A congenital abnormality that is characterized by a blocked CHOANAE, the opening between the nose and the NASOPHARYNX. Blockage can be unilateral or bilateral; bony or membranous.
Congenital anomaly in which some of the structures of the eye are absent due to incomplete fusion of the fetal intraocular fissure during gestation.
MUCOUS MEMBRANE extending from floor of mouth to the under-surface of the tongue.
'Abnormalities, Multiple' is a broad term referring to the presence of two or more structural or functional anomalies in an individual, which may be genetic or environmental in origin, and can affect various systems and organs of the body.
A characteristic symptom complex.
Progressive destruction or the absence of all or part of the extrahepatic BILE DUCTS, resulting in the complete obstruction of BILE flow. Usually, biliary atresia is found in infants and accounts for one third of the neonatal cholestatic JAUNDICE.
The degeneration and resorption of an OVARIAN FOLLICLE before it reaches maturity and ruptures.
Congenital obliteration of the lumen of the intestine, with the ILEUM involved in 50% of the cases and the JEJUNUM and DUODENUM following in frequency. It is the most frequent cause of INTESTINAL OBSTRUCTION in NEWBORNS. (From Stedman, 25th ed)
Congenital abnormality characterized by the lack of full development of the ESOPHAGUS that commonly occurs with TRACHEOESOPHAGEAL FISTULA. Symptoms include excessive SALIVATION; GAGGING; CYANOSIS; and DYSPNEA.

Microdeletion 22q11 and oesophageal atresia. (1/42)

Oesophageal atresia (OA) is a congenital defect associated with additional malformations in 30-70% of the cases. In particular, OA is a component of the VACTERL association. Since some major features of the VACTERL association, including conotruncal heart defect, radial aplasia, and anal atresia, have been found in patients with microdeletion 22q11.2 (del(22q11.2)), we have screened for del(22q11.2) by fluorescent in situ hybridisation (FISH) in 15 syndromic patients with OA. Del(22q11.2) was detected in one of them, presenting with OA, tetralogy of Fallot, anal atresia, neonatal hypocalcaemia, and subtle facial anomalies resembling those of velocardiofacial syndrome. The occurrence of del(22q11.2) in our series of patients with OA is low (1/15), but this chromosomal anomaly should be included among causative factors of malformation complexes with OA. In addition, clinical variability of del(22q11.2) syndrome is further corroborated with inclusion of OA in the list of the findings associated with the deletion.  (+info)

Diagnostic and therapeutic problems in a case of prenatally detected fetal hydrocolpos. (2/42)

We report on a female fetus with prenatally suspected hydrometrocolpos. Postnatal evaluation additionally revealed ambiguous genitalia, anorectal atresia, vertebral segmentation anomalies and congenital intestinal aganglionosis. Colostomy was performed, but postoperative recovery was complicated by pulmonary hypertension and renal failure, resulting in death at day 18. Postmortem examination furthermore revealed a small ventricular septal defect, as well as rectovaginal and urethrovaginal fistulae, causing massive dilatation of the septated vagina (hydrocolpos). The possibility of an overlapping VACTERL and MURCS association is discussed.  (+info)

Double partial monosomies (10p- and Xp-) in a female baby with choanal atresia. (3/42)

Chromosomal abnormalities involving double partial monosomies are very rare. A female infant with non-mosaic monosomy 10p13-->10pter along with monosomy Xp11.4-->Xpter which arose de novo is described. The clinical manifestations of this patient included microcephaly, mild synophrys, short and down-slanted palpebral fissures, ptosis of the left eye, long eyelashes, a depressed nasal bridge, dysplastic ears, micrognathia, a short neck. sensorineural hearing impairment, and severe growth retardation. Left choanal atresia and laryngomalacia were detected by flexible fibroscopy. No signs of hypoparathyroidism or defective cellular immunity could be found. Fluorescence in situ hybridization (FISH) with whole-chromosome painting probes for chromosomes 10 and X was performed, which excluded the possibility of cryptic translocations of the involved chromosome segments. No submicroscopic chromosome 22q11 deletion could be found by FISH. Thus this very rare coexistence of double independent partial monosomies was confirmed. There are no previous reports of such concurrent double partial monosomies.  (+info)

A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. (4/42)

The retinoic acid (RA) signal, produced locally from vitamin A by retinaldehyde dehydrogenase (Raldh) and transduced by the nuclear receptors for retinoids (RA receptor and 9-cis-RA receptor), is indispensable for ontogenesis and homeostasis of numerous tissues. We demonstrate that Raldh3 knockout in mouse suppresses RA synthesis and causes malformations restricted to ocular and nasal regions, which are similar to those observed in vitamin A-deficient fetuses and/or in retinoid receptor mutants. Raldh3 knockout notably causes choanal atresia (CA), which is responsible for respiratory distress and death of Raldh3-null mutants at birth. CA is due to persistence of nasal fins, whose rupture normally allows the communication between nasal and oral cavities. This malformation, which is similar to isolated congenital CA in humans and may result from impaired RA-controlled down-regulation of Fgf8 expression in nasal fins, can be prevented by a simple maternal treatment with RA.  (+info)

A case of Antley-Bixler syndrome with severe skeletal Cl. III malocclusion. (5/42)

Antley-Bixler syndrome is a disorder characterized by craniosynostosis, midface hypoplasia, choana blockade, and radiohumeral synostosis. However, the features of occlusion remain unclear. In this paper, we report a case of Antley-Bixler syndrome, a 7-year-old boy, from the viewpoint of orthodontics. From lateral cephalometric head film analysis, remarkable retardation of the anterior subcranial base, infraorbitale, and maxilla were notable, as was vertical growth restriction of the maxilla. The choana blockade tendency was also recognized. Moreover, although reverse occlusion was present, a mandibular retrognathic tendency was also present, and a short ramus mandible, remarkable mandibular vertical growth pattern, and skeletal open bite were present. In the dentition, two of the lower incisors were missing, and the present lower incisors were large. Maxillary and mandibular first molars were delayed in eruption. For treatment, the solutions to such remarkable skeletal problems were limited by the insufficiency of recovery of cranial formation after the operation. We planned a non-surgical treatment to expand the maxilla. It will be necessary to continually consider the treatment of his malocclusion as he continues to grow.  (+info)

SNP genotyping to screen for a common deletion in CHARGE syndrome. (6/42)

BACKGROUND: CHARGE syndrome is a complex of birth defects including coloboma, choanal atresia, ear malformations and deafness, cardiac defects, and growth delay. We have previously hypothesized that CHARGE syndrome could be caused by unidentified genomic microdeletion, but no such deletion was detected using short tandem repeat (STR) markers spaced an average of 5 cM apart. Recently, microdeletion at 8q12 locus was reported in two patients with CHARGE, although point mutation in CHD7 on chromosome 8 was the underlying etiology in most of the affected patients. METHODS: We have extended our previous study by employing a much higher density of SNP markers (3258) with an average spacing of approximately 800 kb. These SNP markers are diallelic and, therefore, have much different properties for detection of deletions than STRs. RESULTS: A global error rate estimate was produced based on Mendelian inconsistency. One marker, rs431722 exceeded the expected frequency of inconsistencies, but no deletion could be demonstrated after retesting the 4 inconsistent pedigrees with local flanking markers or by FISH with the corresponding BAC clone. Expected deletion detection (EDD) was used to assess the coverage of specific intervals over the genome by deriving the probability of detecting a common loss of heterozygosity event over each genomic interval. This analysis estimated the fraction of unobserved deletions, taking into account the allele frequencies at the SNPs, the known marker spacing and sample size. CONCLUSIONS: The results of our genotyping indicate that more than 35% of the genome is included in regions with very low probability of a deletion of at least 2 Mb.  (+info)

CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. (7/42)

BACKGROUND: CHARGE syndrome is a non-random clustering of congenital anomalies including coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. A consistent feature in CHARGE syndrome is semicircular canal hypoplasia resulting in vestibular areflexia. Other commonly associated congenital anomalies are facial nerve palsy, cleft lip/palate, and tracheo-oesophageal fistula. Specific behavioural problems, including autistic-like behaviour, have been described. The CHD7 gene on chromosome 8q12.1 was recently discovered as a major gene involved in the aetiology of this syndrome. METHODS: The coding regions of CHD7 were screened for mutations in 107 index patients with clinical features suggestive of CHARGE syndrome. Clinical data of the mutation positive patients were sampled to study the phenotypic spectrum of mutations in the CHD7 gene. RESULTS: Mutations were identified in 69 patients. Here we describe the clinical features of 47 of these patients, including two sib pairs. Most mutations were unique and were scattered throughout the gene. All patients but one fulfilled the current diagnostic criteria for CHARGE syndrome. No genotype-phenotype correlations were apparent in this cohort, which is best demonstrated by the differences in clinical presentation in sib pairs with identical mutations. Somatic mosaicism was detected in the unaffected mother of a sib pair, supporting the existence of germline mosaicism. CONCLUSIONS: CHD7 mutations account for the majority of the cases with CHARGE syndrome, with a broad clinical variability and without an obvious genotype-phenotype correlation. In one case evidence for germline mosaicism was provided.  (+info)

Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. (8/42)

Mouse ENU mutagenesis programmes have yielded a series of independent mutations on proximal chromosome 4 leading to dominant head-bobbing and circling behaviour due to truncations of the lateral semicircular canal of the inner ear. Here, we report the identification of mutations in the Chd7 gene in nine of these mutant alleles including six nonsense and three splice site mutations. The human CHD7 gene is known to be involved in CHARGE syndrome, which also shows inner ear malformations and a variety of other features with varying penetrance and appears to be due to frequent de novo mutation. We found widespread expression of Chd7 in early development of the mouse in organs affected in CHARGE syndrome including eye, olfactory epithelium, inner ear and vascular system. Closer inspection of heterozygous mutant mice revealed a range of defects with reduced penetrance, such as cleft palate, choanal atresia, septal defects of the heart, haemorrhages, prenatal death, vulva and clitoral defects and keratoconjunctivitis sicca. Many of these defects mimic the features of CHARGE syndrome. There were no obvious features of the gene that might make it more mutable than other genes. We conclude that the large number of mouse mutants and human de novo mutations may be due to the combination of the Chd7 gene being a large target and the fact that many heterozygous carriers of the mutations are viable individuals with a readily detectable phenotype.  (+info)

Choanal atresia is a medical condition where the back of the nasal passage (choana) is blocked or narrowed, usually by bone, membrane, or a combination of both. This blockage can be present at birth (congenital) or acquired later in life due to various reasons such as infection, injury, or tumor.

Congenital choanal atresia is more common and occurs during fetal development when the nasal passages fail to open properly. It can affect one or both sides of the nasal passage and can be unilateral (affecting one side) or bilateral (affecting both sides). Bilateral choanal atresia can cause breathing difficulties in newborns, as they are obligate nose breathers and cannot breathe through their mouth yet.

Treatment for choanal atresia typically involves surgical intervention to open up the nasal passage and restore normal breathing. The specific type of surgery may depend on the location and extent of the blockage. In some cases, follow-up surgeries or additional treatments may be necessary to ensure proper functioning of the nasal passage.

A coloboma is a congenital condition that results from incomplete closure of the optic fissure during fetal development. This results in a gap or hole in one or more structures of the eye, such as the iris, retina, choroid, or optic nerve. The size and location of the coloboma can vary widely, and it may affect one or both eyes.

Colobomas can cause a range of visual symptoms, depending on their size and location. Some people with colobomas may have no visual impairment, while others may experience reduced vision, double vision, or sensitivity to light. In severe cases, colobomas can lead to blindness.

Colobomas are usually diagnosed during routine eye exams and are typically not treatable, although some visual symptoms may be managed with glasses, contact lenses, or surgery in certain cases. Colobomas can occur as an isolated condition or as part of a genetic syndrome, so individuals with colobomas may benefit from genetic counseling to understand their risk of passing the condition on to their offspring.

The lingual frenum is a small fold of mucous membrane that attaches the tongue to the floor of the mouth. It contains muscle fibers and can vary in length, thickness, and attachment level. In some individuals, the lingual frenum may be too short or tight, restricting tongue movement, which is known as being "tongue-tied" or having ankyloglossia. This condition can potentially impact speech, feeding, and oral hygiene, although in many cases, it does not cause any significant problems.

'Abnormalities, Multiple' is a broad term that refers to the presence of two or more structural or functional anomalies in an individual. These abnormalities can be present at birth (congenital) or can develop later in life (acquired). They can affect various organs and systems of the body and can vary greatly in severity and impact on a person's health and well-being.

Multiple abnormalities can occur due to genetic factors, environmental influences, or a combination of both. Chromosomal abnormalities, gene mutations, exposure to teratogens (substances that cause birth defects), and maternal infections during pregnancy are some of the common causes of multiple congenital abnormalities.

Examples of multiple congenital abnormalities include Down syndrome, Turner syndrome, and VATER/VACTERL association. Acquired multiple abnormalities can result from conditions such as trauma, infection, degenerative diseases, or cancer.

The medical evaluation and management of individuals with multiple abnormalities depend on the specific abnormalities present and their impact on the individual's health and functioning. A multidisciplinary team of healthcare professionals is often involved in the care of these individuals to address their complex needs.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

Biliary atresia is a rare, progressive liver disease in infants and children, characterized by the inflammation, fibrosis, and obstruction of the bile ducts. This results in the impaired flow of bile from the liver to the intestine, leading to cholestasis (accumulation of bile in the liver), jaundice (yellowing of the skin and eyes), and eventually liver cirrhosis and failure if left untreated.

The exact cause of biliary atresia is not known, but it is believed to be a combination of genetic and environmental factors. It can occur as an isolated condition or in association with other congenital anomalies. The diagnosis of biliary atresia is typically made through imaging studies, such as ultrasound and cholangiography, and confirmed by liver biopsy.

The standard treatment for biliary atresia is a surgical procedure called the Kasai portoenterostomy, which aims to restore bile flow from the liver to the intestine. In this procedure, the damaged bile ducts are removed and replaced with a loop of intestine that is connected directly to the liver. The success of the Kasai procedure depends on several factors, including the age at diagnosis and surgery, the extent of liver damage, and the skill and experience of the surgeon.

Despite successful Kasai surgery, many children with biliary atresia will eventually develop cirrhosis and require liver transplantation. The prognosis for children with biliary atresia has improved significantly over the past few decades due to earlier diagnosis, advances in surgical techniques, and better postoperative care. However, it remains a challenging condition that requires close monitoring and multidisciplinary management by pediatric hepatologists, surgeons, and other healthcare professionals.

Follicular atresia is a physiological process that occurs in the ovary, where follicles (fluid-filled sacs containing immature eggs or oocytes) undergo degeneration and disappearance. This process begins after the primordial follicle stage and continues throughout a woman's reproductive years. At birth, a female has approximately 1 to 2 million primordial follicles, but only about 400 of these will mature and release an egg during her lifetime. The rest undergo atresia, which is a natural process that helps regulate the number of available eggs and maintain hormonal balance within the body.

The exact mechanisms that trigger follicular atresia are not fully understood, but it is believed to be influenced by various factors such as hormonal imbalances, oxidative stress, and apoptosis (programmed cell death). In some cases, accelerated or excessive follicular atresia can lead to infertility or early menopause.

Intestinal atresia is a congenital condition characterized by the absence or complete closure of a portion of the intestine, preventing the passage of digested food from the stomach to the remaining part of the intestines. This results in a blockage in the digestive system, which can be life-threatening if not treated promptly after birth. The condition can occur anywhere along the small or large intestine and may affect either a single segment or multiple segments of the intestine.

There are several types of intestinal atresia, including:

1. Jejunal atresia: A closure or absence in the jejunum, a part of the small intestine located between the duodenum and ileum.
2. Ileal atresia: A closure or absence in the ileum, the lower portion of the small intestine that connects to the large intestine (cecum).
3. Colonic atresia: A closure or absence in the colon, a part of the large intestine responsible for storing and eliminating waste.
4. Duodenal atresia: A closure or absence in the duodenum, the uppermost portion of the small intestine that receives chyme (partially digested food) from the stomach.
5. Multiple atresias: When more than one segment of the intestines is affected by atresia.

The exact cause of intestinal atresia remains unclear, but it is believed to be related to disruptions in fetal development during pregnancy. Treatment typically involves surgical correction to reconnect the affected segments of the intestine and restore normal digestive function. The prognosis for infants with intestinal atresia depends on the severity and location of the atresia, as well as any associated conditions or complications.

Esophageal atresia is a congenital condition in which the esophagus, the tube that connects the throat to the stomach, does not develop properly. In most cases, the upper esophagus ends in a pouch instead of connecting to the lower esophagus and stomach. This condition prevents food and liquids from reaching the stomach, leading to difficulty swallowing and feeding problems in newborn infants. Esophageal atresia often occurs together with a congenital defect called tracheoesophageal fistula, in which there is an abnormal connection between the esophagus and the windpipe (trachea).

The medical definition of 'Esophageal Atresia' is:

A congenital anomaly characterized by the absence of a normal connection between the upper esophagus and the stomach, resulting in the separation of the proximal and distal esophageal segments. The proximal segment usually ends in a blind pouch, while the distal segment may communicate with the trachea through a tracheoesophageal fistula. Esophageal atresia is often associated with other congenital anomalies and can cause serious complications if not diagnosed and treated promptly after birth.

No FAQ available that match "choanal atresia"

No images available that match "choanal atresia"