cause disease.
Serum globulins that migrate to the gamma region (most positively charged) upon ELECTROPHORESIS. At one time, gamma-globulins came to be used as a synonym for immunoglobulins since most immunoglobulins are gamma globulins and conversely most gamma globulins are immunoglobulins. But since some immunoglobulins exhibit an alpha or beta electrophoretic mobility, that usage is in decline.
Solutions or mixtures of toxic and nontoxic substances elaborated by snake (Ophidia) salivary glands for the purpose of killing prey or disabling predators and delivered by grooved or hollow fangs. They usually contain enzymes, toxins, and other factors.
Degenerative changes in the RETINA usually of older adults which results in a loss of vision in the center of the visual field (the MACULA LUTEA) because of damage to the retina. It occurs in dry and wet forms.
A glycolipid, cross-species antigen that induces production of antisheep hemolysin. It is present on the tissue cells of many species but absent in humans. It is found in many infectious agents.
The clear portion of BLOOD that is left after BLOOD COAGULATION to remove BLOOD CELLS and clotting proteins.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other animals.
A genus of poisonous snakes of the VIPERIDAE family. About 50 species are known and all are found in tropical America and southern South America. Bothrops atrox is the fer-de-lance and B. jararaca is the jararaca. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336)
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
An adhesion-promoting leukocyte surface membrane heterodimer. The alpha subunit consists of the CD11b ANTIGEN and the beta subunit the CD18 ANTIGEN. The antigen, which is an integrin, functions both as a receptor for complement 3 and in cell-cell and cell-substrate adhesive interactions.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Methods used by pathogenic organisms to evade a host's immune system.
A non-steroidal anti-inflammatory drug. Oxyphenbutazone eyedrops have been used abroad in the management of postoperative ocular inflammation, superficial eye injuries, and episcleritis. (From AMA, Drug Evaluations Annual, 1994, p2000) It had been used by mouth in rheumatic disorders such as ankylosing spondylitis, osteoarthritis, and rheumatoid arthritis but such use is no longer considered justified owing to the risk of severe hematological adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p27)
Polysaccharides consisting of mannose units.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
A major adhesion-associated heterodimer molecule expressed by MONOCYTES; GRANULOCYTES; NK CELLS; and some LYMPHOCYTES. The alpha subunit is the CD11C ANTIGEN, a surface antigen expressed on some myeloid cells. The beta subunit is the CD18 ANTIGEN.
Limbless REPTILES of the suborder Serpentes.
Group of diseases mediated by the deposition of large soluble complexes of antigen and antibody with resultant damage to tissue. Besides SERUM SICKNESS and the ARTHUS REACTION, evidence supports a pathogenic role for immune complexes in many other IMMUNE SYSTEM DISEASES including GLOMERULONEPHRITIS, systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC) and POLYARTERITIS NODOSA.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis.
A method for the detection of very small quantities of antibody in which the antigen-antibody-complement complex adheres to indicator cells, usually primate erythrocytes or nonprimate blood platelets. The reaction is dependent on the number of bound C3 molecules on the C3b receptor sites of the indicator cell.
An IgG autoantibody against the ALTERNATIVE PATHWAY C3 CONVERTASE, found in serum of patients with MESANGIOCAPILLARY GLOMERULONEPHRITIS. The binding of this autoantibody to C3bBb stabilizes the enzyme thus reduces the actions of C3b inactivators (COMPLEMENT FACTOR H; COMPLEMENT FACTOR I). This abnormally stabilized enzyme induces a continuous COMPLEMENT ACTIVATION and generation of C3b thereby promoting the assembly of MEMBRANE ATTACK COMPLEX and cytolysis.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Antibodies produced by a single clone of cells.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.
Poisonous animal secretions forming fluid mixtures of many different enzymes, toxins, and other substances. These substances are produced in specialized glands and secreted through specialized delivery systems (nematocysts, spines, fangs, etc.) for disabling prey or predator.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
A syndrome that is associated with microvascular diseases of the KIDNEY, such as RENAL CORTICAL NECROSIS. It is characterized by hemolytic anemia (ANEMIA, HEMOLYTIC); THROMBOCYTOPENIA; and ACUTE RENAL FAILURE.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
A subphylum of chordates intermediate between the invertebrates and the true vertebrates. It includes the Ascidians.
The most common mineral of a group of hydrated aluminum silicates, approximately H2Al2Si2O8-H2O. It is prepared for pharmaceutical and medicinal purposes by levigating with water to remove sand, etc. (From Merck Index, 11th ed) The name is derived from Kao-ling (Chinese: "high ridge"), the original site. (From Grant & Hackh's Chemical Dictionary, 5th ed)
Proteins synthesized by organisms belonging to the phylum ARTHROPODA. Included in this heading are proteins from the subdivisions ARACHNIDA; CRUSTACEA; and HORSESHOE CRABS. Note that a separate heading for INSECT PROTEINS is listed under this heading.
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Established cell cultures that have the potential to propagate indefinitely.
The vitamin K-dependent cofactor of activated PROTEIN C. Together with protein C, it inhibits the action of factors VIIIa and Va. A deficiency in protein S; (PROTEIN S DEFICIENCY); can lead to recurrent venous and arterial thrombosis.
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Proteins prepared by recombinant DNA technology.
A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow.
A hexose or fermentable monosaccharide and isomer of glucose from manna, the ash Fraxinus ornus and related plants. (From Grant & Hackh's Chemical Dictionary, 5th ed & Random House Unabridged Dictionary, 2d ed)
Polysaccharides found in bacteria and in capsules thereof.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Adverse functional, metabolic, or structural changes in ischemic tissues resulting from the restoration of blood flow to the tissue (REPERFUSION), including swelling; HEMORRHAGE; NECROSIS; and damage from FREE RADICALS. The most common instance is MYOCARDIAL REPERFUSION INJURY.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Glycoproteins found on the membrane or surface of cells.
The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Transport proteins that carry specific substances in the blood or across cell membranes.
The rate dynamics in chemical or physical systems.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
The body's defense mechanism against foreign organisms or substances and deviant native cells. It includes the humoral immune response and the cell-mediated response and consists of a complex of interrelated cellular, molecular, and genetic components.
A plasma protein that circulates in increased amounts during inflammation and after tissue damage.
An acute hypersensitivity reaction due to exposure to a previously encountered ANTIGEN. The reaction may include rapidly progressing URTICARIA, respiratory distress, vascular collapse, systemic SHOCK, and death.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Elements of limited time intervals, contributing to particular results or situations.
A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection.
Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Polysaccharides are complex carbohydrates consisting of long, often branched chains of repeating monosaccharide units joined together by glycosidic bonds, which serve as energy storage molecules (e.g., glycogen), structural components (e.g., cellulose), and molecular recognition sites in various biological systems.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The sum of the weight of all the atoms in a molecule.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.
Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.

Interaction of inflammatory cells and oral microorganisms. III. Modulation of rabbit polymorphonuclear leukocyte hydrolase release response to Actinomyces viscosus and Streptococcus mutans by immunoglobulins and complement. (1/3896)

In the absence of antiserum, rabbit polymorphonuclear leukocytes (PMNs) released lysosomal enzymes in response to Actinomyces viscosus (19246) but not to Streptococcus mutans (6715). Antibodies had a marked modulating influence on these reactions. PMN hydrolase release was significantly enhanced to both organisms when specific rabbit antiserum and isolated immunoglobulin G (IgG) were included in the incubations. Immune complex F(ab')2 fragments of IgG directed against S. mutans agglutinated bacteria. Immune complexes consisting of S. mutans and F(ab')2 fragments of IgG directed against this organism were not effective as bacteria-IgG complexes in stimulating PMN release. The intensity of the release response to bacteria-IgG complexes was also diminished when PMNs were preincubated with isolated Fc fragments derived from IgG. Fresh serum as a source of complement components had no demonstrable effect on PMN release either alone or in conjuction with antiserum in these experiments. These data may be relevant to the mechanisms and consequences of the interaction of PMNs and plaque bacteria in the pathogenesis of periodontal disease.  (+info)

Up-regulation of glomerular extracellular matrix and transforming growth factor-beta expression in RF/J mice. (2/3896)

BACKGROUND: RF/J mice were first reported as a murine model of spontaneous glomerulosclerosis by Gude and Lupton in 1960, but the precise histologic characteristics and immunopathological background of this mouse have not been investigated further. METHODS: Measurements of serum levels of immunoglobulins, anti-single strand DNA (anti-ss-DNA) antibody, complement (C3), and circulating immune complex (IC) were performed. Analyses of glomerular histological and immunopathological lesions in association with the detection of mRNA expression of collagen IV, TGF-beta, matrix protein turnover related enzymes, matrix metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-2 (TIMP-2) and platelet-derived growth factor (PDGF) were also performed in young (10-week-old) and elderly (60-week-old) RF/J mice with age-matched BALB/C mice as the controls. RESULTS: High levels of serum IgA and IgG from as early as 20 weeks of age were noted in the RF/J mice. Serum anti-ss-DNA antibody of aged RF/J mice increased up to 23% of that of aged MRL-lpr/lpr mice, and serum C3 concentration significantly decreased with age, reaching lower levels than that of BALB/c mice. IgA-IC levels were significantly high compared to BALB/C mice both in the early and late stages of life, whereas IgG-IC levels were high only in mice younger than 20 weeks. Semiquantitative and quantitative analyzes of renal histopathological findings revealed significantly marked and age-related mesangial matrix expansion in RF/J mice, with increasing frequency of global glomerular sclerosis and tubulointerstitial damage. On the other hand, although precise measurements of glomerular cell numbers also showed an apparent augmentation in both young and old RF/J mice compared to BALB/C mice, glomerular cellularity decreased with age in RF/J mice. Immunohistochemical study revealed massive immunoglobulin deposition from a young age in association with significantly higher accumulation of matrix proteins, such as types I and IV collagen and laminin from the early stage of life. In addition, in these glomeruli, transforming growth factor-beta1 (TGF-beta1) was highly expressed both in young and old mice. The mRNA expression of MMP-2 was up-regulated only in the early stage of life. Although PDGF mRNA of RF/J mice was significantly up-regulated in the early stage of life, the differences between the mice disappeared in the late stage of life. CONCLUSIONS: These findings suggest that in RF/J mice, an immunopathological background inducing high serum immunoglobulin and IC levels from the early stage of life is closely related to mesangioproliferative glomerular lesions mediated by PDGF, and that development of massive extracellular matrix accumulation in glomeruli was induced by up-regulated expression of TGF-beta with inappropriate regulation of protein turnover-related enzyme production.  (+info)

Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. (3/3896)

The frequency of complement deficiency in 176 of 7,732 patients with meningococcal disease in the Netherlands from 1959 through 1992 was assessed. Complement deficiency was found in six patients (3%): 3 (7%) of the patients with Neisseria meningitidis serogroup C disease, 1 (2%) of the patients with N. meningitidis serogroup A disease, and 2 (33%) of the patients with infections due to uncommon serogroups and nongroupable strains of N. meningitidis. Of 91 additional patients with meningococcal infections due to uncommon serogroups, 33% also had complement deficiency. Thirty-four of the 36 complement-deficient patients with meningococcal disease who were from 33 families were 5 years of age or older. Twenty-six additional complement-deficient relatives were found. Screening individuals with meningococcal disease due to uncommon serogroups who were 5 years of age or older identified 30 of the 33 complement-deficient families. Only 27% of the complement-deficient relatives had had meningococcal disease. This risk was lower for relatives with properdin deficiency (18%) than for those deficient in the late component of complement (38%). Therefore, pedigree studies are warranted for identifying those complement-deficient persons who require vaccination for meningococcal disease.  (+info)

2-Deoxyglucose selectively inhibits Fc and complement receptor-mediated phagocytosis in mouse peritoneal macrophages II. Dissociation of the inhibitory effects of 2-deoxyglucose on phagocytosis and ATP generation. (4/3896)

Macrophages incubated in 2-deoxy-D-glucose (2-dG)-containing medium showed a marked decrease in cellular ATP content, and were unable to ingest IgG- and complement-coated erythrocytes via the corresponding membrane receptors for these ligands. However, the inhibitory effects of 2-dG on Fc- and C3 receptor-mediated phagocytosis were not a consequence of lowered macrophage ATP levels since addition of glucose or mannose to the culture medium restored the capacity of the macrophages to ingest IgG- and C3-coated particles without increasing ATP levels. These results indicate that Fc- and C3 receptor-mediated phagocytosis (opsonin dependent) differs qualitatively from the ingestion of latex and zymosan particles (opsonin independent); they suggest that the same regulatory molecules govern the responses of phagocytic cells to signals initiated by both the Fc and C3 receptors. The possibility that these molecules are regulated by glycosylation is discussed.  (+info)

The induction of macrophage spreading: role of coagulation factors and the complement system. (5/3896)

Unstimulated mouse peritoneal macrophages, attached to either glass or plastic substrates, responded to factors generated in serum and plasma by spreading and increasing their apparent surface area up to eightfold. Two distinct and dissociable systems were involved. The first appears related to the distinct and dissociable systems were involved. The first appears related to the contact phase of blood coagulation. It is activated by glass and not plastic surfaces, depleted by kaolin adsorption, and inhibited by soybean trypsin inhibitor. In contrast, a separate complement-dependent system can be generated in kaolin-adsorbed plasma. Activation of the complement system can occur either by the alternate or classical pathways and generates a relatively small effector molecule which is dialyzable. These factors presumably influencing the surface membrane and underlying structures may explain the rapid spreading of activated macrophages observed after both infections and chemical peritoneal inflammatory agents.  (+info)

Unexpected crucial role of residue 225 in serine proteases. (6/3896)

Residue 225 in serine proteases of the chymotrypsin family is Pro or Tyr in more than 95% of nearly 300 available sequences. Proteases with Y225 (like some blood coagulation and complement factors) are almost exclusively found in vertebrates, whereas proteases with P225 (like degradative enzymes) are present from bacteria to human. Saturation mutagenesis of Y225 in thrombin shows that residue 225 affects ligand recognition up to 60,000-fold. With the exception of Tyr and Phe, all residues are associated with comparable or greatly reduced catalytic activity relative to Pro. The crystal structures of three mutants that differ widely in catalytic activity (Y225F, Y225P, and Y225I) show that although residue 225 makes no contact with substrate, it drastically influences the shape of the water channel around the primary specificity site. The activity profiles obtained for thrombin also suggest that the conversion of Pro to Tyr or Phe documented in the vertebrates occurred through Ser and was driven by a significant gain (up to 50-fold) in catalytic activity. In fact, Ser and Phe are documented in 4% of serine proteases, which together with Pro and Tyr account for almost the entire distribution of residues at position 225. The unexpected crucial role of residue 225 in serine proteases explains the evolutionary selection of residues at this position and shows that the structural determinants of protease activity and specificity are more complex than currently believed. These findings have broad implications in the rational design of enzymes with enhanced catalytic properties.  (+info)

Phagocytosis of Vibrio cholerae O139 Bengal by human polymorphonuclear leukocytes. (7/3896)

Capsulated bacteria exhibit serum (complement) resistance and resistance to phagocytosis, which result in disseminated infections. Vibrio cholerae O139 strains possess a thin capsule and have been found to be partially serum resistant in a previous study. In the present study, compared to a standard capsulated Klebsiella pneumoniae strain, which showed total resistance to killing by phagocytosis, V. cholerae O139 strains were shown to be only partially resistant, with most strains showing <40% survival. These findings may explain the relative rarity of V. cholerae O139 bacteremia in cholera caused by this organism.  (+info)

Intestinal reperfusion injury is mediated by IgM and complement. (8/3896)

Intestinal ischemia-reperfusion injury is dependent on complement. This study examines the role of the alternative and classic pathways of complement and IgM in a murine model of intestinal ischemia-reperfusion. Wild-type animals, mice deficient in complement factor 4 (C4), C3, or Ig, or wild-type mice treated with soluble complement receptor 1 were subjected to 40 min of jejunal ischemia and 3 h of reperfusion. Compared with wild types, knockout and treated mice had significantly reduced intestinal injury, indicated by lowered permeability to radiolabeled albumin. When animals deficient in Ig were reconstituted with IgM, the degree of injury was restored to wild-type levels. Immunohistological staining of intestine for C3 and IgM showed colocalization in the mucosa of wild-type controls and minimal staining for both in the intestine of Ig-deficient and C4-deficient mice. We conclude that intestinal ischemia-reperfusion injury is dependent on the classic complement pathway and IgM.  (+info)

The complement system is a group of proteins found in the blood and on the surface of cells that when activated, work together to help eliminate pathogens such as bacteria, viruses, and fungi from the body. The proteins are normally inactive in the bloodstream. When they encounter an invading microorganism or foreign substance, a series of reactions take place leading to the activation of the complement system. Activation results in the production of effector molecules that can punch holes in the cell membranes of pathogens, recruit and activate immune cells, and help remove debris and dead cells from the body.

There are three main pathways that can lead to complement activation: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteins that work together in a cascade-like manner to amplify the response and generate effector molecules. The three main effector molecules produced by the complement system are C3b, C4b, and C5b. These molecules can bind to the surface of pathogens, marking them for destruction by other immune cells.

Complement proteins also play a role in the regulation of the immune response. They help to prevent excessive activation of the complement system, which could damage host tissues. Dysregulation of the complement system has been implicated in a number of diseases, including autoimmune disorders and inflammatory conditions.

In summary, Complement System Proteins are a group of proteins that play a crucial role in the immune response by helping to eliminate pathogens and regulate the immune response. They can be activated through three different pathways, leading to the production of effector molecules that mark pathogens for destruction. Dysregulation of the complement system has been linked to various diseases.

'Anaplasma marginale' is a gram-negative bacterium that infects red blood cells in various species of animals, including cattle. It is the causative agent of Anaplasmosis, which is a tick-borne disease that can lead to severe anemia, abortion, and even death in infected animals. The bacteria are transmitted through the bite of infected ticks or through contaminated blood transfusions, needles, or surgical instruments.

The bacterium has a unique life cycle, where it infects and replicates within the red blood cells, causing them to rupture and release more bacteria into the bloodstream. This results in the characteristic symptoms of Anaplasmosis, such as fever, weakness, icterus (yellowing of the mucous membranes), and anemia.

Diagnosis of Anaplasmosis can be confirmed through various laboratory tests, including blood smears, PCR assays, and serological tests. Treatment typically involves the use of antibiotics such as tetracyclines, which can help to reduce the severity of symptoms and clear the infection. Preventive measures include the control of tick populations, the use of protective clothing and insect repellents, and the implementation of strict biosecurity protocols in veterinary practices and farms.

Complement activation is the process by which the complement system, a part of the immune system, is activated to help eliminate pathogens and damaged cells from the body. The complement system consists of a group of proteins that work together to recognize and destroy foreign substances.

Activation of the complement system can occur through three different pathways: the classical pathway, the lectin pathway, and the alternative pathway. Each pathway involves a series of proteolytic reactions that ultimately result in the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis and removal.

The classical pathway is typically activated by the binding of antibodies to antigens on the surface of a pathogen or damaged cell. The lectin pathway is activated by the recognition of specific carbohydrate structures on the surface of microorganisms. The alternative pathway can be spontaneously activated and serves as an amplification loop for both the classical and lectin pathways.

Complement activation plays a crucial role in the immune response, but uncontrolled or excessive activation can also lead to tissue damage and inflammation. Dysregulation of complement activation has been implicated in various diseases, including autoimmune disorders, inflammatory conditions, and neurodegenerative diseases.

Complement C3 is a protein that plays a central role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C3 can be activated through three different pathways: the classical pathway, the lectin pathway, and the alternative pathway. Once activated, it breaks down into two fragments, C3a and C3b.

C3a is an anaphylatoxin that helps to recruit immune cells to the site of infection or injury, while C3b plays a role in opsonization, which is the process of coating pathogens or damaged cells with proteins to make them more recognizable to the immune system. Additionally, C3b can also activate the membrane attack complex (MAC), which forms a pore in the membrane of target cells leading to their lysis or destruction.

In summary, Complement C3 is an important protein in the complement system that helps to identify and eliminate pathogens and damaged cells from the body through various mechanisms.

The Phosphoenolpyruvate (PEP) sugar phosphotransferase system (PTS) is not exactly a "sugar," but rather a complex molecular machinery used by certain bacteria for the transport and phosphorylation of sugars. The PTS system is a major carbohydrate transport system in many gram-positive and gram-negative bacteria, which allows them to take up and metabolize various sugars for energy and growth.

The PTS system consists of several protein components, including the enzyme I (EI), histidine phosphocarrier protein (HPr), and sugar-specific enzymes II (EII). The process begins when PEP transfers a phosphate group to EI, which then passes it on to HPr. The phosphorylated HPr then interacts with the sugar-specific EII complex, which is composed of two domains: the membrane-associated domain (EIIA) and the periplasmic domain (EIIC).

When a sugar molecule binds to the EIIC domain, it induces a conformational change that allows the phosphate group from HPr to be transferred to the sugar. This phosphorylation event facilitates the translocation of the sugar across the membrane and into the cytoplasm, where it undergoes further metabolic reactions.

In summary, the Phosphoenolpyruvate Sugar Phosphotransferase System (PEP-PTS) is a bacterial transport system that utilizes phosphoryl groups from phosphoenolpyruvate to facilitate the uptake and phosphorylation of sugars, allowing bacteria to efficiently metabolize and utilize various carbon sources for energy and growth.

Complement C4 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C4 is involved in the early stages of the complement activation cascade, where it helps to identify and tag foreign or abnormal cells for destruction by other components of the immune system.

Specifically, Complement C4 can be cleaved into two smaller proteins, C4a and C4b, during the complement activation process. C4b then binds to the surface of the target cell and helps to initiate the formation of the membrane attack complex (MAC), which creates a pore in the cell membrane and leads to lysis or destruction of the target cell.

Deficiencies or mutations in the Complement C4 gene can lead to various immune disorders, including certain forms of autoimmune diseases and susceptibility to certain infections.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

The "Classical Complement Pathway" is one of the three pathways that make up the complement system, which is a part of the immune system in humans and other animals. The complement system helps to enhance the ability of antibodies and phagocytic cells to clear pathogens from the body.

The Classical Complement Pathway is initiated by the binding of the first component of the complement system, C1, to an activator surface, such as an antigen-antibody complex. Activation of C1 results in the sequential activation of other components of the complement system, including C4 and C2, which form the C3 convertase (C4b2a). The C3 convertase cleaves the third component of the complement system, C3, into C3a and C3b. C3b then binds to the activator surface and forms a complex with other components of the complement system, leading to the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, causing its lysis.

The Classical Complement Pathway plays an important role in the immune response to pathogens and can also contribute to inflammation and tissue damage in certain diseases, such as autoimmune disorders and allergies.

The alternative complement pathway is one of the three initiating pathways of the complement system, which is a part of the innate immune system that helps to clear pathogens and damaged cells from the body. The other two pathways are the classical and lectin pathways.

The alternative pathway is continuously activated at a low level, even in the absence of infection or injury, through the spontaneous cleavage of complement component C3 into C3a and C3b by the protease factor D in the presence of magnesium ions. The generated C3b can then bind covalently to nearby surfaces, including pathogens and host cells.

On self-surfaces, regulatory proteins like decay-accelerating factor (DAF) or complement receptor 1 (CR1) help to prevent the formation of the alternative pathway convertase and thus further activation of the complement system. However, on foreign surfaces, the C3b can recruit more complement components, forming a complex called the alternative pathway convertase (C3bBb), which cleaves additional C3 molecules into C3a and C3b.

The generated C3b can then bind to the surface and participate in the formation of the membrane attack complex (MAC), leading to the lysis of the target cell. The alternative pathway plays a crucial role in the defense against gram-negative bacteria, fungi, and parasites, as well as in the clearance of immune complexes and apoptotic cells. Dysregulation of the alternative complement pathway has been implicated in several diseases, including autoimmune disorders and atypical hemolytic uremic syndrome (aHUS).

Complement C5 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. The complement system is a complex series of biochemical reactions that help to identify and destroy foreign substances, such as bacteria and viruses.

Complement C5 is one of several proteins in the complement system that are activated in a cascading manner in response to an activating event, such as the binding of an antibody to a pathogen. Once activated, Complement C5 can be cleaved into two smaller proteins, C5a and C5b.

C5a is a powerful anaphylatoxin, which means it can cause the release of histamine from mast cells and basophils, leading to inflammation and increased vascular permeability. It also acts as a chemoattractant, drawing immune cells to the site of infection or injury.

C5b, on the other hand, plays a role in the formation of the membrane attack complex (MAC), which is a protein structure that can punch holes in the membranes of pathogens, leading to their lysis and destruction.

Overall, Complement C5 is an important component of the immune system's response to infection and injury, helping to eliminate pathogens and damaged cells from the body.

Complement inactivator proteins are a group of regulatory proteins that help to control and limit the activation of the complement system, which is a part of the immune system. The complement system is a complex series of biochemical reactions that help to eliminate pathogens and damaged cells from the body. However, if not properly regulated, the complement system can also cause damage to healthy tissues and contribute to the development of various diseases.

Complement inactivator proteins work by inhibiting specific components of the complement system, preventing them from activating and causing an immune response. Some examples of complement inactivator proteins include:

1. C1 inhibitor (C1INH): This protein regulates the activation of the classical pathway of the complement system by inhibiting the C1 complex, which is a group of proteins that initiate this pathway.
2. Decay-accelerating factor (DAF or CD55): This protein regulates the activation of both the classical and alternative pathways of the complement system by accelerating the decay of the C3/C5 convertases, which are enzymes that activate the complement components C3 and C5.
3. Membrane cofactor protein (MCP or CD46): This protein regulates the activation of the alternative pathway of the complement system by serving as a cofactor for the cleavage and inactivation of C3b, a component of the C3 convertase.
4. Factor H: This protein also regulates the activation of the alternative pathway of the complement system by acting as a cofactor for the cleavage and inactivation of C3b, and by preventing the formation of the C3 convertase.

Deficiencies or dysfunction of complement inactivator proteins can lead to various diseases, including hereditary angioedema (C1INH deficiency), atypical hemolytic uremic syndrome (factor H deficiency or dysfunction), and age-related macular degeneration (complement component overactivation).

Complement C3b is a protein fragment that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. C3b is generated during the activation of the complement system, particularly via the classical, lectin, and alternative pathways.

Once formed, C3b can bind covalently to the surface of microbes or other target particles, marking them for destruction by other components of the immune system. Additionally, C3b can interact with other proteins in the complement system to generate the membrane attack complex (MAC), which forms pores in the membranes of targeted cells, leading to their lysis and removal.

In summary, Complement C3b is a vital protein fragment involved in the recognition, tagging, and elimination of pathogens and damaged cells during the immune response.

Complement Factor B is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, Factor B is a component of the alternative pathway of the complement system, which provides a rapid and amplified response to microbial surfaces.

Factor B is cleaved by another protease called Factor D into two fragments, Ba and Bb. The formation of the C3 convertase (C3bBb) is essential for the activation of the alternative pathway. This complex can cleave and activate more C3 molecules, leading to a cascade of reactions that result in the formation of the membrane attack complex (MAC), which forms pores in the membranes of target cells, causing their lysis and elimination.

Deficiencies or mutations in Complement Factor B can lead to various complement-mediated diseases, such as atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD).

Complement C1q is a protein that is part of the complement system, which is a group of proteins in the blood that help to eliminate pathogens and damaged cells from the body. C1q is the first component of the classical complement pathway, which is activated by the binding of C1q to antibodies that are attached to the surface of a pathogen or damaged cell.

C1q is composed of six identical polypeptide chains, each containing a collagen-like region and a globular head region. The globular heads can bind to various structures, including the Fc regions of certain antibodies, immune complexes, and some types of cells. When C1q binds to an activating surface, it triggers a series of proteolytic reactions that lead to the activation of other complement components and the formation of the membrane attack complex (MAC), which can punch holes in the membranes of pathogens or damaged cells, leading to their destruction.

In addition to its role in the immune system, C1q has also been found to have roles in various physiological processes, including tissue remodeling, angiogenesis, and the clearance of apoptotic cells. Dysregulation of the complement system, including abnormalities in C1q function, has been implicated in a variety of diseases, including autoimmune disorders, inflammatory diseases, and neurodegenerative conditions.

Complement C3a is a protein fragment that is generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by marking them for destruction and attracting immune cells to the site of infection or injury.

C3a is produced when the third component of the complement system (C3) is cleaved into two smaller fragments, C3a and C3b, during the complement activation cascade. C3a is a potent anaphylatoxin, which means it can cause the release of histamine and other mediators from mast cells and basophils, leading to inflammation, increased vascular permeability, and smooth muscle contraction.

C3a also has chemotactic properties, meaning it can attract immune cells such as neutrophils and monocytes to the site of complement activation. Additionally, C3a can modulate the activity of various immune cells, including dendritic cells, T cells, and B cells, and play a role in the regulation of the adaptive immune response.

It's important to note that while C3a has important functions in the immune response, uncontrolled or excessive activation of the complement system can lead to tissue damage and inflammation, contributing to the pathogenesis of various diseases such as autoimmune disorders, inflammatory diseases, and allergies.

The Complement Membrane Attack Complex (MAC), also known as the Terminal Complement Complex (TCC), is a protein structure that forms in the final stages of the complement system's immune response. The complement system is a part of the innate immune system that helps to eliminate pathogens and damaged cells from the body.

The MAC is composed of several proteins, including C5b, C6, C7, C8, and multiple subunits of C9, which assemble on the surface of target cells. The formation of the MAC creates a pore-like structure in the cell membrane, leading to disruption of the membrane's integrity and ultimately causing cell lysis or damage.

The MAC plays an important role in the immune response by helping to eliminate pathogens that have evaded other immune defenses. However, uncontrolled activation of the complement system and formation of the MAC can also contribute to tissue damage and inflammation in various diseases, such as autoimmune disorders, age-related macular degeneration, and ischemia-reperfusion injury.

Complement receptors are proteins found on the surface of various cells in the human body, including immune cells and some non-immune cells. They play a crucial role in the complement system, which is a part of the innate immune response that helps to eliminate pathogens and damaged cells from the body. Complement receptors bind to complement proteins or fragments that are generated during the activation of the complement system. This binding triggers various intracellular signaling events that can lead to diverse cellular responses, such as phagocytosis, inflammation, and immune regulation.

There are several types of complement receptors, including:

1. CR1 (CD35): A receptor found on erythrocytes, B cells, neutrophils, monocytes, macrophages, and glomerular podocytes. It functions in the clearance of immune complexes and regulates complement activation.
2. CR2 (CD21): Expressed mainly on B cells and follicular dendritic cells. It facilitates antigen presentation, B-cell activation, and immune regulation.
3. CR3 (CD11b/CD18, Mac-1): Present on neutrophils, monocytes, macrophages, and some T cells. It mediates cell adhesion, phagocytosis, and intracellular signaling.
4. CR4 (CD11c/CD18, p150,95): Expressed on neutrophils, monocytes, macrophages, and dendritic cells. It is involved in cell adhesion, phagocytosis, and intracellular signaling.
5. C5aR (CD88): Found on various immune cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and dendritic cells. It binds to the complement protein C5a and mediates chemotaxis, degranulation, and inflammation.
6. C5L2 (GPR77): Present on various cell types, including immune cells. Its function is not well understood but may involve regulating C5a-mediated responses or acting as a receptor for other ligands.

These receptors play crucial roles in the immune response and inflammation by mediating various functions such as chemotaxis, phagocytosis, cell adhesion, and intracellular signaling. Dysregulation of these receptors has been implicated in several diseases, including autoimmune disorders, infections, and cancer.

Complement C2 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C2 is a component of the classical complement pathway, which is activated by the binding of antibodies to antigens on the surface of foreign particles or cells.

When the classical pathway is activated, C2 is cleaved into two fragments: C2a and C2b. C2a then binds to C4b to form the C3 convertase (C4b2a), which cleaves C3 into C3a and C3b. C3b can then go on to form the membrane attack complex, which creates a pore in the membrane of the target cell, leading to its lysis.

In summary, Complement C2 is a protein that helps to activate the complement system and destroy foreign particles or cells through the formation of the C3 convertase and the membrane attack complex.

Complement C5a is a protein fragment that is generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C5a is formed when the fifth component of the complement system (C5) is cleaved into two smaller fragments, C5a and C5b, during the complement activation cascade. C5a is a potent pro-inflammatory mediator that can attract and activate various immune cells, such as neutrophils, monocytes, and eosinophils, to the site of infection or injury. It can also increase vascular permeability, promote the release of histamine, and induce the production of reactive oxygen species, all of which contribute to the inflammatory response.

However, excessive or uncontrolled activation of the complement system and generation of C5a can lead to tissue damage and inflammation, contributing to the pathogenesis of various diseases, such as sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting C5a or its receptors has been explored as a potential therapeutic strategy for these conditions.

Anaphylatoxins are a group of small protein molecules that are released during an immune response, specifically as a result of the activation of the complement system. The term "anaphylatoxin" comes from their ability to induce anaphylaxis, a severe and rapid allergic reaction. There are three main anaphylatoxins, known as C3a, C4a, and C5a, which are derived from the cleavage of complement components C3, C4, and C5, respectively.

Anaphylatoxins play a crucial role in the immune response by attracting and activating various immune cells, such as neutrophils, eosinophils, and mast cells, to the site of infection or injury. They also increase vascular permeability, causing fluid to leak out of blood vessels and leading to tissue swelling. Additionally, anaphylatoxins can induce smooth muscle contraction, which can result in bronchoconstriction and hypotension.

While anaphylatoxins are important for the immune response, they can also contribute to the pathogenesis of various inflammatory diseases, such as asthma, arthritis, and sepsis. Therefore, therapies that target the complement system and anaphylatoxin production have been developed and are being investigated as potential treatments for these conditions.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Complement C4b is a protein fragment that is formed during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by tagging them for destruction and attracting immune cells to the site of infection or injury.

C4b is generated when the C4 protein is cleaved into two smaller fragments, C4a and C4b, during the activation of the classical or lectin pathways of the complement system. C4b then binds covalently to the surface of the target cell or pathogen, forming a complex with other complement proteins that can create a membrane attack complex (MAC) and cause cell lysis.

C4b can also act as an opsonin, coating the surface of the target cell or pathogen and making it easier for immune cells to recognize and phagocytose them. Additionally, C4b can activate the alternative pathway of the complement system, leading to further amplification of the complement response.

Complement inactivating agents are substances or drugs that inhibit the complement system, which is a part of the immune system responsible for the recognition and elimination of foreign substances and microorganisms. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

Complement inactivating agents are used in medical settings to prevent or treat various conditions associated with excessive or unwanted activation of the complement system, such as inflammation, autoimmune diseases, and transplant rejection. These agents can inhibit different components of the complement pathway, including C1 esterase inhibitors, C3 convertase inhibitors, and C5a receptor antagonists.

Examples of complement inactivating agents include eculizumab, ravulizumab, and Alexion's Ultomiris, which are monoclonal antibodies that target C5, a protein involved in the final steps of the complement pathway. These drugs have been approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and other complement-mediated diseases.

Other complement inactivating agents include C1 esterase inhibitors, such as Berinert and Ruconest, which are used to treat hereditary angioedema (HAE). These drugs work by inhibiting the activation of the classical pathway of the complement system, thereby preventing the release of inflammatory mediators that can cause swelling and pain.

Overall, complement inactivating agents play an important role in the treatment of various complement-mediated diseases, helping to reduce inflammation, prevent tissue damage, and improve patient outcomes.

Complement C9 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C9 is one of the components of the membrane attack complex (MAC), which is a protein structure that forms pores in the membranes of target cells, leading to their lysis or destruction.

When activated, C9 polymerizes and inserts itself into the cell membrane, forming a transmembrane pore that disrupts the membrane's integrity and causes the cell to lyse. This process is an essential part of the complement system's ability to destroy pathogens and clear damaged cells from the body.

Defects in the C9 gene can lead to a rare genetic disorder called complement component 9 deficiency, which is characterized by recurrent bacterial infections and immune complex-mediated diseases. Additionally, mutations in the C9 gene have been associated with an increased risk of age-related macular degeneration (AMD), a leading cause of blindness in older adults.

A Complement Hemolytic Activity Assay is a laboratory test used to measure the functionality and activity level of the complement system, which is a part of the immune system. The complement system is a group of proteins that work together to help eliminate pathogens from the body.

The assay measures the ability of the complement system to lyse (break open) red blood cells. This is done by mixing the patient's serum (the liquid portion of the blood) with antibody-coated red blood cells and incubating them together. The complement proteins in the serum will then bind to the antibodies on the red blood cells and cause them to lyse.

The degree of hemolysis (red blood cell lysis) is directly proportional to the activity level of the complement system. By measuring the amount of hemolysis, the assay can determine whether the complement system is functioning properly and at what level of activity.

This test is often used to diagnose or monitor complement-mediated diseases such as autoimmune disorders, infections, and some types of cancer. It may also be used to evaluate the effectiveness of treatments that target the complement system.

Complement C1 is a protein complex that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. The complement system consists of a group of proteins that work together to destroy microbes and remove debris.

Complement C1 is composed of three subunits: C1q, C1r, and C1s. When activated, C1q binds to the surface of a pathogen or damaged cell, leading to the activation of C1r and C1s. Activated C1r then cleaves and activates C1s, which in turn cleaves and activates other complement components, ultimately resulting in the formation of the membrane attack complex (MAC), a protein structure that forms a pore in the membrane of the target cell, leading to its lysis and destruction.

Defects in the complement component C1 can lead to immune disorders, such as hereditary angioedema, which is characterized by recurrent episodes of swelling in various parts of the body.

Complement Factor H is a protein involved in the regulation of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Complement Factor H helps to regulate the activation and deactivation of the complement component C3b, preventing excessive or unwanted activation of the complement system and protecting host tissues from damage.

Complement Factor H is a crucial protein in maintaining the balance between the protective effects of the complement system and the potential for harm to the body's own cells and tissues. Deficiencies or mutations in Complement Factor H have been associated with several diseases, including age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and C3 glomerulopathy.

Complement C3-C5 convertases are proteins that play a crucial role in the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by marking them for destruction and attracting immune cells to the site of infection or injury.

The C3-C5 convertases are formed during the activation of the complement component 3 (C3) protein, which is a central player in the complement system. The formation of the C3-C5 convertase involves two main steps:

1. C3 convertase formation: In this step, a complex of proteins called the C3 convertase is formed by the cleavage of C3 into C3a and C3b fragments. This complex can then cleave additional C3 molecules into C3a and C3b fragments, amplifying the complement response.
2. C5 convertase formation: In this step, the C3b fragment from the C3 convertase binds to another protein called C4b2a, forming a new complex called the C5 convertase. The C5 convertase can then cleave the C5 protein into C5a and C5b fragments.

The C5b fragment goes on to form the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis or destruction. The C3a and C5a fragments are small proteins called anaphylatoxins that can cause inflammation and attract immune cells to the site of infection or injury.

Overall, the formation of Complement C3-C5 convertases is a critical step in the activation of the complement system and plays a key role in the body's defense against pathogens and damaged cells.

Complement C6 is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C6 is a component of the membrane attack complex (MAC), which is a group of proteins that work together to form a pore in the membrane of target cells, leading to their lysis or destruction.

The complement system is activated through several different pathways, including the classical pathway, the lectin pathway, and the alternative pathway. Once activated, these pathways converge at the level of C3, which is cleaved into C3a and C3b fragments. C3b can then bind to the surface of target cells and initiate the formation of the MAC.

C6 is one of several proteins that are required for the formation of the MAC. When C6 binds to C7, it undergoes a conformational change that allows it to interact with C8 and form a stable complex. This complex then recruits additional C9 molecules, which polymerize to form the pore in the target cell membrane.

Deficiencies in complement components, including C6, can lead to increased susceptibility to certain types of infections, as well as autoimmune disorders and other medical conditions.

Complement activating enzymes are proteins that play a crucial role in the activation of the complement system, which is a part of the immune system. The complement system is a complex series of biochemical reactions that help to eliminate pathogens and damaged cells from the body.

There are several types of complement activating enzymes, including:

1. Classical pathway activators: These include the C1, C4, and C2 components of the complement system. When activated, they trigger a series of reactions that lead to the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, leading to its lysis.
2. Alternative pathway activators: These include factors B, D, and P. They are constantly active at low levels and can be activated by surfaces that are not normally found in the body, such as bacterial cell walls. Once activated, they also trigger the formation of the MAC.
3. Lectin pathway activators: These include mannose-binding lectin (MBL) and ficolins. They bind to carbohydrates on the surface of microbes and activate the complement system through the MBL-associated serine proteases (MASPs).

Overall, complement activating enzymes play a critical role in the immune response by helping to identify and eliminate pathogens and damaged cells from the body.

Complement C3d is a protein fragment that is formed during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens such as bacteria and viruses from the body by tagging them for destruction and attracting immune cells to the site of infection.

C3d is a cleavage product of complement component C3, which is one of the central proteins in the complement system. When C3 is activated, it is cleaved into two fragments: C3a and C3b. C3b can then be further cleaved into C3d and C3c.

C3d plays a role in the activation of the immune system by helping to link the complement system with the adaptive immune response. It does this by binding to receptors on B cells, which are a type of white blood cell that produces antibodies. This interaction can help to stimulate the production of antibodies and enhance the immune response to pathogens.

C3d has also been implicated in the development of certain autoimmune diseases, as it can contribute to the formation of immune complexes that can cause tissue damage.

Complement C4a is a protein fragment or cleavage product generated during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells by marking them for destruction and direct lysis. Complement component 4 (C4) is one of the key proteins in this cascade, and it gets cleaved into C4a and C4b during the activation process.

C4a is a small anaphylatoxin with a molecular weight of approximately 9 kDa. It has chemotactic properties, meaning it can attract immune cells like neutrophils to the site of complement activation. Additionally, C4a can induce histamine release from mast cells and basophils, contributing to local inflammation. However, its precise physiological role in the immune response is not entirely clear, and dysregulation of C4a production has been implicated in several pathological conditions, such as autoimmune diseases and allergies.

Complement receptor 3b (CR3b or CD11b/CD18) is not a medical definition itself, but I can provide you with the relevant information regarding this term.

Complement receptor 3 (CR3) is a heterodimeric receptor consisting of two subunits, CD11b (also known as Mac-1 or CR3 alpha) and CD18 (also known as beta2 integrin). There are two forms of the CD11b/CD18 heterodimer: CR3a (CD11b/CD18) and CR3b (CD11b/CD18'). The difference between these two forms lies in the conformation of the CD11b subunit.

Complement receptor 3b (CR3b or CD11b/CD18') is a less common form of the CR3 receptor, which is primarily expressed on myeloid cells such as monocytes, macrophages, and neutrophils. CR3b has a higher affinity for complement component C3b and its fragments iC3b and C3dg compared to CR3a.

CR3b plays a role in various immune functions, including:

1. Phagocytosis: Binding of C3b or its fragments to CR3b facilitates the recognition and uptake of opsonized pathogens by phagocytes.
2. Adhesion: The integrin component of CR3b mediates cell-cell and cell-matrix interactions, contributing to leukocyte migration and recruitment to sites of inflammation or infection.
3. Intracellular signaling: Activation of CR3b can lead to intracellular signaling events that modulate immune responses, such as the release of pro-inflammatory cytokines and reactive oxygen species.

In summary, Complement receptor 3b (CR3b or CD11b/CD18') is a less common form of CR3 primarily expressed on myeloid cells that binds complement component C3b and its fragments with high affinity, mediating phagocytosis, adhesion, and intracellular signaling.

Complement C3c is a protein component of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C3c is formed when the third component of the complement system (C3) is cleaved into two smaller proteins, C3a and C3b, during the complement activation process.

C3b can then be further cleaved into C3c and C3dg. C3c is a stable fragment that remains in the circulation and can be measured in blood tests as a marker of complement activation. It plays a role in the opsonization of pathogens, which means it coats them to make them more recognizable to immune cells, and helps to initiate the membrane attack complex (MAC), which forms a pore in the cell membrane of pathogens leading to their lysis or destruction.

Abnormal levels of C3c may indicate an underlying inflammatory or immune-mediated condition, such as infection, autoimmune disease, or cancer.

Complement Factor I is a protein involved in the regulation of the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Complement Factor I is a serine protease that regulates the complement component C3b by cleaving it into inactive fragments, thereby preventing the excessive activation of the complement system and protecting host tissues from damage.

Complement Factor I functions in conjunction with other regulatory proteins, such as complement receptor 1 (CR1) and membrane cofactor protein (MCP), to control the activity of the complement system at various stages. Deficiencies or mutations in Complement Factor I have been associated with several diseases, including atypical hemolytic uremic syndrome (aHUS), age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE).

The Complement C1 Inhibitor protein, also known as C1-INH, is a protein involved in the regulation of the complement system and the contact system, which are parts of the immune system. The complement system helps to eliminate pathogens (e.g., bacteria, viruses) from the body, while the contact system helps to regulate blood coagulation and inflammation.

C1-INH works by inhibiting the activation of C1, an enzyme complex that is the first component of the classical complement pathway. By inhibiting C1, C1-INH prevents the activation of downstream components of the complement system, thereby helping to regulate the immune response and prevent excessive inflammation.

Deficiencies or dysfunction in the C1-INH protein can lead to a group of genetic disorders known as C1 inhibitor deficiency disorders, which include hereditary angioedema (HAE) and acquired angioedema (AAE). These conditions are characterized by recurrent episodes of swelling in various parts of the body, such as the face, hands, feet, and airway, which can be painful and potentially life-threatening if they affect the airway.

The term "Receptor, Anaphylatoxin C5a" refers to a specific type of receptor found on the surface of various cells in the human body, including immune cells and endothelial cells. This receptor binds to a molecule called C5a, which is a cleavage product of the complement component C5 and is one of the most potent anaphylatoxins.

Anaphylatoxins are inflammatory mediators that play a crucial role in the immune response, particularly in the activation of the complement system and the recruitment of immune cells to sites of infection or injury. C5a is generated during the activation of the complement system and has a wide range of biological activities, including chemotaxis (attracting immune cells to the site of inflammation), increased vascular permeability, and the activation of immune cells such as neutrophils, monocytes, and mast cells.

The C5a receptor, also known as CD88, is a G protein-coupled receptor that belongs to the superfamily of seven transmembrane domain receptors. When C5a binds to the receptor, it triggers a series of intracellular signaling events that lead to the activation of various cellular responses, such as the release of inflammatory mediators and the recruitment of immune cells to the site of inflammation.

Abnormal activation of the C5a/C5a receptor pathway has been implicated in a variety of inflammatory diseases, including sepsis, acute respiratory distress syndrome (ARDS), and autoimmune disorders. Therefore, targeting this pathway with therapeutic agents has emerged as a promising strategy for the treatment of these conditions.

Complement Factor D is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, Factor D is a serine protease that is involved in the alternative pathway of the complement system.

In this pathway, Factor D helps to cleave another protein called Factor B, which then activates a complex called the C3 convertase. The C3 convertase cleaves complement component 3 (C3) into C3a and C3b, leading to the formation of the membrane attack complex (MAC), which creates a pore in the membrane of the target cell, causing its lysis and removal from the body.

Deficiencies or mutations in Complement Factor D can lead to an impaired alternative pathway and increased susceptibility to certain infections, particularly those caused by Neisseria bacteria. Additionally, abnormal regulation of the complement system has been implicated in a variety of diseases, including autoimmune disorders, inflammatory conditions, and neurodegenerative diseases.

CD55, also known as Decay-accelerating factor (DAF), is a protein that acts as an inhibitor of the complement system, which is a part of the immune system. It prevents the formation of the membrane attack complex (MAC) on host cells and tissues, thereby protecting them from damage caused by the complement activation. CD55 is found on the surface of many types of cells in the body, including red blood cells, white blood cells, and cells lining the blood vessels.

As an antigen, CD55 is a molecule that can be recognized by the immune system and stimulate an immune response. However, unlike some other antigens, CD55 does not typically elicit a strong immune response because it is a self-antigen, meaning it is normally present in the body and should not be targeted by the immune system.

In certain medical conditions, such as autoimmune disorders or transplant rejection, the immune system may mistakenly attack cells expressing CD55. In these cases, measuring the levels of CD55 antigens can provide valuable diagnostic information and help guide treatment decisions.

Complement C1 Inactivator proteins are a part of the complement system, which is a group of proteins in the blood that play a crucial role in the body's immune defense system. Specifically, Complement C1 Inactivator proteins are responsible for regulating the activation of the first component of the complement system, C1.

The complement system is activated in response to the presence of foreign substances such as bacteria or viruses in the body. The activation of C1 leads to a cascade of reactions that result in the destruction of the foreign substance. However, if this process is not properly regulated, it can lead to damage to the body's own cells and tissues.

Complement C1 Inactivator proteins help to prevent this by regulating the activation of C1. They do this by binding to and inhibiting the activity of C1, preventing it from initiating the complement cascade. A deficiency in Complement C1 Inactivator proteins can lead to a condition called hereditary angioedema, which is characterized by recurrent episodes of swelling in various parts of the body.

The Mannose-Binding Lectin (MBL) pathway is a part of the complement system, which is a group of proteins that play a crucial role in the body's immune defense against infectious agents. The MBL pathway is an alternative activation pathway of the complement system, which can be initiated without the need for antibodies.

MBL is a protein found in blood plasma and other bodily fluids. It recognizes and binds to specific sugars (mannose and fucose) found on the surface of many microorganisms, including bacteria, viruses, fungi, and parasites. When MBL binds to these sugars, it triggers a series of proteolytic cleavage events that activate the complement components C4 and C2, forming the C3 convertase (C4b2a).

The C3 convertase then cleaves the complement component C3 into C3a and C3b. C3b can bind to the surface of microorganisms, leading to their opsonization (coating) and subsequent phagocytosis by immune cells. Additionally, C3b can also trigger the formation of the membrane attack complex (MAC), which creates a pore in the membrane of microorganisms, leading to their lysis and death.

Overall, the MBL pathway plays an essential role in innate immunity, providing a rapid and effective defense against invading microorganisms.

Mannose-binding protein-associated serine proteases (MASPs) are a group of enzymes that are associated with mannose-binding lectin (MBL), a protein involved in the innate immune system's response to pathogens. MASPs are responsible for activating the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

MASPs are proteases, meaning they cleave other proteins at specific sites. There are two main types of MASPs, MASP-1 and MASP-2, which are activated by the binding of MBL to carbohydrate structures on the surface of pathogens. Once activated, MASP-1 and MASP-2 cleave complement components C4 and C2, leading to the formation of the C3 convertase enzyme complex, which ultimately results in the activation of the complement system.

MASPs have also been shown to play a role in other physiological processes, such as tissue remodeling and inflammation. Mutations in MASP genes have been associated with various immune disorders, including recurrent infections, autoimmune diseases, and inflammatory conditions.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

Complement C8 is a protein component of the complement system, which is a part of the immune system that helps to eliminate pathogens and damaged cells from the body. Specifically, C8 is a part of the membrane attack complex (MAC), which forms a pore in the membrane of target cells, leading to their lysis or destruction.

C8 is composed of three subunits: alpha, beta, and gamma. It is activated when it binds to the complement component C5b67 complex on the surface of a target cell. Once activated, C8 undergoes a conformational change that allows it to insert into the target cell membrane and form a pore, which disrupts the cell's membrane integrity and can lead to its death.

Deficiencies in complement components, including C8, can make individuals more susceptible to certain infections and autoimmune diseases. Additionally, mutations in the genes encoding complement proteins have been associated with various inherited disorders, such as atypical hemolytic uremic syndrome (aHUS), which is characterized by thrombotic microangiopathy and kidney failure.

Complement C4b-binding protein (C4bp) is a regulatory protein in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. C4bp regulates the complement system by binding to and inhibiting the activity of C4b, an activated component of the classical and lectin pathways of the complement system. By doing so, C4bp helps to prevent excessive or inappropriate activation of the complement system, which could otherwise lead to tissue damage and inflammation.

C4bp is a complex protein that consists of several subunits, including a central α-chain and multiple β-chains. It is produced by liver cells and can also be found on the surface of some cells in the body. Mutations in the genes encoding C4bp have been associated with certain immune disorders, such as systemic lupus erythematosus (SLE) and atypical hemolytic uremic syndrome (aHUS).

Complement C3b inactivator proteins, also known as complement regulators or decay-accelerating factor (DAF), are a group of proteins that play a crucial role in regulating the complement system. The complement system is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

The complement C3b inactivator proteins include two main types: complement receptor 1 (CR1) and decay-accelerating factor (DAF). These proteins work by regulating the formation of the membrane attack complex (MAC), a protein structure that forms pores in the cell membrane, leading to cell lysis.

Complement C3b inactivator proteins bind to C3b and C4b components of the complement system, preventing them from forming the MAC. By doing so, they help to prevent excessive activation of the complement system, which can damage healthy cells and tissues.

Deficiencies or dysfunction of complement C3b inactivator proteins have been associated with several diseases, including autoimmune disorders, inflammatory diseases, and infectious diseases. Therefore, understanding the role of these proteins in regulating the complement system is essential for developing new therapies to treat these conditions.

Hemolysis is the destruction or breakdown of red blood cells, resulting in the release of hemoglobin into the surrounding fluid (plasma). This process can occur due to various reasons such as chemical agents, infections, autoimmune disorders, mechanical trauma, or genetic abnormalities. Hemolysis may lead to anemia and jaundice, among other complications. It is essential to monitor hemolysis levels in patients undergoing medical treatments that might cause this condition.

Complement C7 is a protein that plays a role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, C7 is a component of the membrane attack complex (MAC), which is a group of proteins that forms a pore in the membrane of target cells, leading to their lysis or destruction.

C7 is activated when it binds to the C5b-7 complex, which is formed by the cleavage of C5 and C6 by the C5 convertase. Once bound to the C5b-7 complex, C7 undergoes a conformational change that allows it to insert into the target cell membrane. This forms the basis for the formation of the MAC and subsequent lysis of the target cell.

Deficiencies in complement components, including C7, can lead to increased susceptibility to certain infections and autoimmune disorders. Additionally, abnormal regulation of the complement system has been implicated in a variety of diseases, including inflammatory and degenerative conditions.

Mannose-Binding Lectin (MBL) is a protein that belongs to the collectin family and plays a crucial role in the innate immune system. It's primarily produced by the liver and secreted into the bloodstream. MBL binds to carbohydrate structures, such as mannose, found on the surface of various microorganisms, including bacteria, viruses, fungi, and parasites.

Once MBL binds to these microorganisms, it activates the complement system through the lectin pathway, which leads to the destruction of the pathogens by opsonization (marking for phagocytosis) or direct lysis. Additionally, MBL can also initiate other immune responses, such as inflammation and immune cell activation, helping to protect the host from infections.

Deficiencies in MBL have been associated with increased susceptibility to certain infectious diseases, autoimmune disorders, and allergies. However, more research is needed to fully understand the complex role of MBL in human health and disease.

Complement receptor 3d (CR3d or CD11b/CD18) is not a medical definition in itself, but rather a specific type of integrin receptor that plays a crucial role in the immune system. Here's a breakdown of the components:

1. Complement Receptors: These are proteins found on the surface of various cells, including white blood cells (leukocytes), that recognize and bind to complement components, which are proteins involved in the immune response. The binding of complement components to their receptors helps facilitate communication between cells, enhances phagocytosis (the process by which certain cells engulf and destroy foreign particles or microorganisms), and contributes to the inflammatory response.
2. CR3 (Complement Receptor 3): Complement Receptor 3 is a heterodimeric receptor composed of two subunits, CD11b (also known as integrin alpha M) and CD18 (also known as integrin beta 2). Together, they form the integrin Mac-1 or αMβ2.
3. CR3d (CD11b/CD18): CR3d specifically refers to the CD11b subunit of the Complement Receptor 3 heterodimer. The CD11b subunit is responsible for recognizing and binding to complement component C3b, iC3b, and C4b fragments, as well as other ligands such as fibrinogen, ICAM-1 (Intercellular Adhesion Molecule 1), and factor X.

In summary, Complement Receptor 3d (CR3d or CD11b/CD18) is a type of integrin receptor found on the surface of various immune cells that recognizes and binds to complement components C3b, iC3b, and C4b fragments, as well as other ligands. This binding facilitates communication between cells, enhances phagocytosis, and contributes to the inflammatory response.

Complement fixation tests are a type of laboratory test used in immunology and serology to detect the presence of antibodies in a patient's serum. These tests are based on the principle of complement activation, which is a part of the immune response. The complement system consists of a group of proteins that work together to help eliminate pathogens from the body.

In a complement fixation test, the patient's serum is mixed with a known antigen and complement proteins. If the patient has antibodies against the antigen, they will bind to it and activate the complement system. This results in the consumption or "fixation" of the complement proteins, which are no longer available to participate in a secondary reaction.

A second step involves adding a fresh source of complement proteins and a dye-labeled antibody that recognizes a specific component of the complement system. If complement was fixed during the first step, it will not be available for this secondary reaction, and the dye-labeled antibody will remain unbound. Conversely, if no antibodies were present in the patient's serum, the complement proteins would still be available for the second reaction, leading to the binding of the dye-labeled antibody.

The mixture is then examined under a microscope or using a spectrophotometer to determine whether the dye-labeled antibody has bound. If it has not, this indicates that the patient's serum contains antibodies specific to the antigen used in the test, and a positive result is recorded.

Complement fixation tests have been widely used for the diagnosis of various infectious diseases, such as syphilis, measles, and influenza. However, they have largely been replaced by more modern serological techniques, like enzyme-linked immunosorbent assays (ELISAs) and nucleic acid amplification tests (NAATs), due to their increased sensitivity, specificity, and ease of use.

CD59 is a type of protein found on the surface of many cells in the human body, including red and white blood cells, that functions as an inhibitor of the complement system. The complement system is a part of the immune system that helps to eliminate pathogens such as bacteria and viruses from the body.

CD59 specifically inhibits the formation of the membrane attack complex (MAC), which is a protein structure that forms pores in the cell membrane and can lead to cell lysis or death. By preventing the formation of the MAC, CD59 helps to protect cells from complement-mediated damage.

As an antigen, CD59 is a molecule that can be recognized by the immune system and stimulate an immune response. However, because it is a self-protein found on normal human cells, CD59 is not typically targeted by the immune system unless there is some kind of dysregulation or abnormality.

In certain medical conditions, such as autoimmune disorders or transplant rejection, the immune system may mistakenly target CD59 or other self-proteins, leading to damage to healthy cells and tissues. In these cases, treatments may be necessary to modulate or suppress the immune response and prevent further harm.

Properdin is defined as a positive regulatory protein in the complement system, which is a part of the immune system. It plays a crucial role in the alternative pathway of complement activation. Properdin stabilizes the C3 convertase (C3bBb), preventing its decay and increasing the efficiency of the alternative pathway. This results in the production of the membrane attack complex, which leads to the lysis of foreign cells or pathogens. Deficiencies in properdin can lead to an increased susceptibility to bacterial infections.

CD46, also known as membrane cofactor protein (MCP), is a regulatory protein that plays a role in the immune system and helps to protect cells from complement activation. It is found on the surface of many different types of cells in the body, including cells of the immune system such as T cells and B cells, as well as cells of various other tissues such as epithelial cells and endothelial cells.

As an antigen, CD46 is a molecule that can be recognized by the immune system and stimulate an immune response. It is a type I transmembrane protein that consists of four distinct domains: two short cytoplasmic domains, a transmembrane domain, and a large extracellular domain. The extracellular domain contains several binding sites for complement proteins, which helps to regulate the activation of the complement system and prevent it from damaging host cells.

CD46 has been shown to play a role in protecting cells from complement-mediated damage, modulating immune responses, and promoting the survival and proliferation of certain types of immune cells. It is also thought to be involved in the development of some autoimmune diseases and may be a target for immunotherapy in the treatment of cancer.

Complement C1s is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, C1s is a component of the first protein complex in the classical complement pathway, called C1.

C1 is composed of three subunits: C1q, C1r, and C1s. When C1 encounters an activating surface, such as an antibody-antigen complex or certain types of viruses and bacteria, it undergoes a conformational change that allows C1r to cleave and activate C1s. Activated C1s then goes on to cleave and activate other components in the complement pathway, leading to the generation of the membrane attack complex (MAC) and subsequent lysis of the target cell.

Deficiencies or mutations in the genes encoding complement proteins, including C1s, can lead to various immune disorders and increased susceptibility to infections.

Complement C1r is a protein that plays a crucial role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Specifically, C1r is one of the three proteins that make up the C1 complex, which is the first component of the classical complement pathway.

The C1 complex is composed of C1q, C1r, and C1s, and it is activated by the binding of C1q to the Fc region of an antibody that is bound to a pathogen or damaged cell. Once activated, C1r undergoes a conformational change that allows it to cleave and activate C1s. Activated C1s then goes on to cleave and activate other components of the complement system, leading to the production of the membrane attack complex (MAC), which forms a pore in the membrane of the target cell and causes lysis.

Deficiencies or mutations in the genes encoding the proteins of the C1 complex can lead to immune disorders, including hereditary angioedema, which is characterized by recurrent episodes of swelling in various parts of the body.

Complement C5b is a protein complex that forms during the activation of the complement system, which is a part of the immune system. The complement system helps to eliminate pathogens and damaged cells from the body by marking them for destruction and attracting immune cells to the site of infection or injury.

The complement component C5 is cleaved into two fragments, C5a and C5b, during the activation of the complement system. C5a is a small peptide that acts as a chemoattractant, drawing immune cells to the site of inflammation. C5b, on the other hand, forms a complex with other complement components (C6, C7, C8, and C9) to create the membrane attack complex (MAC). The MAC inserts itself into the membrane of the target cell, forming a pore that disrupts the cell's integrity and leads to its lysis or destruction.

Therefore, Complement C5b is an important protein involved in the immune response, specifically in the terminal phase of complement activation, which results in the formation of the MAC and subsequent destruction of target cells.

Complement C2b is a proteolytic fragment generated through the activation of the complement component C2, which is a part of the complement system. The complement system is a group of plasma proteins that play an important role in the body's immune defense against pathogens and abnormal cells.

When the complement component C2 is activated by the C3 convertase (a complex formed by C3b and either C4b or C4d), it is cleaved into two fragments: C2a and C2b. The C2b fragment is a smaller piece that contains an active protease domain, which can cleave other proteins in the complement pathway.

C2b plays a role in the formation of the membrane attack complex (MAC), a protein structure that forms pores in the membranes of target cells, leading to their lysis and removal by the immune system. Dysregulation or overactivation of the complement system, including C2b, can contribute to various pathological conditions such as autoimmune diseases, inflammatory disorders, and tissue damage.

Complement C3 Convertase, Alternative Pathway is a complex enzyme composed of the proteins C3b and Bb. It plays a crucial role in the alternative pathway of the complement system, which is a part of the innate immune system that helps to defend the body against invading pathogens.

The alternative pathway is continuously activated at a low level, and C3 Convertase is responsible for amplifying this activation. It does so by cleaving the complement component C3 into C3a and C3b. The C3b then binds to the surface of the pathogen and can form additional C3 Convertases, leading to a positive feedback loop that results in the rapid accumulation of complement components on the surface of the pathogen.

This accumulation of complement components helps to mark the pathogen for destruction by other immune cells, such as neutrophils and macrophages. Additionally, the cleavage products C3a and C5a generated during this process can act as anaphylatoxins, inducing inflammation and attracting more immune cells to the site of infection.

Regulation of Complement C3 Convertase is critical to prevent damage to host tissues. Several regulatory proteins, such as factor H and decay-accelerating factor (DAF), help to limit the formation and activity of C3 Convertase on host cells and tissues. Dysregulation of the complement system, including the alternative pathway and Complement C3 Convertase, has been implicated in a variety of diseases, including autoimmune disorders, inflammatory diseases, and infectious diseases.

Opsonins are proteins found in the blood that help enhance the immune system's response to foreign substances, such as bacteria and viruses. They do this by coating the surface of these pathogens, making them more recognizable to immune cells like neutrophils and macrophages. This process, known as opsonization, facilitates the phagocytosis (engulfing and destroying) of the pathogen by these immune cells.

There are two main types of opsonins:

1. IgG antibodies: These are a type of antibody produced by the immune system in response to an infection. They bind to specific antigens on the surface of the pathogen, marking them for destruction by phagocytic cells.
2. Complement proteins: The complement system is a group of proteins that work together to help eliminate pathogens. When activated, the complement system can produce various proteins that act as opsonins, including C3b and C4b. These proteins bind to the surface of the pathogen, making it easier for phagocytic cells to recognize and destroy them.

In summary, opsonin proteins are crucial components of the immune system's response to infections, helping to mark foreign substances for destruction by immune cells like neutrophils and macrophages.

Collectins are a group of proteins that belong to the collectin family, which are involved in the innate immune system. They are composed of a collagen-like region and a carbohydrate recognition domain (CRD), which allows them to bind to specific sugars on the surface of microorganisms, cells, and particles. Collectins play a crucial role in the defense against pathogens by promoting the clearance of microbes, modulating inflammation, and regulating immune responses.

Some examples of collectins include:

* Surfactant protein A (SP-A) and surfactant protein D (SP-D), which are found in the lungs and help to maintain the stability of the lung lining and protect against respiratory infections.
* Mannose-binding lectin (MBL), which is a serum protein that binds to mannose sugars on the surface of microorganisms, activating the complement system and promoting phagocytosis.
* Collectin liver 1 (CL-L1) and collectin kidney 1 (CL-K1), which are found in the liver and kidneys, respectively, and play a role in the clearance of apoptotic cells and immune complexes.

Deficiencies or mutations in collectins can lead to increased susceptibility to infections, autoimmune diseases, and other disorders.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Lectins are a type of proteins that bind specifically to carbohydrates and have been found in various plant and animal sources. They play important roles in biological recognition events, such as cell-cell adhesion, and can also be involved in the immune response. Some lectins can agglutinate certain types of cells or precipitate glycoproteins, while others may have a more direct effect on cellular processes. In some cases, lectins from plants can cause adverse effects in humans if ingested, such as digestive discomfort or allergic reactions.

Zymosan is a type of substance that is derived from the cell walls of yeast and some types of fungi. It's often used in laboratory research as an agent to stimulate inflammation, because it can activate certain immune cells (such as neutrophils) and cause them to release pro-inflammatory chemicals.

In medical terms, Zymosan is sometimes used as a tool for studying the immune system and inflammation in experimental settings. It's important to note that Zymosan itself is not a medical condition or disease, but rather a research reagent with potential applications in understanding human health and disease.

Blood bactericidal activity refers to the ability of an individual's blood to kill or inhibit the growth of bacteria. This is an important aspect of the body's immune system, as it helps to prevent infection and maintain overall health. The bactericidal activity of blood can be influenced by various factors, including the presence of antibodies, white blood cells (such as neutrophils), and complement proteins.

In medical terms, the term "bactericidal" specifically refers to an agent or substance that is capable of killing bacteria. Therefore, when we talk about blood bactericidal activity, we are referring to the collective ability of various components in the blood to kill or inhibit the growth of bacteria. This is often measured in laboratory tests as a way to assess a person's immune function and their susceptibility to infection.

It's worth noting that not all substances in the blood are bactericidal; some may simply inhibit the growth of bacteria without killing them. These substances are referred to as bacteriostatic. Both bactericidal and bacteriostatic agents play important roles in maintaining the body's defense against infection.

I'm sorry for any confusion, but "Phthalic Anhydrides" is not a medical term. It is a chemical compound with the formula C6H4(CO)2O. Phthalic anhydride is a white crystalline powder used in the industrial synthesis of plasticizers, resins, and dyes.

If you have any questions about medical terminology or concepts, please don't hesitate to ask!

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Immunoelectrophoresis (IEP) is a laboratory technique used in the field of clinical pathology and immunology. It is a method for separating and identifying proteins, particularly immunoglobulins or antibodies, in a sample. This technique combines the principles of electrophoresis, which separates proteins based on their electric charge and size, with immunological reactions, which detect specific proteins using antigen-antibody interactions.

In IEP, a protein sample is first separated by electrophoresis in an agarose or agar gel matrix on a glass slide or in a test tube. After separation, an antibody specific to the protein of interest is layered on top of the gel and allowed to diffuse towards the separated proteins. This creates a reaction between the antigen (protein) and the antibody, forming a visible precipitate at the point where they meet. The precipitate line's position and intensity can then be analyzed to identify and quantify the protein of interest.

Immunoelectrophoresis is particularly useful in diagnosing various medical conditions, such as immunodeficiency disorders, monoclonal gammopathies (like multiple myeloma), and other plasma cell dyscrasias. It can help detect abnormal protein patterns, quantify specific immunoglobulins, and identify the presence of M-proteins or Bence Jones proteins, which are indicative of monoclonal gammopathies.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

"Sarcoptes scabiei" is a medical term that refers to a species of mite known as the human itch mite or simply scabies mite. This tiny arthropod burrows into the upper layer of human skin, where it lives and lays its eggs, causing an intensely itchy skin condition called scabies. The female mite measures about 0.3-0.5 mm in length and has eight legs. It is barely visible to the naked eye.

The mite's burrowing and feeding activities trigger an immune response in the host, leading to a characteristic rash and intense itching, particularly at night. The rash typically appears as small red bumps or blisters and can occur anywhere on the body, but is most commonly found in skin folds such as the wrists, elbows, armpits, waistline, and buttocks.

Scabies is highly contagious and can spread rapidly through close physical contact with an infected person, shared bedding or towels, or prolonged skin-to-skin contact. It is important to seek medical treatment promptly if scabies is suspected, as the condition can cause significant discomfort and lead to secondary bacterial infections if left untreated. Treatment typically involves topical medications that kill the mites and their eggs, as well as thorough cleaning of bedding, clothing, and other items that may have come into contact with the infected person.

Gamma-globulins are a type of protein found in the blood serum, specifically a class of immunoglobulins (antibodies) known as IgG. They are the most abundant type of antibody and provide long-term defense against bacterial and viral infections. Gamma-globulins can also be referred to as "gamma globulin" or "gamma immune globulins."

These proteins are produced by B cells, a type of white blood cell, in response to an antigen (a foreign substance that triggers an immune response). IgG gamma-globulins have the ability to cross the placenta and provide passive immunity to the fetus. They can be measured through various medical tests such as serum protein electrophoresis (SPEP) or immunoelectrophoresis, which are used to diagnose and monitor conditions related to immune system disorders, such as multiple myeloma or primary immunodeficiency diseases.

In addition, gamma-globulins can be administered therapeutically in the form of intravenous immunoglobulin (IVIG) to provide passive immunity for patients with immunodeficiencies, autoimmune disorders, or infectious diseases.

Snake venoms are complex mixtures of bioactive compounds produced by specialized glands in snakes. They primarily consist of proteins and peptides, including enzymes, neurotoxins, hemotoxins, cytotoxins, and cardiotoxins. These toxins can cause a variety of pharmacological effects on the victim's body, such as disruption of the nervous system, blood coagulation, muscle function, and cell membrane integrity, ultimately leading to tissue damage and potentially death. The composition of snake venoms varies widely among different species, making each species' venom unique in its toxicity profile.

Macular degeneration, also known as age-related macular degeneration (AMD), is a medical condition that affects the central part of the retina, called the macula. The macula is responsible for sharp, detailed vision, which is necessary for activities such as reading, driving, and recognizing faces.

In AMD, there is a breakdown or deterioration of the macula, leading to gradual loss of central vision. There are two main types of AMD: dry (atrophic) and wet (exudative). Dry AMD is more common and progresses more slowly, while wet AMD is less common but can cause rapid and severe vision loss if left untreated.

The exact causes of AMD are not fully understood, but risk factors include age, smoking, family history, high blood pressure, obesity, and exposure to sunlight. While there is no cure for AMD, treatments such as vitamin supplements, laser therapy, and medication injections can help slow its progression and reduce the risk of vision loss.

The Forssman antigen is a type of heterophile antigen, which is a substance that can stimulate an immune response in animals of different species. It was first discovered by the Swedish bacteriologist, John Forssman, in 1911. The Forssman antigen is found in a variety of tissues and organs, including the kidney, liver, and brain, in many different animal species, including humans.

The Forssman antigen is unique because it can induce the production of antibodies that cross-react with tissues from other species. This means that an immune response to the Forssman antigen in one species can also recognize and react with similar antigens in another species, leading to the possibility of cross-species immune reactions.

The Forssman antigen is a complex glycosphingolipid molecule that is found on the surface of cells. It is not clear what role, if any, the Forssman antigen plays in normal physiological processes. However, its presence has been implicated in various disease processes, including autoimmune disorders and transplant rejection.

In summary, the Forssman antigen is a heterophile antigen found in a variety of tissues and organs in many different animal species, including humans. It can induce cross-reacting antibodies and has been implicated in various disease processes.

Serum, in the context of clinical and medical laboratory science, refers to the fluid that is obtained after blood coagulation. It is the yellowish, straw-colored liquid fraction of whole blood that remains after the clotting factors have been removed. Serum contains various proteins, electrolytes, hormones, antibodies, antigens, and other substances, which can be analyzed to help diagnose and monitor a wide range of medical conditions. It is commonly used for various clinical tests such as chemistry panels, immunological assays, drug screening, and infectious disease testing.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Veillonella is a genus of Gram-negative, anaerobic, non-spore-forming, coccoid or rod-shaped bacteria. These bacteria are commonly found as normal flora in the human mouth, intestines, and female genital tract. They are known to be obligate parasites, meaning they rely on other organisms for nutrients and energy. Veillonella species are often associated with dental caries and have been implicated in various infections such as bacteremia, endocarditis, pneumonia, and wound infections, particularly in immunocompromised individuals or those with underlying medical conditions. Proper identification of Veillonella species is important for the diagnosis and treatment of these infections.

"Bothrops" is a genus of venomous snakes commonly known as lancehead vipers, found primarily in Central and South America. The name "Bothrops" comes from the Greek words "bothros," meaning pit, and "ops," meaning face, referring to the deep pits on the sides of their heads that help them detect heat and locate prey. These snakes are known for their aggressive behavior and potent venom, which can cause severe pain, swelling, tissue damage, and potentially life-threatening systemic effects if left untreated.

The genus "Bothrops" includes over 30 species of pit vipers, many of which are considered medically important due to their ability to inflict serious envenomations in humans. Some notable examples include Bothrops asper (the terciopelo or fer-de-lance), Bothrops atrox (the common lancehead), and Bothrops jararaca (the jararaca).

If you encounter a snake of this genus, it is essential to seek medical attention immediately if bitten, as the venom can cause significant harm if not treated promptly.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

The Macrophage-1 Antigen (also known as Macrophage Antigen-1 or CD14) is a glycoprotein found on the surface of various cells, including monocytes, macrophages, and some dendritic cells. It functions as a receptor for complexes formed by lipopolysaccharides (LPS) and LPS-binding protein (LBP), which are involved in the immune response to gram-negative bacteria. CD14 plays a crucial role in activating immune cells and initiating the release of proinflammatory cytokines upon recognizing bacterial components.

In summary, Macrophage-1 Antigen is a cell surface receptor that contributes to the recognition and response against gram-negative bacteria by interacting with LPS-LBP complexes.

Immunoglobulin M (IgM) is a type of antibody that is primarily found in the blood and lymph fluid. It is the first antibody to be produced in response to an initial exposure to an antigen, making it an important part of the body's primary immune response. IgM antibodies are large molecules that are composed of five basic units, giving them a pentameric structure. They are primarily found on the surface of B cells as membrane-bound immunoglobulins (mlgM), where they function as receptors for antigens. Once an mlgM receptor binds to an antigen, it triggers the activation and differentiation of the B cell into a plasma cell that produces and secretes large amounts of soluble IgM antibodies.

IgM antibodies are particularly effective at agglutination (clumping) and complement activation, which makes them important in the early stages of an immune response to help clear pathogens from the bloodstream. However, they are not as stable or long-lived as other types of antibodies, such as IgG, and their levels tend to decline after the initial immune response has occurred.

In summary, Immunoglobulin M (IgM) is a type of antibody that plays a crucial role in the primary immune response to antigens by agglutination and complement activation. It is primarily found in the blood and lymph fluid, and it is produced by B cells after they are activated by an antigen.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Immune evasion is a term used in immunology to describe the various strategies employed by pathogens (such as viruses, bacteria, parasites) to avoid or subvert the host's immune system. This can include mechanisms that allow the pathogen to directly inhibit or escape the actions of immune cells, like T cells and neutrophils, or to prevent the detection of their presence by masking themselves from the immune system.

For example, some viruses may change their surface proteins to avoid recognition by antibodies, while others may block the presentation of their antigens to T cells. Similarly, some bacteria can produce enzymes that degrade or modify components of the immune system, allowing them to evade detection and destruction.

Immune evasion is a major challenge in the development of effective vaccines and therapies for infectious diseases, as it allows pathogens to persist and cause chronic infections. Understanding the mechanisms of immune evasion can help researchers develop strategies to overcome these challenges and improve outcomes for patients.

Oxyphenbutazone is a non-selective non-steroidal anti-inflammatory drug (NSAID) that has been used in the past for its analgesic, anti-inflammatory, and antipyretic properties. It works by inhibiting the enzyme cyclooxygenase (COX), which is involved in the synthesis of prostaglandins, chemicals that mediate inflammation, pain, and fever.

However, due to its potential for serious side effects such as gastrointestinal ulcers, bleeding, and kidney damage, as well as interactions with other medications, oxyphenbutazone is no longer commonly used in many countries. It has been largely replaced by newer NSAIDs that have a more favorable safety profile.

It's important to note that the use of oxyphenbutazone should be under the strict supervision of a healthcare professional and should only be taken as directed, as it can cause potentially serious side effects even at therapeutic doses.

Mannans are a type of complex carbohydrate, specifically a heteropolysaccharide, that are found in the cell walls of certain plants, algae, and fungi. They consist of chains of mannose sugars linked together, often with other sugar molecules such as glucose or galactose.

Mannans have various biological functions, including serving as a source of energy for microorganisms that can break them down. In some cases, mannans can also play a role in the immune response and are used as a component of vaccines to stimulate an immune response.

In the context of medicine, mannans may be relevant in certain conditions such as gut dysbiosis or allergic reactions to foods containing mannans. Additionally, some research has explored the potential use of mannans as a delivery vehicle for drugs or other therapeutic agents.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Blood proteins, also known as serum proteins, are a group of complex molecules present in the blood that are essential for various physiological functions. These proteins include albumin, globulins (alpha, beta, and gamma), and fibrinogen. They play crucial roles in maintaining oncotic pressure, transporting hormones, enzymes, vitamins, and minerals, providing immune defense, and contributing to blood clotting.

Albumin is the most abundant protein in the blood, accounting for about 60% of the total protein mass. It functions as a transporter of various substances, such as hormones, fatty acids, and drugs, and helps maintain oncotic pressure, which is essential for fluid balance between the blood vessels and surrounding tissues.

Globulins are divided into three main categories: alpha, beta, and gamma globulins. Alpha and beta globulins consist of transport proteins like lipoproteins, hormone-binding proteins, and enzymes. Gamma globulins, also known as immunoglobulins or antibodies, are essential for the immune system's defense against pathogens.

Fibrinogen is a protein involved in blood clotting. When an injury occurs, fibrinogen is converted into fibrin, which forms a mesh to trap platelets and form a clot, preventing excessive bleeding.

Abnormal levels of these proteins can indicate various medical conditions, such as liver or kidney disease, malnutrition, infections, inflammation, or autoimmune disorders. Blood protein levels are typically measured through laboratory tests like serum protein electrophoresis (SPE) and immunoelectrophoresis (IEP).

Integrin αXβ2, also known as CD11c/CD18 or complement receptor 4 (CR4), is a heterodimeric integrin that is widely expressed on the surface of various leukocytes, including dendritic cells, monocytes, macrophages, and some subsets of T cells and NK cells. This integrin plays crucial roles in cell-cell adhesion, cell migration, and signaling transduction during immune responses.

Integrin αXβ2 recognizes several ligands, including the complement component iC3b, fibrinogen, and factor X. The binding of these ligands to αXβ2 triggers various intracellular signaling pathways that regulate cell activation, differentiation, and effector functions.

In summary, Integrin αXβ2 is a vital integrin involved in the regulation of immune responses by mediating leukocyte adhesion, migration, and activation.

I'm sorry for any confusion, but "snakes" is not a medical term. It refers to a group of legless reptiles that can be found on every continent except Antarctica. If you have any questions about snakes in a different context, please provide more information and I'll do my best to help!

Immune complex diseases are medical conditions that occur when the immune system produces an abnormal response to certain antigens, leading to the formation and deposition of immune complexes in various tissues and organs. These immune complexes consist of antibodies bound to antigens, which can trigger an inflammatory reaction and damage the surrounding tissue.

Immune complex diseases can be classified into two categories: acute and chronic. Acute immune complex diseases include serum sickness and hypersensitivity vasculitis, while chronic immune complex diseases include systemic lupus erythematosus (SLE), rheumatoid arthritis, and membranoproliferative glomerulonephritis.

The symptoms of immune complex diseases depend on the location and extent of tissue damage. They can range from mild to severe and may include fever, joint pain, skin rashes, kidney dysfunction, and neurological problems. Treatment typically involves medications that suppress the immune system and reduce inflammation, such as corticosteroids, immunosuppressants, and anti-inflammatory drugs.

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

A dose-response relationship in immunology refers to the quantitative relationship between the dose or amount of an antigen (a substance that triggers an immune response) and the magnitude or strength of the resulting immune response. Generally, as the dose of an antigen increases, the intensity and/or duration of the immune response also increase, up to a certain point. This relationship helps in determining the optimal dosage for vaccines and immunotherapies, ensuring sufficient immune activation while minimizing potential adverse effects.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Serine endopeptidases are a type of enzymes that cleave peptide bonds within proteins (endopeptidases) and utilize serine as the nucleophilic amino acid in their active site for catalysis. These enzymes play crucial roles in various biological processes, including digestion, blood coagulation, and programmed cell death (apoptosis). Examples of serine endopeptidases include trypsin, chymotrypsin, thrombin, and elastase.

The term "Immune Adherence Reaction" is not widely used in modern immunology or medicine. It appears to be an outdated concept that refers to the attachment of immune complexes (consisting of antigens, antibodies, and complement components) to Fc receptors on phagocytic cells, such as neutrophils and monocytes. This interaction facilitates the clearance of immune complexes from circulation and helps to prevent tissue damage caused by their deposition.

However, it is important to note that this term is not commonly used in current scientific literature or clinical settings. Instead, the processes it describes are typically discussed within the broader context of immune complex-mediated inflammation, complement activation, and phagocytosis.

Complement C3 Nephritic Factor (C3NeF) is a type of autoantibody that activates the complement system and plays a significant role in the development of certain types of kidney diseases. The complement system is a part of the immune system that helps to eliminate pathogens and damaged cells from the body.

C3NeF is specifically directed against the C3 convertase enzyme complex, which is a critical component of the complement system's activation pathway. By binding to this enzyme complex, C3NeF stabilizes it and enhances its activity, leading to excessive complement activation and subsequent tissue damage.

In the context of kidney diseases, C3NeF has been associated with several forms of glomerulonephritis, including membranoproliferative glomerulonephritis (MPGN) type II, also known as dense deposit disease (DDD). The persistent activation of the complement system by C3NeF can result in the accumulation of complement components and immune complexes in the glomeruli, causing inflammation, tissue injury, and ultimately leading to kidney function impairment.

It is essential to diagnose and monitor C3NeF levels in patients with kidney diseases, as it may help guide treatment decisions and assess disease prognosis. Therapeutic strategies targeting the complement system, such as eculizumab, have shown promising results in managing C3NeF-associated kidney diseases.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Venom is a complex mixture of toxic compounds produced by certain animals, such as snakes, spiders, scorpions, and marine creatures like cone snails and stonefish. These toxic substances are specifically designed to cause damage to the tissues or interfere with the normal physiological processes of other organisms, which can lead to harmful or even lethal effects.

Venoms typically contain a variety of components, including enzymes, peptides, proteins, and small molecules, each with specific functions that contribute to the overall toxicity of the mixture. Some of these components may cause localized damage, such as tissue necrosis or inflammation, while others can have systemic effects, impacting various organs and bodily functions.

The study of venoms, known as toxinology, has important implications for understanding the evolution of animal behavior, developing new therapeutics, and advancing medical treatments for envenomation (the process of being poisoned by venom). Additionally, venoms have been used in traditional medicine for centuries, and ongoing research continues to uncover novel compounds with potential applications in modern pharmacology.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Hemolytic-Uremic Syndrome (HUS) is a serious condition that affects the blood and kidneys. It is characterized by three major features: the breakdown of red blood cells (hemolysis), the abnormal clotting of small blood vessels (microthrombosis), and acute kidney failure.

The breakdown of red blood cells leads to the release of hemoglobin into the bloodstream, which can cause anemia. The microthrombi can obstruct the flow of blood in the kidneys' filtering system (glomeruli), leading to damaged kidney function and potentially acute kidney failure.

HUS is often caused by a bacterial infection, most commonly Escherichia coli (E. coli) that produces Shiga toxins. This form of HUS is known as STEC-HUS or Stx-HUS. Other causes include infections with other bacteria, viruses, medications, pregnancy complications, and certain medical conditions such as autoimmune diseases.

Symptoms of HUS may include fever, fatigue, decreased urine output, blood in the stool, swelling in the face, hands, or feet, and irritability or confusion. Treatment typically involves supportive care, including dialysis for kidney failure, transfusions to replace lost red blood cells, and managing high blood pressure. In severe cases, a kidney transplant may be necessary.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Urochordata is a phylum in the animal kingdom that includes sessile, marine organisms commonly known as tunicates or sea squirts. The name "Urochordata" means "tail-cord animals," which refers to the notochord, a flexible, rod-like structure found in the tails of these animals during their larval stage.

Tunicates are filter feeders that draw water into their bodies through a siphon and extract plankton and other organic particles for nutrition. They have a simple body plan, consisting of a protective outer covering called a tunic, an inner body mass with a muscular pharynx, and a tail-like structure called the post-anal tail.

Urochordates are of particular interest to biologists because they are considered to be the closest living relatives to vertebrates (animals with backbones), sharing a common ancestor with them around 550 million years ago. Despite their simple appearance, tunicates have complex developmental processes that involve the formation of notochords, dorsal nerve cords, and other structures that are similar to those found in vertebrate embryos.

Overall, Urochordata is a fascinating phylum that provides important insights into the evolutionary history of animals and their diverse body plans.

Kaolin is not a medical term per se, but it is a mineral that has various applications in the medical field. Medically, kaolin is used as an ingredient in some over-the-counter (OTC) medications and clinical products, particularly in oral and topical formulations.

Medical definition: Kaolin is a natural hydrated aluminum silicate clay mineral (with the chemical formula Al2Si2O5(OH)4) used in medical applications as an antidiarrheal agent and as a component in various dermatological products for its absorbent, protective, and soothing properties.

Arthropods are a phylum of animals that includes insects, spiders, crustaceans, and other creatures with jointed appendages. Arthropod proteins, therefore, refer to the proteins that are found in these organisms. These proteins play various roles in the structure, function, and regulation of arthropod cells, tissues, and organs.

Arthropod proteins can be classified into several categories based on their functions, such as structural proteins, enzymes, signaling proteins, and defense proteins. Structural proteins provide support and protection to the arthropod exoskeleton, which is composed mainly of chitin and proteins. Enzymes are proteins that catalyze chemical reactions in arthropod metabolism, while signaling proteins regulate various physiological processes, including growth, development, and reproduction. Defense proteins protect arthropods from pathogens, parasites, and environmental stressors.

Arthropod proteins have attracted significant interest in biomedical research due to their potential applications in drug discovery, vaccine development, and diagnostic tools. For example, some arthropod proteins have been identified as promising targets for the development of new insecticides and antiparasitic drugs. Additionally, arthropod-derived proteins have been used in the production of recombinant vaccines against infectious diseases such as Lyme disease and malaria.

Understanding the structure and function of arthropod proteins is essential for advancing our knowledge of arthropod biology, evolution, and ecology. It also has important implications for human health, agriculture, and environmental conservation.

An antigen-antibody reaction is a specific immune response that occurs when an antigen (a foreign substance, such as a protein or polysaccharide on the surface of a bacterium or virus) comes into contact with a corresponding antibody (a protective protein produced by the immune system in response to the antigen). The antigen and antibody bind together, forming an antigen-antibody complex. This interaction can neutralize the harmful effects of the antigen, mark it for destruction by other immune cells, or activate complement proteins to help eliminate the antigen from the body. Antigen-antibody reactions are a crucial part of the adaptive immune response and play a key role in the body's defense against infection and disease.

Surface Plasmon Resonance (SPR) is a physical phenomenon that occurs at the interface between a metal and a dielectric material, when electromagnetic radiation (usually light) is shone on it. It involves the collective oscillation of free electrons in the metal, known as surface plasmons, which are excited by the incident light. The resonance condition is met when the momentum and energy of the photons match those of the surface plasmons, leading to a strong absorption of light and an evanescent wave that extends into the dielectric material.

In the context of medical diagnostics and research, SPR is often used as a sensitive and label-free detection technique for biomolecular interactions. By immobilizing one binding partner (e.g., a receptor or antibody) onto the metal surface and flowing the other partner (e.g., a ligand or antigen) over it, changes in the refractive index at the interface can be measured in real-time as the plasmons are disturbed by the presence of bound molecules. This allows for the quantification of binding affinities, kinetics, and specificity with high sensitivity and selectivity.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Endotoxins are toxic substances that are associated with the cell walls of certain types of bacteria. They are released when the bacterial cells die or divide, and can cause a variety of harmful effects in humans and animals. Endotoxins are made up of lipopolysaccharides (LPS), which are complex molecules consisting of a lipid and a polysaccharide component.

Endotoxins are particularly associated with gram-negative bacteria, which have a distinctive cell wall structure that includes an outer membrane containing LPS. These toxins can cause fever, inflammation, and other symptoms when they enter the bloodstream or other tissues of the body. They are also known to play a role in the development of sepsis, a potentially life-threatening condition characterized by a severe immune response to infection.

Endotoxins are resistant to heat, acid, and many disinfectants, making them difficult to eliminate from contaminated environments. They can also be found in a variety of settings, including hospitals, industrial facilities, and agricultural operations, where they can pose a risk to human health.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Protein S is a vitamin K-dependent protein found in the blood that functions as a natural anticoagulant. It plays a crucial role in regulating the body's clotting system by inhibiting the activation of coagulation factors, thereby preventing excessive blood clotting. Protein S also acts as a cofactor for activated protein C, which is another important anticoagulant protein.

Protein S exists in two forms: free and bound to a protein called C4b-binding protein (C4BP). Only the free form of Protein S has biological activity in inhibiting coagulation. Inherited or acquired deficiencies in Protein S can lead to an increased risk of thrombosis, or abnormal blood clot formation, which can cause various medical conditions such as deep vein thrombosis (DVT) and pulmonary embolism (PE). Regular monitoring of Protein S levels is essential for patients with a history of thrombotic events or those who have a family history of thrombophilia.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Chemotaxis, Leukocyte is the movement of leukocytes (white blood cells) towards a higher concentration of a particular chemical substance, known as a chemotactic factor. This process plays a crucial role in the immune system's response to infection and injury.

When there is an infection or tissue damage, certain cells release chemotactic factors, which are small molecules or proteins that can attract leukocytes to the site of inflammation. Leukocytes have receptors on their surface that can detect these chemotactic factors and move towards them through a process called chemotaxis.

Once they reach the site of inflammation, leukocytes can help eliminate pathogens or damaged cells by phagocytosis (engulfing and destroying) or releasing toxic substances that kill the invading microorganisms. Chemotaxis is an essential part of the immune system's defense mechanisms and helps to maintain tissue homeostasis and prevent the spread of infection.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that can affect almost any organ or system in the body. In SLE, the immune system produces an exaggerated response, leading to the production of autoantibodies that attack the body's own cells and tissues, causing inflammation and damage. The symptoms and severity of SLE can vary widely from person to person, but common features include fatigue, joint pain, skin rashes (particularly a "butterfly" rash across the nose and cheeks), fever, hair loss, and sensitivity to sunlight.

Systemic lupus erythematosus can also affect the kidneys, heart, lungs, brain, blood vessels, and other organs, leading to a wide range of symptoms such as kidney dysfunction, chest pain, shortness of breath, seizures, and anemia. The exact cause of SLE is not fully understood, but it is believed to involve a combination of genetic, environmental, and hormonal factors. Treatment typically involves medications to suppress the immune system and manage symptoms, and may require long-term management by a team of healthcare professionals.

Mannose is a simple sugar (monosaccharide) that is similar in structure to glucose. It is a hexose, meaning it contains six carbon atoms. Mannose is a stereoisomer of glucose, meaning it has the same chemical formula but a different structural arrangement of its atoms.

Mannose is not as commonly found in foods as other simple sugars, but it can be found in some fruits, such as cranberries, blueberries, and peaches, as well as in certain vegetables, like sweet potatoes and turnips. It is also found in some dietary fibers, such as those found in beans and whole grains.

In the body, mannose can be metabolized and used for energy, but it is also an important component of various glycoproteins and glycolipids, which are molecules that play critical roles in many biological processes, including cell recognition, signaling, and adhesion.

Mannose has been studied as a potential therapeutic agent for various medical conditions, including urinary tract infections (UTIs), because it can inhibit the attachment of certain bacteria to the cells lining the urinary tract. Additionally, mannose-binding lectins have been investigated for their potential role in the immune response to viral and bacterial infections.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Reperfusion injury is a complex pathophysiological process that occurs when blood flow is restored to previously ischemic tissues, leading to further tissue damage. This phenomenon can occur in various clinical settings such as myocardial infarction (heart attack), stroke, or peripheral artery disease after an intervention aimed at restoring perfusion.

The restoration of blood flow leads to the generation of reactive oxygen species (ROS) and inflammatory mediators, which can cause oxidative stress, cellular damage, and activation of the immune system. This results in a cascade of events that may lead to microvascular dysfunction, capillary leakage, and tissue edema, further exacerbating the injury.

Reperfusion injury is an important consideration in the management of ischemic events, as interventions aimed at restoring blood flow must be carefully balanced with potential harm from reperfusion injury. Strategies to mitigate reperfusion injury include ischemic preconditioning (exposing the tissue to short periods of ischemia before a prolonged ischemic event), ischemic postconditioning (applying brief periods of ischemia and reperfusion after restoring blood flow), remote ischemic preconditioning (ischemia applied to a distant organ or tissue to protect the target organ), and pharmacological interventions that scavenge ROS, reduce inflammation, or improve microvascular function.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Blood coagulation, also known as blood clotting, is a complex process that occurs in the body to prevent excessive bleeding when a blood vessel is damaged. This process involves several different proteins and chemical reactions that ultimately lead to the formation of a clot.

The coagulation cascade is initiated when blood comes into contact with tissue factor, which is exposed after damage to the blood vessel wall. This triggers a series of enzymatic reactions that activate clotting factors, leading to the formation of a fibrin clot. Fibrin is a protein that forms a mesh-like structure that traps platelets and red blood cells to form a stable clot.

Once the bleeding has stopped, the coagulation process is regulated and inhibited to prevent excessive clotting. The fibrinolytic system degrades the clot over time, allowing for the restoration of normal blood flow.

Abnormalities in the blood coagulation process can lead to bleeding disorders or thrombotic disorders such as deep vein thrombosis and pulmonary embolism.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Immunoglobulins (Igs), also known as antibodies, are glycoprotein molecules produced by the immune system's B cells in response to the presence of foreign substances, such as bacteria, viruses, and toxins. These Y-shaped proteins play a crucial role in identifying and neutralizing pathogens and other antigens, thereby protecting the body against infection and disease.

Immunoglobulins are composed of four polypeptide chains: two identical heavy chains and two identical light chains, held together by disulfide bonds. The variable regions of these chains form the antigen-binding sites, which recognize and bind to specific epitopes on antigens. Based on their heavy chain type, immunoglobulins are classified into five main isotypes or classes: IgA, IgD, IgE, IgG, and IgM. Each class has distinct functions in the immune response, such as providing protection in different body fluids and tissues, mediating hypersensitivity reactions, and aiding in the development of immunological memory.

In medical settings, immunoglobulins can be administered therapeutically to provide passive immunity against certain diseases or to treat immune deficiencies, autoimmune disorders, and other conditions that may benefit from immunomodulation.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

The immune system is a complex network of cells, tissues, and organs that work together to defend the body against harmful invaders. It recognizes and responds to threats such as bacteria, viruses, parasites, fungi, and damaged or abnormal cells, including cancer cells. The immune system has two main components: the innate immune system, which provides a general defense against all types of threats, and the adaptive immune system, which mounts specific responses to particular threats.

The innate immune system includes physical barriers like the skin and mucous membranes, chemical barriers such as stomach acid and enzymes in tears and saliva, and cellular defenses like phagocytes (white blood cells that engulf and destroy invaders) and natural killer cells (which recognize and destroy virus-infected or cancerous cells).

The adaptive immune system is more specific and takes longer to develop a response but has the advantage of "remembering" previous encounters with specific threats. This allows it to mount a faster and stronger response upon subsequent exposures, providing immunity to certain diseases. The adaptive immune system includes T cells (which help coordinate the immune response) and B cells (which produce antibodies that neutralize or destroy invaders).

Overall, the immune system is essential for maintaining health and preventing disease. Dysfunction of the immune system can lead to a variety of disorders, including autoimmune diseases, immunodeficiencies, and allergies.

C-reactive protein (CRP) is a protein produced by the liver in response to inflammation or infection in the body. It is named after its ability to bind to the C-polysaccharide of pneumococcus, a type of bacteria. CRP levels can be measured with a simple blood test and are often used as a marker of inflammation or infection. Elevated CRP levels may indicate a variety of conditions, including infections, tissue damage, and chronic diseases such as rheumatoid arthritis and cancer. However, it is important to note that CRP is not specific to any particular condition, so additional tests are usually needed to make a definitive diagnosis.

Anaphylaxis is a severe, life-threatening systemic allergic reaction that occurs suddenly after exposure to an allergen (a substance that triggers an allergic reaction) to which the person has previously been sensitized. The symptoms of anaphylaxis include rapid onset of symptoms such as itching, hives, swelling of the throat and tongue, difficulty breathing, wheezing, cough, chest tightness, rapid heartbeat, hypotension (low blood pressure), shock, and in severe cases, loss of consciousness and death. Anaphylaxis is a medical emergency that requires immediate treatment with epinephrine (adrenaline) and other supportive measures to stabilize the patient's condition.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Histocompatibility antigens, also known as human leukocyte antigens (HLAs), are proteins found on the surface of most cells in the body. They play a critical role in the immune system's ability to differentiate between "self" and "non-self" cells. Histocompatibility antigens are encoded by a group of genes called the major histocompatibility complex (MHC).

There are two main types of histocompatibility antigens: class I and class II. Class I antigens are found on almost all nucleated cells, while class II antigens are primarily expressed on immune cells such as B cells, macrophages, and dendritic cells. These antigens present pieces of proteins (peptides) from both inside and outside the cell to T-cells, a type of white blood cell that plays a central role in the immune response.

When foreign peptides are presented to T-cells by histocompatibility antigens, it triggers an immune response aimed at eliminating the threat. This is why histocompatibility antigens are so important in organ transplantation - if the donor's and recipient's antigens do not match closely enough, the recipient's immune system may recognize the transplanted organ as foreign and attack it.

Understanding the role of histocompatibility antigens has been crucial in developing techniques for matching donors and recipients in organ transplantation, as well as in diagnosing and treating various autoimmune diseases and cancers.

Cyclic peptides are a type of peptides in which the N-terminus and C-terminus of the peptide chain are linked to form a circular structure. This is in contrast to linear peptides, which have a straight peptide backbone with a free N-terminus and C-terminus. The cyclization of peptides can occur through various mechanisms, including the formation of an amide bond between the N-terminal amino group and the C-terminal carboxylic acid group (head-to-tail cyclization), or through the formation of a bond between side chain functional groups.

Cyclic peptides have unique structural and chemical properties that make them valuable in medical and therapeutic applications. For example, they are more resistant to degradation by enzymes compared to linear peptides, which can increase their stability and half-life in the body. Additionally, the cyclic structure allows for greater conformational rigidity, which can enhance their binding affinity and specificity to target molecules.

Cyclic peptides have been explored as potential therapeutics for a variety of diseases, including cancer, infectious diseases, and neurological disorders. They have also been used as tools in basic research to study protein-protein interactions and cell signaling pathways.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Polysaccharides are complex carbohydrates consisting of long chains of monosaccharide units (simple sugars) bonded together by glycosidic linkages. They can be classified based on the type of monosaccharides and the nature of the bonds that connect them.

Polysaccharides have various functions in living organisms. For example, starch and glycogen serve as energy storage molecules in plants and animals, respectively. Cellulose provides structural support in plants, while chitin is a key component of fungal cell walls and arthropod exoskeletons.

Some polysaccharides also have important roles in the human body, such as being part of the extracellular matrix (e.g., hyaluronic acid) or acting as blood group antigens (e.g., ABO blood group substances).

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Septic shock is a serious condition that occurs as a complication of an infection that has spread throughout the body. It's characterized by a severe drop in blood pressure and abnormalities in cellular metabolism, which can lead to organ failure and death if not promptly treated.

In septic shock, the immune system overreacts to an infection, releasing an overwhelming amount of inflammatory chemicals into the bloodstream. This leads to widespread inflammation, blood vessel dilation, and leaky blood vessels, which can cause fluid to leak out of the blood vessels and into surrounding tissues. As a result, the heart may not be able to pump enough blood to vital organs, leading to organ failure.

Septic shock is often caused by bacterial infections, but it can also be caused by fungal or viral infections. It's most commonly seen in people with weakened immune systems, such as those who have recently undergone surgery, have chronic medical conditions, or are taking medications that suppress the immune system.

Prompt diagnosis and treatment of septic shock is critical to prevent long-term complications and improve outcomes. Treatment typically involves aggressive antibiotic therapy, intravenous fluids, vasopressors to maintain blood pressure, and supportive care in an intensive care unit (ICU).

Peptide hydrolases, also known as proteases or peptidases, are a group of enzymes that catalyze the hydrolysis of peptide bonds in proteins and peptides. They play a crucial role in various biological processes such as protein degradation, digestion, cell signaling, and regulation of various physiological functions. Based on their catalytic mechanism and the specificity for the peptide bond, they are classified into several types, including serine proteases, cysteine proteases, aspartic proteases, and metalloproteases. These enzymes have important clinical applications in the diagnosis and treatment of various diseases, such as cancer, viral infections, and inflammatory disorders.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

... are proteins that interact with components of the complement system. The complement system is ... Complement control proteins also play a role in malignancy. Complement proteins protect against malignant cells- both by direct ... There are many other RCA proteins that do not fall into this family. Most CCPs prevent activation of the complement system on ... Gialeli C, Gungor B, Blom AM (October 2018). "Novel potential inhibitors of complement system and their roles in complement ...
... is a protein involved in the complement system. It is part of the membrane attack complex which can ... Complement component 6 is a protein that in humans is encoded by the C6 gene. ... Müller-Eberhard HJ (1988). "Molecular organization and function of the complement system". Annu. Rev. Biochem. 57: 321-47. doi: ... "Entrez Gene: complement component 6 C6 complement C6 (Homo sapiens (human)) Gene ID: 729". www.ncbi.nlm.nih.gov. 24 November ...
Complement component 8 is a protein involved in the complement system. It is part of the membrane attack complex (MAC). A ... Protein pages needing a picture, Genes on human chromosome 1, Genes on human chromosome 9, Complement system, All stub articles ... "Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement". The Journal of ... Complement+C8 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e (Articles with short description, ...
About 50 proteins and protein fragments make up the complement system, including serum proteins, and cell membrane receptors. ... The complement system, also known as complement cascade, is a part of the immune system that enhances (complements) the ability ... The complement system is regulated by complement control proteins, which are present at blood plasma and host cell membrane. ... Polymorphisms of complement component 3, complement factor B, and complement factor I, as well as deletion of complement factor ...
... is an immunodeficiency of absent or suboptimal functioning of one of the complement system proteins. ... Plasma levels/regulatory proteins (lab study) Disorders of the proteins that act to inhibit the complement system (such as C1- ... Disorders of the proteins that act to activate the complement system (such as C3) can lead to an underactive response, causing ... "Complement Deficiencies. What are complement deficiencies?". patient.info. Retrieved 31 December 2017. "Complement Deficiencies ...
The β band consists of transferrin, low-density lipoproteins, and complement system proteins. The γ band is where the ... AL amyloidosis These are characterized by the presence of any abnormal protein that is involved in the immune system, which are ... in the serum protein electrophoresis because there will be an excess of production of one protein. There are two large classes ... Paraproteinemias may be categorized according to the type of monoclonal protein found in blood:[citation needed] Light chains ...
The complement system is a system of serum proteins that react with antigen-antibody complexes. If this reaction occurs on a ... complement proteins in the patient's serum must be destroyed and replaced by a known amount of standardized complement proteins ... A known amount of standard complement proteins are added to the serum. (These proteins are frequently obtained from guinea pig ... The complement proteins will react with these complexes and be depleted. Thus when the sRBC-antibody complexes are added in ...
... complement is a group of proteins that forms part of the innate immune system. Complement levels are frequently reduced in ... Both the central nervous system (brain and spinal cord) and the peripheral nervous system may be involved. Emboli to the brain ... Increased amounts of protein in the urine may cause edema (swelling) of the skin (a combination of symptoms known as nephrotic ... If vasculitis is suspected, complement levels may be determined as reduced levels are often encountered in vasculitis; ...
... may refer to: Complement factor I, a protein of the complement system. Fibrinogen, a protein involved in blood ...
C3a and C5a, proteins produced from the complement system, attract neutrophils to the vessels. Once activated, neutrophils then ... The immune system senses these altered proteins as foreign and produces antibodies in efforts to eliminate them from the body. ... immune complexes deposit in vessel walls leading to activation of the complement system. ... Additional symptoms depend on the cause of the vasculitis and if other organ systems are involved. For example, if the ...
... is a protein involved in the complement system of the innate immune system. C7 is part of the membrane ... v t e (Articles with short description, Short description matches Wikidata, Genes on human chromosome 5, Complement system, All ... Terminal complement pathway deficiency Complement+C7 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) ... This junction alters the configuration of the protein molecules, exposing a hydrophobic site on C7 that allows the C7 to insert ...
The C1 complex (complement component 1, C1) is a protein complex involved in the complement system. It is the first component ... 2001). "The complement system and innate immunity". Immunobiology: The Immune System in Health and Disease. New York: Garland ... The antibodies IgM or certain subclasses of IgG complexed with antigens are able to initiate the complement system: a single ... C1q can also be activated in other ways, for example by binding to pentraxins such as C-reactive protein or directly to the ...
... are serine proteases involved in the complement system. Types include: MASP1 ... characterization of a novel serine protease involved in activation of the complement system by mannose-binding protein". ... in the lectin pathway of complement and beyond". Immunological Reviews. 274 (1): 98-111. doi:10.1111/imr.12460. ISSN 1600-065X ...
... (C4BP) is a protein complex involved in the complement system where it acts as inhibitor. C4BP has an ... streptococcal M-proteins, gonococcal porins, Outer membrane protein A from E. coli, Ubiquitous surface protein 1 and 2 from ... Complement+C4b-Binding+Protein at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e (Articles with ... and necrotic cells is mediated by the Gla domain of protein S and does not affect the ability of C4BP to inhibit complement. A ...
So humoral immunity in forms of IgG and complement proteins is the human immune system's response against bacterial capsules. ... In particular, these macrophages are activated when bacteria are bound by IgG antibodies (IgG1 or IgG3) or the complement ... These types of antibodies and complement are immune substances called opsonizers, molecules that bind to the surface of ... The spleen contains many macrophages (part of the reticuloendothelial system), which are immune cells that phagocytose (eat) ...
"CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial ... it is believed that the gene product of CSMD1 functions as a Complement control protein. It is a potential tumour suppressor, ... CSMD1 protein expression was found to be reduced in patients with invasive breast cancer. Functional studies showed that CSMD1 ... CSMD1 CUB and Sushi multiple domains 1 is a protein that in humans is encoded by the CSMD1 gene. CSMD1 contains 14 N-terminal ...
... (C9) is a MACPF protein involved in the complement system, which is part of the innate immune system. ... C9 is one member of the complement membrane attack complex (MAC), which also includes complement components C5b, C6, C7 and C8 ... Complement+9 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) PDBe-KB provides an overview of all the ... C9 was found to be the most strongly under expressed serum protein in men who achieved longevity, compared to men who did not. ...
... a protein involved in complement system activation. In August 2023, it was approved by the FDA for children and adults with ... VEGF is a protein that normally stimulates the growth of blood vessels, and interleukin-1 is a protein that is normally ... Trap Fusion Proteins: Regeneron's novel and patented Trap technology creates high-affinity product candidates for many types of ... "Regeneron's Billionaire Founder Battles The Drug Pricing System". Forbes. 26 July 2018. Retrieved 26 July 2018. "Sanofi- ...
IgG activates all the classical pathway of the complement system, a cascade of immune protein production that results in ... IgG antibodies are large globular proteins made of four peptide chains; two identical γ (gamma) heavy chains of about 50 kDa ... 2001). "Ch3 Antigen Recognition by B-Cell and T-cell Receptors". Immunobiology: The Immune System in Health and Disease (5th ed ... However, both human and mouse antibodies have different abilities to fix complement and to bind to Fc receptors.[citation ...
There are three different pathways that activate this system however, they all result in the activation of complement protein 3 ... "The complement system and innate immunity". Immunobiology: The Immune System in Health and Disease. 5th Edition. "gonorrhea , ... gonorrhoeae requires defense mechanisms to protect itself against the complement system (or complement cascade), whose ... The Opa proteins interact with the immune system, as do the porins. Lipooligosaccharide (LOS) is an endotoxin that provokes an ...
... is involved in the alternative complement pathway of the complement system where it cleaves factor B. The protein ... A complement system protein at 2.0 A resolution". Journal of Molecular Biology. 235 (2): 695-708. doi:10.1006/jmbi.1994.1021. ... Finally, the encoded protein has a high level of expression in fat, suggesting a role for adipose tissue in immune system ... The encoded protein is a component of the alternative complement pathway best known for its role in humoral suppression of ...
... the body signals the Complement system and the Complement component 2 protein attaches to Complement system 4 resulting in an ... The Complement system is generated to regulate self protection from infection. The overall Complement system is composed of ... The protein encoded by this gene is part of the classical pathway of the complement system, acting as a multi-domain serine ... leading to chronic activation of the complement system. Complement deficiency is managed on a case-by-case basis with ...
... (C4), in humans, is a protein involved in the intricate complement system, originating from the human ... Complement component 4A Complement component 4B HLA A1-B8-DR3-DQ2 haplotype Complement system Complement deficiency Sekar A, ... All three pathways converge at a step in which complement protein C3 is cleaved into proteins C3a and C3b, which results in a ... "Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size ...
It should be emphasized that complement system proteins first appeared in fish and are structurally and functionally identical ... pregnancy-associated plasma protein-A, and complement component C4-binding protein. Alpha-2 macroglobulin is studied the most. ... Each and every protein component can be characterized by having a "trap" which is composed of a cyclic thioether on the bottom ... "Protein structure", Wikipedia, 2023-01-26, retrieved 2023-05-02 Wilson, William W.; Haiges, Ralf; Christe, Karl (2023-04-12). " ...
... activated complement C1s, complement C overbar 1r, C1s) is a protein involved in the complement system. C1s is part of the C1 ... Sim RB (1981). The human complement system serine proteases C1r and C1s and their proenzymes. Methods in Enzymology. Vol. 80 Pt ... Müller-Eberhard HJ (1988). "Molecular organization and function of the complement system". Annual Review of Biochemistry. 57: ... Complement system, EC 3.4.21, All stub articles, Human chromosome 12 gene stubs). ...
"Complement inhibitor C4b-binding protein-friend or foe in the innate immune system?". Molecular Immunology. 40 (18): 1333-1346 ... "Protein S and C4b-Binding Protein: Components Involved in the Regulation of the Protein C Anticoagulant System". Thrombosis and ... Dahlbäck, Björn (1995). "The protein C anticoagulant system: Inherited defects as basis for venous thrombosis". Thrombosis ... Shen, L.; Dahlbäck, B. (1994). "Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor ...
... is a protein fragment that is part of the complement system, a component of the vertebrate immune system. iC3b is produced ... Complement factor I can further cleave iC3b into a protein fragment known as C3d. Robbins Basic Pathology 8th ed 2007. R Cotran ... v t e (Complement system, All stub articles, Biochemistry stubs). ... Complement receptors on white blood cells are able to bind iC3b, so iC3b functions as an opsonin. Unlike intact C3b, iC3b ...
... blood proteins and phagocytic cells. In addition, complement serum proteins, which are a part of the innate immune system, work ... An important element of immune systems in various animals is the protein tristetraprolin (TTP). This plays a key anti- ... The avian immune system is divided into two types of immunity, the innate and adaptive ones. The innate immune system includes ... The avian immune system is the system of biological structures and cellular processes that protects birds from disease. The ...
The complement component 1q (or simply C1q) is a protein complex involved in the complement system, which is part of the innate ... The antibodies IgM and all IgG subclasses except IgG4 are able to initiate the complement system. C1q is a 400 kDa protein ... Activation of the C1 complex initiates the classical complement pathway of the complement system. ... C1q is a subunit of the C1 enzyme complex that activates the serum complement system. C1q comprises 6 A, 6 B and 6 C chains. ...
... is a G protein-coupled receptor protein involved in the complement system. The receptor binds to complement component C3a, ... Sim RB, Laich A (October 2000). "Serine proteases of the complement system". Biochemical Society Transactions. 28 (5): 545-50. ... C3AR1+protein,+human at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Human C3AR1 genome location and ... Roglic A, Prossnitz ER, Cavanagh SL, Pan Z, Zou A, Ye RD (February 1996). "cDNA cloning of a novel G protein-coupled receptor ...
Complement control protein are proteins that interact with components of the complement system. The complement system is ... Complement control proteins also play a role in malignancy. Complement proteins protect against malignant cells- both by direct ... There are many other RCA proteins that do not fall into this family. Most CCPs prevent activation of the complement system on ... Gialeli C, Gungor B, Blom AM (October 2018). "Novel potential inhibitors of complement system and their roles in complement ...
At present, many groups use baby rabbit serum as a source of complement because, in contrast to human serum, it lacks ... Understanding how human complement proteins interact with human antibodies is important for the development of antibody ... Complement Hemolytic Activity Assay / methods * Complement System Proteins / isolation & purification* * Complement System ... Understanding how human complement proteins interact with human antibodies is important for the development of antibody ...
Unlocking the Mysteries of the Immune System: new Roles of complement proteins in Diabetes and Cancer.. We invite highly ... We found very high levels of expression of the central complement protein, C3, and complement inhibitor CD59 in human ... 2019) Complement C3 is highly expressed in human pancreatic islets and prevents b-cell death via ATG16L1 interaction and ... The role of oncogene COMP in cancer: we found that the expression of cartilage protein COMP is associated with metastases and a ...
Complement System Proteins * Cytokines / metabolism * Enzyme-Linked Immunosorbent Assay / methods * Flow Cytometry / methods ...
... - Download as a PDF or view online for free ... 32 Proteins of the Complement SystemJulie Sy. 4K. views•24 slides ... Complement System, Coagulation & Kinin System by Hijab Siddiqi. Complement System, Coagulation & Kinin System. Hijab Siddiqi• ... Similar to Complement activation pathway.pptx. Complement proteins by Complement proteinsMintah Dadzie Francis. 3.4K. views•29 ...
Proteins of the lectin pathway of the complement system activation: immunobiological functions, genetics and involvement in the ... Home , Archives , Vol 12, No 2 (2022) , Proteins of the lectin pathway of the complement system activation: immunobiological ...
Complement proteins are part of the complement system. This system helps the immune system fight disease-causing substances. ... A complement blood test measures the amount or activity of complement proteins in the blood. ... Complement proteins are part of the complement system. This system is made up of a group of proteins that work with the immune ... If the test shows that your complement protein levels are not normal or that the proteins arent working with the immune system ...
Researchers at The University of Texas Health Science Center at San Antonio have discovered a new class of proteins that ... this is called the complement system. Complement system proteins are deposited onto synapses. They act as signals that invite ... Weve known about the complement proteins, but there was no data to show that there were actually any complement inhibitors in ... Whether complement system biology can explain why some people are more resistant and more resilient against certain psychiatric ...
Table 3. Proteins of the Human Complement (C) System, Lectin Pathway *Table 4. Proteins of the Human Complement (C) System, C3 ... Table 1. Proteins of the Human Complement (C) System, Classical Pathway* *Table 2. Proteins of the Human Complement (C) System ... System, Control Proteins in Serum *Table 6. Proteins of the Human Complement (C) System, Membrane Receptor and Control Proteins ... Table 6. Proteins of the Human Complement (C) System, Membrane Receptor and Control Proteins (Open Table in a new window) ...
... proteins, tissues, and organs that defend people against germs and microorganisms. ... The immune system is made up of special cells, ... proteins called complement that are part of the immune system. ... Complement helps kill bacteria, viruses, or infected cells.. These specialized cells and parts of the immune system offer the ... The immune system is the bodys defense against infections. The immune (pronounced: ih-MYOON) system attacks germs and helps ...
Below are MeSH descriptors whose meaning is related to "Complement C4".. *Complement System Proteins ... C4 is cleaved by the activated COMPLEMENT C1S into COMPLEMENT C4A and COMPLEMENT C4B. ... Medical Records-Based Genetic Studies of the Complement System. J Am Soc Nephrol. 2021 08; 32(8):2031-2047. ... "Complement C4" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical Subject ...
... proteins, tissues, and organs that defend people against germs and microorganisms. ... The immune system is made up of special cells, ... proteins called complement that are part of the immune system. ... Complement helps kill bacteria, viruses, or infected cells.. These specialized cells and parts of the immune system offer the ... The immune system is the bodys defense against infections. The immune (pronounced: ih-MYOON) system attacks germs and helps ...
Complement System Proteins 14% * Sequence Homology 14% * human kallikrein-related peptidase 3 13% ...
Fucoidan inhibits the human complement system mediated through interactions with certain proteins belonging to the classical ... In addition, it decreased the expression of anti-apoptotic protein Bcl-2 and increased expression of apoptogenic protein Bax. ... Cutting edge technologies, viz. MTT assay, flow cytometry, western blot analysis, BCA protein assay, SDS-PAGE and gelatin ... For anticoagulation potency, the formation of the SP/protease protein complex and the associated non-specific polar interaction ...
Below are MeSH descriptors whose meaning is related to "Complement C9".. *Complement System Proteins ... "Complement C9" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical Subject ... This graph shows the total number of publications written about "Complement C9" by people in this website by year, and whether ... Below are the most recent publications written about "Complement C9" by people in Profiles. ...
Proteins [D12.776]. *Blood Proteins [D12.776.124]. *Immunoproteins [D12.776.124.486]. *Complement System Proteins [D12.776. ... Serum peptides derived from certain cleaved COMPLEMENT PROTEINS during COMPLEMENT ACTIVATION. They induce smooth MUSCLE ... Thrombolytic treatment and complement activation. Ann Ital Med Int. 1994 Jul-Sep; 9(3):178-9. ...
COMPLEMENT SYSTEM. The complement system is a biochemical cascade made up of approximately 30 serum and membrane-bound proteins ... The complement system is an integral part of the innate immune system but also augments adaptive immune responses. Complement ... "complements" other immune functions. As part of the innate immune system, the complement system responds rapidly to defend the ... identified complement proteins within the cysts[60]. Increased concentrations of complement proteins, including C3, Factor B ...
Complement constitutes a system of distinct proteins found in blood plasma and is known to antagonize CXCR2-mediated neutrophil ... To identify if proteins other than complement can affect CXCR2 expression, we degraded all plasma proteins in CDI-plasma by ... complement-deficient), and (B) proteinase K-treated (i.e. with all proteins degraded) plasma. (C) Representative FACS dot plot ... These data suggest that a protein component of plasma, different from complement, is responsible for up-regulating neutrophil ...
Researchers have discovered a new class of proteins that protect synapses from being destroyed, which offers potential for many ... "Complement system proteins are deposited onto synapses," Dr. Sia explained. "They act as signals that invite immune cells ... "Weve known about the complement proteins, but there was no data to show that there were actually any complement inhibitors in ... Whether complement system biology can explain why some people are more resistant and more resilient against certain psychiatric ...
Complement C5b Medicine & Life Sciences 90% * Complement System Proteins Medicine & Life Sciences 65% ... Interaction between terminal complement proteins C5b-7 and anionic phospholipids. In: Blood. 1999 ; Vol. 93, No. 7. pp. 2297- ... Interaction between terminal complement proteins C5b-7 and anionic phospholipids. Clive Liu, Patricia Marshall, Ian Schreibman ... Liu C, Marshall P, Schreibman I, Vu A, Gai W, Whitlow M. Interaction between terminal complement proteins C5b-7 and anionic ...
If a microbe activates the complement system (discussed in Chapter 25), complement proteins are often deposited on the microbe ... Most of the proteins that mediate cell-cell recognition or antigen recognition in the immune system contain Ig or Ig-like ... Most of the proteins involved in cell-cell recognition and antigen recognition in the immune system, including antibodies, T ... Signal 2 is provided by costimulatory proteins, especially the B7 proteins (CD80 and CD86), which are recognized by the co- ...
Keywords: Morpholines, Pulmonary Embolism, Thiophenes, Venous Thromboembolism, Orthopedics, Complement System Proteins, Body ... This study complements earlier RECORD trials. A notable difference is the shorter duration of anticoagulation therapy in the ...
Repeated LPS injections induced an up-regulation of complement system protein c1q and distinct microglial phenotype with an ... Our work implicates that complement system may be a therapeutic target for developing therapies to prevent or treat cognitive ... RESULTS: Alive SARS-CoV-2 virus or N protein but not S protein induced high cytokine releases from macrophages in a time or ... Macrophage depletion in mice decreased cytokines in response to N protein. CONCLUSION: SARS-CoV-2 and its N protein but not S ...
... streptococcal capsular protein has been shown to inhibit complement formation, leading to bacterial survival in the ... Cardiovascular and hematopoietic systems. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J, editors ... Expression of microbial surface components (e.g., fibrinogen/fibronectin binding protein, collagen binding protein, and pili) ... gallolyticus (Streptococcus bovis biotype I) isolates to host extracellular matrix proteins. FEMS Microbiol Lett. 2008;289:104- ...
Research indicates that various components of the complement system, a group of proteins of the innate immune system, are ... Intracellular Activation of Complement C3 Leads to PD-L1 Antibody Treatment Resistance by Modulating Tumor-Associated ... which leads to a general increase in protein synthesis. Additionally, EIFIAX and RAS mutations were found to stabilize c-MYC, ... enables the binding of C3a to its protein receptor C3aR, activating PI3Kγ signaling in tumor-associated macrophages and ...
Toxin-Antitoxin Systems 31% * Down-Regulation 27% * Complement System Proteins 24% 14 Downloads (Pure) ... Physiological response in E. coli to YdgR overexpression depends on whether the protein has an intact function. Sajid, S., ... GFP fusions of Sec-routed extracellular proteins in Staphylococcus aureus reveal surface-associated coagulase in biofilms. ...
... of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system ... of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system ...
... and proteins of the complement system form a dynamic physiological structure that interacts with microorganisms to prevent ... Innate immunity includes barriers such as the epithelium, mucus, pH, complement system, and cells of the immune system. The ... The immune system of the female genital tract is part of the integrated mucosal immune system, but with some particular ... or eliminating the antigens through the complement system. The immunoglobulins found in the mucosa of the genital tract are, ...
The roles of these proteins in virus morphogenesis and dissemination, and as targets for neutralizing antibody are reviewed. ... a coordinated strategy to exploit cell biology to promote virus spread and to aid virus evasion of antibody and complement. ... Seven virus-encoded proteins have been identified that are components of IEV, and five of them are present in CEV or EEV. ... Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 181:158-164 ...
  • Complement control protein are proteins that interact with components of the complement system. (wikipedia.org)
  • A subset of this family of proteins, complement control proteins (CCP), are characterized by domains of conserved repeats that direct interaction with components of the complement system. (wikipedia.org)
  • Efforts to develop therapeutics that target the interactions between the RCA network, CCPs, and components of the complement system have led to the development of successful drugs including Eculizumab. (wikipedia.org)
  • This test measures all 9 components of the complement system, from C1 to C9. (rochester.edu)
  • Usually, human proteins remain stable up to about 40°C. Higher temperatures are of course not found in the body, but the stability of C4BP has a completely different purpose: "As is the case with all components of the complement system, the C4b binding protein is present in blood plasma. (nanowerk.com)
  • When one or more components of the complement system are deficient, it can lead to an inability to properly fight off infections or the development of an autoimmune disorder . (requestatest.com)
  • Unlocking the Mysteries of the Immune System: new Roles of complement proteins in Diabetes and Cancer. (lu.se)
  • Our group is dedicated to studying the role of the immune system in infections, diabetes, and cancer. (lu.se)
  • This system is made up of a group of proteins that work with the immune system to identify and fight disease-causing substances like viruses and bacteria. (medlineplus.gov)
  • If the test shows that your complement protein levels are not normal or that the proteins aren't working with the immune system as well as they should, it can be a sign of an autoimmune disease or other serious health problem. (medlineplus.gov)
  • Hereditary angioedema, a rare but serious disorder of the immune system. (medlineplus.gov)
  • Fortunately for most of us, the immune system is constantly on call to do battle with bugs that could put us out of commission. (kidshealth.org)
  • What Is the Immune System? (kidshealth.org)
  • The immune system is the body's defense against infections. (kidshealth.org)
  • The immune (pronounced: ih-MYOON) system attacks germs and helps keep us healthy. (kidshealth.org)
  • What Are the Parts of the Immune System? (kidshealth.org)
  • White blood cells, also called leukocytes (pronounced: LOO-kuh-sytes), play an important role in the immune system. (kidshealth.org)
  • How Does the Immune System Work? (kidshealth.org)
  • When the body senses foreign substances (called antigens), the immune system works to recognize the antigens and get rid of them. (kidshealth.org)
  • activate a group of proteins called complement that are part of the immune system. (kidshealth.org)
  • These specialized cells and parts of the immune system offer the body protection against disease. (kidshealth.org)
  • And the immune system recognizes when some invaders are foreign and could be dangerous. (kidshealth.org)
  • The immune system needs help from vaccines. (kidshealth.org)
  • The complement system is an integral part of the innate immune system but also augments adaptive immune responses. (wjgnet.com)
  • The immune system of the female genital tract is part of the integrated mucosal immune system, but with some particular characteristics that differentiate the immunity of these regions from the systemic immunity [ 2 - 4 ]. (hindawi.com)
  • Hormones regulate the immune system throughout the female reproductive tract in a way that favors conditions for sperm migration, fertilization, implantation, and pregnancy [ 16 , 17 ]. (hindawi.com)
  • Innate immunity includes barriers such as the epithelium, mucus, pH, complement system, and cells of the immune system. (hindawi.com)
  • ULTOMIRIS is a medicine that affects your immune system and can lower the ability of your immune system to fight infections. (biospace.com)
  • In multicellular organisms, and more particularly in animals with a well-developed immune system, phagocytosis is mostly performed by specialized, professional phagocytes: macrophages, dendritic cells (DCs), and neutrophils. (frontiersin.org)
  • Together with inflammation, phagocytosis composes the first line of defense against multicellular organisms by the innate immune system. (frontiersin.org)
  • In the mammalian central nervous system (CNS), the innate immune response is orchestrated by microglia. (frontiersin.org)
  • These proteins are part of your complement system, an important part of your immune system that helps kill disease-causing bacteria and viruses. (rochester.edu)
  • If your healthcare provider suspects lupus, you may have a number of other blood tests to see how your immune system is functioning. (rochester.edu)
  • The condition is caused by the lack of certain proteins on the surface of the red blood cells which normally protect them from being destroyed by the immune system (the body's natural defences). (europa.eu)
  • The complement system is a tightly regulated, cascading protein network representing a key component linking the innate and humoral immune systems. (jrheum.org)
  • The complement system is a tightly regulated, cascading protein network that performs multiple roles in homeostasis and disease prevention and is a key component of both the innate and the humoral immune systems. (jrheum.org)
  • The so-called complement system is a part of the innate immune defence within the human body: more than sixty different proteins form one of the first countermeasures against invading pathogens. (nanowerk.com)
  • The dosage could be reduced but the immune system would still be considerably stimulated. (nanowerk.com)
  • Complement 3 Glomerulopathy (C3G) is a rare disease caused by an overactive immune system, leading to deposit build-up in the kidneys and a decline in kidney function. (rareshare.org)
  • The human immune system consists of many cell types in the blood circulation that detect, deliver, and attack any foreign bodies such as bacteria, viruses, small molecules, and other potentially harmful substances. (rareshare.org)
  • The complement system is a group of proteins that are produced to activate and aid the immune system in fighting foreign invaders. (rareshare.org)
  • Overview of the Immune System The immune system distinguishes self from nonself and eliminates potentially harmful nonself molecules and cells from the body. (msdmanuals.com)
  • The immune system also has the capacity to recognize and destroy. (msdmanuals.com)
  • Natural killer (NK) cells play an important role in the innate immune system in eliminating viruses and tumors. (berkeley.edu)
  • The Complement system is a series of 30-60 proteins that work to promote the function of the body's immune system and its response to inflammation and infection. (requestatest.com)
  • Soliris is used to treat adults and children aged 6 years and above with myasthenia gravis (a disease where the immune system attacks and damages muscle cells causing muscle weakness), in whom other medicines do not work (refractory generalised myasthenia gravis, refractory gMG) and who have a specific antibody in their body called AChR antibody. (europa.eu)
  • Soliris is also used to treat adults with neuromyelitis optica spectrum disorder (NMOSD), a disease where the immune system damages nerve cells causing problems mostly with the optic (eye) nerve and the spinal cord (nerve tissue that runs from the base of the skull down the center of the back). (europa.eu)
  • Primary immunodeficiency diseases (PIDs) are intrinsic defects of the immune system. (lu.se)
  • Immunodeficiencies impair the functioning of the immune system. (lu.se)
  • More than 70 primary immune deficiencies (PIDs) are known, and can be grouped according to the components of the immune system affected. (lu.se)
  • The immune system consists of a large number of molecules and processes, and immunodeficiencies can therefore be caused by genetic alterations at many loci. (lu.se)
  • Our group focuses on the complement system, which is part of the immune system. (lu.se)
  • We also found that CD59, a protein present on the surface of almost all cells which protects cells from being attacked by the immune system, can also be found inside cells, where it regulates insulin secretion. (lu.se)
  • Schnitzler syndrome is an autoinflammatory disease for which the exact pathophysiology remains unclear but seems to involve the innate immune system. (medscape.com)
  • It helps to ensure healthy growth, strengthen their immune system and improve their cognitive development. (who.int)
  • A diverse diet with a colourful mix of fruits and vegetables as well as grains and proteins (beans, nuts, seeds, meat, chicken, fish, eggs) will help keep your child's immune system strong. (who.int)
  • Our research is focused on the complement system, which is part of the innate immune system. (lu.se)
  • Understanding how human complement proteins interact with human antibodies is important for the development of antibody therapies and understanding autoimmune diseases. (nih.gov)
  • Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. (harvard.edu)
  • The solution structure of the 16th CCP module from human complement factor H has been determined by a combination of 2-dimensional nuclear magnetic resonance spectroscopy and restrained simulated annealing. (embl.de)
  • We found very high levels of expression of the central complement protein, C3, and complement inhibitor CD59 in human pancreatic islets. (lu.se)
  • The researchers focused on a neuronal complement inhibitor called SRPX2. (news-medical.net)
  • 2020) The endogenous neuronal complement inhibitor SRPX2 protects against complement-mediated synapse elimination during development. (news-medical.net)
  • Astellas Pharma Inc. announced positive 24-month topline results from the Phase 3 GATHER2 (NCT04435366) clinical trial evaluating the efficacy and safety of avacincaptad pegol (ACP) intravitreal solution (Izervay, Iveric Bio), a complement C5 inhibitor for the treatment of geographic atrophy (GA) secondary to age-related macular degeneration (AMD) . (ophthalmologytimes.com)
  • ACP is a novel complement C5 protein inhibitor. (ophthalmologytimes.com)
  • As a C5 inhibitor, Izervay has been shown to slow GA progression by targeting the source of retinal cell death and may preserve the upstream benefits of the complement system. (ophthalmologytimes.com)
  • Background: In hereditary angioedema (HAE), low levels (type 1) or defect in function (type 2) of the serine-protease inhibitor C1 Inhibitor protein results in activation of the classical pathway of the complement system as well as the contact system. (lu.se)
  • Our research aim is to further our understanding of the role of these complement proteins in physiology and metabolism of beta cells, focusing on intracellular complement factor C3 in beta cell survival and function, and membrane-bound complement inhibitor CD59 in insulin secretion. (lu.se)
  • Other CCPs prevent the activity of terminal effectors of the complement system, CD59 for example blocks oligomerization of the complement peptide C9 stalling the formation of the Membrane Attack Complex (MAC). (wikipedia.org)
  • In addition, we found that nasal epithelium in fresh tissue and in cell culture express three cell membrane complement regulatory proteins: membrane cofactor protein (MCP, CD46), decay-accelerating factor(DAF, CD55), and CD59. (tau.ac.il)
  • Each of these pathways uses different proteins. (medscape.com)
  • Activation of the complement pathways. (medscape.com)
  • A further complicating factor is the cross-talk between complement, neutrophils, and coagulation pathways in the pathophysiology of TMA. (jrheum.org)
  • Activation of the complement system occurs through the classical (CP), lectin (LP), or alternative (AP) pathways. (jrheum.org)
  • CH 50 (total hemolytic complement assay) measures the ability of the serum test sample to lyse 50% of sheep RBCs coated with rabbit immunoglobulin, reflecting the functional status of the classical and terminal complement pathways. (medscape.com)
  • Peritoneal stomata constitute the principal pathways for the drainage of intraperitoneal contents from the PERITONEAL CAVITY to the LYMPHATIC SYSTEM. (bvsalud.org)
  • At present, many groups use baby rabbit serum as a source of complement because, in contrast to human serum, it lacks preexisting antibodies. (nih.gov)
  • However, for characterization of human (monoclonal) antibodies, human serum would be a preferred source of complement. (nih.gov)
  • To prevent complement activation via naturally occurring antibodies, this human serum ideally lacks IgG and IgM. (nih.gov)
  • Here we describe how to deplete human serum of naturally occurring IgG and IgM using fast protein liquid affinity chromatography (FPLC) while minimizing the loss of serum complement activity. (nih.gov)
  • We also describe assays that can be used to validate depletion of IgG and IgM (IgG, IgM, and C1q sandwich ELISAs) and functionally assess remaining serum complement activity (hemolytic assays CH50 and AH50). (nih.gov)
  • The complement system as understood today is a multimolecular system composed of more than 32 proteins and consisting of serum proteins, serosal proteins, and cell membrane receptors that bind to complement fragments. (medscape.com)
  • The complement system consists of 7 serum and 9 membrane regulatory proteins, 1 serosal regulatory protein, and 8 cell membrane receptors that bind complement fragments. (medscape.com)
  • The Contribution of Serum Complement Component 3 Levels to 90-Day Mortality in Living Donor Liver Transplantation. (harvard.edu)
  • Serum peptides derived from certain cleaved COMPLEMENT PROTEINS during COMPLEMENT ACTIVATION. (umassmed.edu)
  • Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. (uams.edu)
  • We have found that complement C3-related fragments are present on cell membranes of fresh nasal epithelium and that C3-related fragments are adsorbed to the epithelial cell membrane in nasal mucosa tissue segments and in cell cultures that were incubated with autologous serum. (tau.ac.il)
  • it occurs when mannose-binding lectin (MBL), a serum protein, binds to mannose, fucose, or N -acetylglucosamine groups on bacterial cell walls, yeast walls, or viruses. (msdmanuals.com)
  • Second, we investigated whether nasal epithelium expresses cell membrane complement regulatory proteins that are known as interruptors of complement activation. (tau.ac.il)
  • Complement-regulatory proteins in severe malaria: Too little or too much of a good thing? (psu.edu)
  • Data from several laboratories suggest that erythrocyte complement-regulatory proteins, in particular complement receptor 1 (CR1), are important in the pathogenesis of severe malaria. (psu.edu)
  • It is proposed that the interplay between the rate at which immunity develops during malaria exposure and the changes in levels of erythrocyte complement-regulatory proteins that occur with age might contribute to the differences in epidemiology of severe malaria-associated anaemia and cerebral malaria. (psu.edu)
  • We've known about the complement proteins, but there was no data to show that there were actually any complement inhibitors in the brain,' Dr. Sia said. (news-medical.net)
  • Whether different neurons produce different complement inhibitors, each protecting a certain subset of synapses. (news-medical.net)
  • It could also explain why some people are more susceptible to synapse loss because they have lower levels of certain complement inhibitors. (news-medical.net)
  • Advancements in the understanding of the etiopathogenesis of aHUS paved the way for the successful development of anticomplement therapies (complement C5 inhibitors), which have revolutionized the treatment of aHUS. (jrheum.org)
  • We are studying molecular basis of deficiencies and polymorphisms in complement inhibitors factor I, factor H, C4b-binding protein, membrane cofactor protein (CD46). (lu.se)
  • Moving forward, we also want to develop new therapies and improve the selection of patients who can be treated with complement inhibitors, which are currently being developed by several different pharmaceutical companies. (lu.se)
  • The complement system functions as an interactive sequence, with one reaction leading to another in the form of a cascade. (medscape.com)
  • Collectively, our data provide evidence that activated microglia and complement cascade c1q signaling in the hippocampus may account for synaptic loss and cognitive impairments in a mouse model of neuroinflammation induced by repeated LPS injections. (imperial.ac.uk)
  • We are proud of our continued innovation to advance new ways of targeting the complement cascade to help address the needs of patients living with this debilitating disease. (biospace.com)
  • Complement-mediated cell lysis depends on adsorption of complement to the cell membrane and on uninterrupted activation of the complement cascade upon the same cell membrane. (tau.ac.il)
  • The complement system is an enzyme cascade that helps defend against infection. (msdmanuals.com)
  • Additional studies suggest that the levels of expression of CR1 and the complement regulator CD55 on erythrocytes vary with age, being low in young children and increasing with age. (psu.edu)
  • The complement system is activated via 3 different mechanisms: (1) the classical pathway, which is activated by antibody-antigen complexes, (2) the alternative pathway, which is activated by microbial cell surfaces in the absence of antibodies, and (3) the lectin pathway, which is activated by mannose residues on microbes. (medscape.com)
  • The complement system is tightly regulated by a network of proteins known as "regulators of complement activation (RCA)" that help distinguish target cells as "self" or "non-self. (wikipedia.org)
  • Most CCPs prevent activation of the complement system on the surface of host cells and protect host tissues against damage caused by autoimmunity. (wikipedia.org)
  • 2019) Cartilage Oligomeric Matrix Protein initiates cancer stem cells through activation of Jagged1-Notch3 signaling. (lu.se)
  • T cells are like the soldiers - they destroy the invaders that the intelligence system finds. (kidshealth.org)
  • Complement helps kill bacteria, viruses, or infected cells. (kidshealth.org)
  • Effector T cells act back to promote the expression of B7 proteins on antigen-presenting cells, creating a positive feedback loop that amplifies the T cell response. (nih.gov)
  • In this epithelium, as well as in the more fragile single cell layer epithelium of endocervix, the cells are held together by proteins that form desmosomes, tight junctions, and adherens junctions, which decrease its permeability [ 19 ]. (hindawi.com)
  • Activated complement protects the nasal mucosa against microorganisms, but also has the potential to lyse the host's normal cells. (tau.ac.il)
  • Paroxysmal nocturnal haemoglobinuria (PNH) is a condition in which there is excessive breakdown of red blood cells (haemolysis), leading to the release into the urine of a large amount of haemoglobin (the protein found in red blood cells that carries oxygen around the body). (europa.eu)
  • The role of complement dysregulation on vascular endothelial cells has been well established in atypical hemolytic uremic syndrome (aHUS), a thrombotic microangiopathy (TMA) characterized by microangiopathic hemolytic anemia, thrombocytopenia, and target organ injury. (jrheum.org)
  • 4 , 13 Complement plays a crucial role in host defense against foreign bodies by promoting phagocyte-mediated clearance of cell debris through activation of an inflammatory response, opsonization of pathogens, and lysis of susceptible bacteria and cells. (jrheum.org)
  • These factors, also known as complement components, attach to foreign materials and deliver them to cells capable of destroying them. (rareshare.org)
  • By targeting C5, ACP has the potential to decrease activity of the complement system that causes the degeneration of retinal cells and potentially slow the progression of GA. (ophthalmologytimes.com)
  • Unfortunately in environments lacking class I major histocompatibility complex (MHC-I) proteins, as is the case in 40-90% of human tumors, the NK cells can become desensitized and unresponsive. (berkeley.edu)
  • In patients with PNH, aHUS, refractory gMG and NMOSD, the complement proteins are over-active and damage the patients' own cells. (europa.eu)
  • By blocking the C5 complement protein, eculizumab prevents complement proteins from damaging cells, thereby helping to relieve the symptoms of these diseases. (europa.eu)
  • Haemoglobin is the protein in red blood cells that carries oxygen around the body. (europa.eu)
  • Following activation, C3, the central protein of the complement system, is cleaved to form C3b, which is bound to the surface of the microbe where the complement is activated, and C3a, which is systemically released and acts as a chemoattractant for inflammatory cells. (medscape.com)
  • one example is the intracellular functions of complement proteins in beta cells. (lu.se)
  • Our group found that complement C3 is expressed in beta cells where it plays a prosurvival role, partly by inducing autophagy, a mechanism by which cells recycle cellular components. (lu.se)
  • This review summarizes some immunological factors involved in the development and control of this oral disease, such as: the participation of inflammatory cells in local inflammation, the synthesis of chemotaxis proteins with activation of the complement system and a range of antimicrobial peptides, such as defensins, cathelicidin and saposins. (bvsalud.org)
  • The most scientifically exciting project right now focuses on new roles that complement proteins play inside cells, such as in pancreatic beta cells. (lu.se)
  • Your healthcare provider may also order a total complement activity test, or CH50. (rochester.edu)
  • Usually your total complement level is also slightly lower in this situation. (rochester.edu)
  • If the C4 test is done as part of a total complement activity test, the test should be repeated if low levels are found. (rochester.edu)
  • This test measures the level of Total Complement or CH50 in the blood. (requestatest.com)
  • Abnormal results for a Total Complement test are often followed up with a test that measures a specific type of protein such as Complement C3 or Complement C4 . (requestatest.com)
  • The reference ranges for total complement (total hemolytic complement: CH 50 [CH 100 ]), complement C3, and complement C4 are listed below. (medscape.com)
  • Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. (uams.edu)
  • C3b binds to other complement proteins on the cell membrane to finally form the membrane attach complex (MAC), which ultimately leads to opening pores in the cell membrane and promoting cell lysis. (medscape.com)
  • Depending on the nature of complement activators, the classic pathway, the alternative pathway, or the more recently discovered lectin pathway is activated predominantly to produce C3 convertase. (medscape.com)
  • C-reactive protein (CRP, not shown) leads to classic pathway activation analogous to lectin pathway activation by MBL and ficolins. (medscape.com)
  • Binding of factor H to C3b increases its inactivation by factor I. Properdin stabilizes it, preventing its inactivation by factors H and I. The alternate pathway does not result in a truly nonspecific activation of complement because it requires specific types of compounds for activation. (medscape.com)
  • A glycoprotein that is important in the activation of CLASSICAL COMPLEMENT PATHWAY. (harvard.edu)
  • Repeated LPS injections induced an up-regulation of complement system protein c1q and distinct microglial phenotype with an enrichment of the complement-phagosome pathway. (imperial.ac.uk)
  • This leads the scientists to unconventional ideas - the protein is possibly suitable as a scaffold for the transport of active pharmaceutical substances, particularly biomolecules. (nanowerk.com)
  • It is involved in the activation of complement, enhancement of phagocytosis, and detoxification of substances released from damaged tissue. (cdc.gov)
  • Convertases, specifically the C3 convertases C3b.Bb and C4b.2a, are the enzymes that drive complement activation by activating C3b, a central component of the complement system. (wikipedia.org)
  • C3 cleavage may result in formation of the membrane attack complex (MAC), the cytotoxic component of the complement system. (msdmanuals.com)
  • 7 - 9 A TMA is called "primary" when a genetic or acquired defect in a complement protein is identified (as in atypical hemolytic uremic syndrome [aHUS]) or "secondary" when occurring in the context of another disease process or factor such as infection, autoimmune disease, malignancy, or drugs. (jrheum.org)
  • The roles of these proteins in virus morphogenesis and dissemination, and as targets for neutralizing antibody are reviewed. (microbiologyresearch.org)
  • The production of several different virus particles in the VV replication cycle represents a coordinated strategy to exploit cell biology to promote virus spread and to aid virus evasion of antibody and complement. (microbiologyresearch.org)
  • 8 , 11 - 14 Numerous stimuli can drive the activation of the complement system, including apoptotic debris, pathogens, and antibody-antigen complexes, in addition to ischemia-reperfusion injuries associated with organ transplantation. (jrheum.org)
  • This medicine is made of two synthetic peptides (short chains of amino acids) linked together, which target and attach to an important protein in the complement system called C3. (europa.eu)
  • Our findings in fresh nasal epithelium suggest that complement activation may occur upon the nasal epithelial cell membrane during inflammation in vivo and that nasal epithelium might regulate this complement activation. (tau.ac.il)
  • About 10-25% of C3G cases are linked to genetic mutations that affect the proteins that regulate the complement system. (rareshare.org)
  • You can inherit a deficiency in your complement C4. (rochester.edu)
  • If only your C4 complement level is low, and all other complement components are normal, it is usually because of an inherited component deficiency. (rochester.edu)
  • A deficiency in complement C4 levels has been linked to different forms of kidney disease and chronic hepatitis. (rochester.edu)
  • These studies demonstrate that a Cys430-Phe mutation does not prevent the de novo synthesis of the b subunit, but alters the conformation of the mutant protein sufficiently to impair its intracellular transport, resulting in its deficiency in this patient. (embl.de)
  • However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. (nature.com)
  • Measuring CH50 can help to determine if there is a deficiency in the complement system but it cannot identify which specific proteins are affected. (requestatest.com)
  • The expression of B7 proteins on an antigen-presenting cell is induced by pathogens during the innate response to an infection. (nih.gov)
  • The complement system contains more than 40 proteins that circulate in the blood and these proteins play an important role in the innate defense against pathogens, and in the removal of unwanted materials. (lu.se)
  • Complement Activation in Patients With Probable Systemic Lupus Erythematosus and Ability to Predict Progression to American College of Rheumatology-Classified Systemic Lupus Erythematosus. (harvard.edu)
  • This review aims to provide an assessment of the nature and extent of complement involvement in TMA associated with autoimmune diseases such as systemic lupus erythematosus, antiphospholipid syndrome, and scleroderma renal crisis. (jrheum.org)
  • In the present study, the authors investigated first whether key complement components, C3-related fragments, are adsorbed to nasal epithelial cell membrane. (tau.ac.il)
  • Our in vitro cell culture model will allow further investigations of complement activation and regulation upon the human nasal epithelial cell membrane. (tau.ac.il)
  • The complement control protein (CCP) modules (also known as short consensus repeats SCRs or SUSHI repeats) contain approximately 60 amino acid residues and have been identified in several proteins of the complement system. (embl.de)
  • Three-dimensional structure of a complement control protein module in solution. (embl.de)
  • The complement control protein (CCP) modules (also known as short consensus repeats) are defined by a consensus sequence within a stretch of about 60 amino acid residues. (embl.de)
  • A CH50 test (sometimes called CH100) measures the amount and activity of all the major complement proteins. (medlineplus.gov)
  • Where can I find a Complement Total Ch50 test near me? (requestatest.com)
  • Because of this, these proteins play important roles in autoimmune disorders and cancers. (wikipedia.org)
  • In this review we discuss current evidence that complement activation contributes to progression of CKD, how complement could cause renal inflammation and whether complement inhibition would slow progression of renal disease. (wjgnet.com)
  • Gianluca Pirozzi, MD, PhD, Senior Vice President, Head of Development and Safety, Alexion, said: "Alexion has pioneered the research of complement inhibition as a treatment approach for rare diseases, and we are continuing to innovate to benefit as many patients as possible. (cision.com)
  • Complement has recently gained substantial worldwide attention, as it was discovered that several common diseases such as age-related macular degeneration (blindness in elderly) are related to deregulation of the balance between complement activation and inhibition. (lu.se)
  • Complement activation is known to occur in many diverse renal diseases, including glomerulonephritis, thrombotic microangiopathies and transplant rejection. (wjgnet.com)
  • Increased CH 50 , C3, and C4 values may occur in the context of systemic inflammation as complement proteins are synthesized as part of the acute-phase response in connective-tissue diseases including, but not limited to, SLE and rheumatoid arthritis (RA), severe bacterial and viral infections, and other diseases such as cancer, diabetes mellitus, and myocardial infarction. (medscape.com)
  • In this publication, we characterize a novel outer membrane protein of Moraxella catarrhalis which exists in two variant forms associated with particular genetic lineages, and both forms are suggested to contribute to bacterial clearance from the lungs. (eur.nl)
  • The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors. (uams.edu)
  • The goal of this project is to investigate the genetic causes of abnormal food intake and eating regulation, by studying the different mechanosensory and chemosensory receptors present in the fruit fly Drosophila melanogaster's digestive system. (berkeley.edu)
  • Complement has been implicated in many diseases associated with inflammation and autoimmunity. (wikipedia.org)
  • Complement activation occurs in progressive chronic kidney disease and may contribute to the chronic inflammation that is characteristically found in the kidney. (wjgnet.com)
  • It is therefore possible that inhibiting complement activation would reduce inflammation, lead to reduced fibrosis and preservation of renal function. (wjgnet.com)
  • The complement system consists of a complex network of several plasma proteins that interact with each other and cell surface proteins. (medscape.com)
  • B lymphocytes are like the body's military intelligence system - they find their targets and send defenses to lock onto them. (kidshealth.org)
  • Lipase activities of p37, the major envelope protein of vaccinia virus. (microbiologyresearch.org)
  • Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-Dalton outer envelope protein. (microbiologyresearch.org)
  • Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. (microbiologyresearch.org)
  • The projects feature state-of-the-art methods for the investigation of cell biology, such as flow cytometry and confocal microscopy, protein interaction analyses using the proximity-ligation assay and Biacore, and genetic manipulation employing the Cas9/CRISPR system. (lu.se)
  • The most clinically exciting projects focus on the development and evaluation of diagnostic tests with complement biomarkers and studies of how COMP, a protein found in connective tissue, contributes to the development of different types of cancer, and whether it can be used as the basis for new treatment. (lu.se)
  • Yet, a great deal of complexity exists around the role of complement in TMA associated with other diseases. (jrheum.org)
  • Defining the role of complement in TMA in these conditions will help to guide timely diagnosis and management. (jrheum.org)
  • however, little is known about the role of complement in protection against HCMV. (berkeley.edu)
  • Factor I, with cofactors including membrane cofactor protein (CD46), inactivates C3b and C4b. (msdmanuals.com)
  • More often, you will have lowered levels of several complement components at once. (rochester.edu)
  • You may need a complement blood test if you have symptoms of an autoimmune disorder, especially lupus. (medlineplus.gov)
  • If you are being treated for lupus or another autoimmune disease, increased amounts or activity of complement proteins may mean your treatment is working. (medlineplus.gov)
  • 10 This review aims to provide an assessment of the nature and extent of complement involvement in the underlying pathophysiology of TMA associated with autoimmune diseases that will help to stratify patients for targeted therapy. (jrheum.org)
  • Full complement deficiencies lead to severe infectious and autoimmune diseases but are uncommon while it appears that we are just beginning to discover the associations between mutations and polymorphisms in complement proteins and several common diseases. (lu.se)
  • In this study we assessed the role of anionic lipids in the binding of the terminal complement proteins to the membrane and the efficiency of subsequent hemolysis. (psu.edu)
  • The researchers are publishing their results in the current edition of the international journal Journal of Molecular Biology ( 'Arranged Sevenfold: Structural Insights into the C-Terminal Oligomerization Domain of Human C4b-Binding Protein' ). (nanowerk.com)
  • These deposits differed slightly in appearance, but revealed essentially the same complement-mediated renal (kidney) disease, leading to both being redefined under the C3G umbrella term as DDD and C3GN. (rareshare.org)
  • In 1939-1940, the Rhesus (Rh) blood group system was discovered, leading to the development of minor antigen compatibility testing. (medscape.com)
  • Persistent abnormal complement levels suggest a poor prognosis. (medscape.com)
  • This project is funded by a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation, a grant from the William and Ella Owens Medical Research Foundation, a Rising STARs Award from The University of Texas System, and grants from two branches of the U.S. National Institutes of Health - the National Institute of Neurological Disorders and Stroke, and the National Institute on Deafness and Other Communication Disorders. (news-medical.net)
  • Complement genes contribute sex-biased vulnerability in diverse disorders. (harvard.edu)
  • Our work implicates that complement system may be a therapeutic target for developing therapies to prevent or treat cognitive disorders related to neuroinflammation or other disease conditions including neurodegenerative disease per se. (imperial.ac.uk)
  • The medicine can only be obtained with a prescription and must be given under the supervision of a doctor who has experience in the management of patients with kidney disorders and disorders affecting the nervous system or the blood. (europa.eu)
  • abstract = "Recent evidence suggests that complement is activated in human nasal airways in inflammatory states. (tau.ac.il)
  • This can be sometimes predicted but in most cases it must be evaluated by expressing a recombinant protein carrying the mutation and comparing its properties to the wild type. (lu.se)
  • Congratulations Anna Blom, Professor of Medical Protein Chemistry at Lund University and the recipient of the Swedish Society of Medicine's Berzelius Medal in Gold 2021 for innovative research in the field of medical chemistry. (lu.se)