A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
Catalyzes the oxidation of catechol to 2-hydroxymuconate semialdehyde in the carbazole and BENZOATE degradation via HYDROXYLATION pathways. It also catalyzes the conversion of 3-methylcatechol to cis, cis-2-hydroxy-6-oxohept-2,4-dienoate in the TOLUENE and XYLENE degradation pathway. This enzyme was formerly characterized as EC 1.13.1.2.
Non-heme iron-containing enzymes that incorporate two atoms of OXYGEN into the substrate. They are important in biosynthesis of FLAVONOIDS; GIBBERELLINS; and HYOSCYAMINE; and for degradation of AROMATIC HYDROCARBONS.
An enzyme that catalyzes the oxidation of catechol to muconic acid with the use of Fe3+ as a cofactor. This enzyme was formerly characterized as EC 1.13.1.1 and EC 1.99.2.2.
Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.
2- or 4-Hydroxyestrogens. Substances that are physiologically active in mammals, especially in the control of gonadotropin secretion. Physiological activity can be ascribed to either an estrogenic action or interaction with the catecholaminergic system.
An enzyme that catalyzes the conversion of 4-hydroxyphenylpyruvate plus oxygen to homogentisic acid and carbon dioxide. EC 1.13.11.27.
An enzyme that catalyzes the oxidation of protocatechuate to 3-carboxy-cis-cis-muconate in the presence of molecular oxygen. It contains ferric ion. EC 1.13.11.3.
An enzyme that catalyzes the conversion of L-CYSTEINE to 3-sulfinoalanine (3-sulfino-L-alanine) in the CYSTEINE metabolism and TAURINE and hypotaurine metabolic pathways.
A dioxygenase with specificity for the oxidation of the indoleamine ring of TRYPTOPHAN. It is a LIVER-specific enzyme that is the first and rate limiting enzyme in the kynurenine pathway of TRYPTOPHAN catabolism.
Enzyme that catalyzes the movement of a methyl group from S-adenosylmethionone to a catechol or a catecholamine.
A mononuclear Fe(II)-dependent oxygenase, this enzyme catalyzes the conversion of homogentisate to 4-maleylacetoacetate, the third step in the pathway for the catabolism of TYROSINE. Deficiency in the enzyme causes ALKAPTONURIA, an autosomal recessive disorder, characterized by homogentisic aciduria, OCHRONOSIS and ARTHRITIS. This enzyme was formerly characterized as EC 1.13.1.5 and EC 1.99.2.5.
An enzyme that catalyzes the conversion of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde. It was formerly characterized as EC 1.13.1.6.
A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.
Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers.
Kynurenine is a metabolic product of the amino acid tryptophan, formed via the kynurenine pathway, and serves as an important intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) and other neuroactive compounds, while also playing a role in immune response regulation and potential involvement in various neurological disorders.
A species of gram-negative, aerobic bacteria isolated from soil and water as well as clinical specimens. Occasionally it is an opportunistic pathogen.
Benzoate derivatives substituted by one or more hydroxy groups in any position on the benzene ring.
A bacterial genus of the order ACTINOMYCETALES.
An antiseptic and disinfectant aromatic alcohol.
Chlorobenzenes are organic compounds consisting of a benzene ring substituted with one or more chlorine atoms, used as solvents, refrigerants, and intermediates in the production of other chemicals, but with limited use due to environmental and health concerns.
Mold and yeast inhibitor. Used as a fungistatic agent for foods, especially cheeses.
An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
Benzoic acid or benzoic acid esters substituted with one or more chlorine atoms.
A widely used industrial solvent.
Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure.
Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.
A genus of gram-negative, aerobic, rod-shaped bacteria characterized by an outer membrane that contains glycosphingolipids but lacks lipopolysaccharide. They have the ability to degrade a broad range of substituted aromatic compounds.
A genus of gram-negative, aerobic, rod-shaped bacteria. Organisms in this genus had originally been classified as members of the PSEUDOMONAS genus but overwhelming biochemical and chemical findings indicated the need to separate them from other Pseudomonas species, and hence, this new genus was created.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid.
Salts and esters of gentisic acid.
A genus of gram-negative, aerobic, motile bacteria that occur in water and soil. Some are common inhabitants of the intestinal tract of vertebrates. These bacteria occasionally cause opportunistic infections in humans.
Toxic, volatile, flammable liquid hydrocarbon byproduct of coal distillation. It is used as an industrial solvent in paints, varnishes, lacquer thinners, gasoline, etc. Benzene causes central nervous system damage acutely and bone marrow damage chronically and is carcinogenic. It was formerly used as parasiticide.
Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.
An estrogenic steroid produced by HORSES. It has a total of five double bonds in the A- and B-ring. High concentration of equilenin is found in the URINE of pregnant mares.
A genus of gram-negative, straight or slightly curved rods which are motile by polar flagella and which accumulate poly-beta-hydroxybutyrate within the cells.
The functional hereditary units of BACTERIA.
Homogentisic acid is an organic compound that is an intermediate metabolite in the catabolic pathway of tyrosine and phenylalanine, and its accumulation in the body can lead to a rare genetic disorder known as alkaptonuria.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A genus of gram-negative bacteria of the family MORAXELLACEAE, found in soil and water and of uncertain pathogenicity.
A trihydroxybenzene or dihydroxy phenol that can be prepared by heating GALLIC ACID.
A gram-positive organism found in dairy products, fresh and salt water, marine organisms, insects, and decaying organic matter.
Organic compounds containing carbon and hydrogen in the form of an unsaturated, usually hexagonal ring structure. The compounds can be single ring, or double, triple, or multiple fused rings.
Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
A genus in the family BURKHOLDERIACEAE, comprised of many species. They are associated with a variety of infections including MENINGITIS; PERITONITIS; and URINARY TRACT INFECTIONS.
Hydroquinones are chemical compounds that function as potent depigmenting agents, inhibiting the enzymatic conversion of tyrosine to melanin, used topically in the treatment of various dermatological disorders such as melasma, freckles, and hyperpigmentation.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A genus of coccoid bacteria in the family PLANOCOCCACEAE. They are widely distributed in various habitats including sea water, freshwater ponds, cyanobacterial mats, and in marine animals.
A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN.
Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Methyl, propyl, butyl, and ethyl esters of p-hydroxybenzoic acid. They have been approved by the FDA as antimicrobial agents for foods and pharmaceuticals. (From Hawley's Condensed Chemical Dictionary, 11th ed, p872)
Industrial products consisting of a mixture of chlorinated biphenyl congeners and isomers. These compounds are highly lipophilic and tend to accumulate in fat stores of animals. Many of these compounds are considered toxic and potential environmental pollutants.
A group of gram-negative bacteria consisting of rod- and coccus-shaped cells. They are both aerobic (able to grow under an air atmosphere) and microaerophilic (grow better in low concentrations of oxygen) under nitrogen-fixing conditions but, when supplied with a source of fixed nitrogen, they grow as aerobes.
Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
The rate dynamics in chemical or physical systems.
Cresols, also known as hydroxytoluene, are a group of phenolic compounds including ortho-cresol, meta-cresol, and para-cresol, which differ in the position of the hydroxyl group on the benzene ring.
A family of gram negative, aerobic, non-sporeforming, rod-shaped bacteria.
An oxidation product of tryptophan metabolism. It may be a free radical scavenger and a carcinogen.
An enzyme that catalyzes the HYDROXYLATION of gamma-butyrobetaine to L-CARNITINE. It is the last enzyme in the biosynthetic pathway of L-CARNITINE and is dependent on alpha-ketoglutarate; IRON; ASCORBIC ACID; and OXYGEN.
A genus of asporogenous bacteria isolated from soil that displays a distinctive rod-coccus growth cycle.
An inborn error of amino acid metabolism resulting from a defect in the enzyme HOMOGENTISATE 1,2-DIOXYGENASE, an enzyme involved in the breakdown of PHENYLALANINE and TYROSINE. It is characterized by accumulation of HOMOGENTISIC ACID in the urine, OCHRONOSIS in various tissues, and ARTHRITIS.
A family of isomeric, colorless aromatic hydrocarbon liquids, that contain the general formula C6H4(CH3)2. They are produced by the destructive distillation of coal or by the catalytic reforming of petroleum naphthenic fractions. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442)
Biphenyl compounds are organic substances consisting of two phenyl rings connected by a single covalent bond, and can exhibit various properties and uses, including as intermediates in chemical synthesis, components in plastics and dyes, and as additives in fuels.
The salts or esters of salicylic acids, or salicylate esters of an organic acid. Some of these have analgesic, antipyretic, and anti-inflammatory activities by inhibiting prostaglandin synthesis.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Enzymes of the isomerase class that catalyze reactions in which a group can be regarded as eliminated from one part of a molecule, leaving a double bond, while remaining covalently attached to the molecule. (From Enzyme Nomenclature, 1992) EC 5.5.
Inorganic or organic compounds that contain divalent iron.
Toluidines are a group of organic compounds consisting of various derivatives of toluene with an amine group (-NH2) attached to the benzene ring, which have been used in chemical synthesis and historical medical research but are not currently utilized as therapeutic agents due to their carcinogenic properties.
An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis.
Benzoic acids, salts, or esters that contain an amino group attached to carbon number 2 or 6 of the benzene ring structure.
A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13).
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
Proteins found in any species of bacterium.
Aminobenzenesulfonic acids. Organic acids that are used in the manufacture of dyes and organic chemicals and as reagents.
Phenanthrenes are aromatic hydrocarbons consisting of three benzene rings fused together in a linear arrangement, commonly found in various plants and some animals, and can act as precursors for certain steroid hormones or exhibit pharmacological activities with potential therapeutic uses.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
'Benzene derivatives' are organic compounds that contain a benzene ring as the core structure, with various functional groups attached to it, and can have diverse chemical properties and uses, including as solvents, intermediates in chemical synthesis, and pharmaceuticals.
Estrone derivatives substituted with one or more hydroxyl groups in any position. They are important metabolites of estrone and other estrogens.
A metabolite of tryptophan with a possible role in neurodegenerative disorders. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
A species of gram-negative bacteria in the genus PSEUDOMONAS, containing multiple genomovars. It is distinguishable from other pseudomonad species by its ability to use MALTOSE and STARCH as sole carbon and energy sources. It can degrade ENVIRONMENTAL POLLUTANTS and has been used as a model organism to study denitrification.
A species of gram-negative rod-shaped bacteria found ubiquitously and formerly called Comamonas acidovorans and Pseudomonas acidovorans. It is the type species of the genus DELFTIA.
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
Phenols substituted with one or more chlorine atoms in any position.
A species of gram-negative, aerobic bacteria found in soil and water. Although considered to be normally nonpathogenic, this bacterium is a causative agent of nosocomial infections, particularly in debilitated individuals.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A deaminated metabolite of LEVODOPA.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
A species of BURKHOLDERIA considered to be an opportunistic human pathogen. It has been associated with various types of infections of nosocomial origin.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3.
A monooxygenase that catalyzes the conversion of BETA-CAROTENE into two molecules of RETINAL. It was formerly characterized as EC 1.13.11.21 and EC 1.18.3.1.
Stable oxygen atoms that have the same atomic number as the element oxygen, but differ in atomic weight. O-17 and 18 are stable oxygen isotopes.
Compounds which restore enzymatic activity by removing an inhibitory group bound to the reactive site of the enzyme.
A group of disorders which have in common elevations of tyrosine in the blood and urine secondary to an enzyme deficiency. Type I tyrosinemia features episodic weakness, self-mutilation, hepatic necrosis, renal tubular injury, and seizures and is caused by a deficiency of the enzyme fumarylacetoacetase. Type II tyrosinemia features INTELLECTUAL DISABILITY, painful corneal ulcers, and keratoses of the palms and plantar surfaces and is caused by a deficiency of the enzyme TYROSINE TRANSAMINASE. Type III tyrosinemia features INTELLECTUAL DISABILITY and is caused by a deficiency of the enzyme 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE. (Menkes, Textbook of Child Neurology, 5th ed, pp42-3)
Naphthalene derivatives carrying one or more hydroxyl (-OH) groups at any ring position. They are often used in dyes and pigments, as antioxidants for rubber, fats, and oils, as insecticides, in pharmaceuticals, and in numerous other applications.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Proteins prepared by recombinant DNA technology.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
An herbicide with irritant effects on the eye and the gastrointestinal system.
The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
**Maleates** are organic compounds that contain a carboxylic acid group and a hydroxyl group attached to adjacent carbon atoms, often used as intermediates in the synthesis of pharmaceuticals and other chemicals, or as drugs themselves, such as maleic acid or its salts.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
A highly volatile inhalation anesthetic used mainly in short surgical procedures where light anesthesia with good analgesia is required. It is also used as an industrial solvent. Prolonged exposure to high concentrations of the vapor can lead to cardiotoxicity and neurological impairment.
A species of gram-negative bacteria in the genus PSEUDOMONAS. All strains can utilize FRUCTOSE for energy. It is occasionally isolated from humans and some strains are pathogenic to WATERMELON.
Aniline compounds, also known as aromatic amines, are organic chemicals derived from aniline (aminobenzene), characterized by the substitution of hydrogen atoms in the benzene ring with amino groups (-NH2).
Low-molecular-weight compounds produced by microorganisms that aid in the transport and sequestration of ferric iron. (The Encyclopedia of Molecular Biology, 1994)
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
A large group of aerobic bacteria which show up as pink (negative) when treated by the gram-staining method. This is because the cell walls of gram-negative bacteria are low in peptidoglycan and thus have low affinity for violet stain and high affinity for the pink dye safranine.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
An enzyme of the oxidoreductase class that catalyzes the reaction between L-tyrosine, L-dopa, and oxygen to yield L-dopa, dopaquinone, and water. It is a copper protein that acts also on catechols, catalyzing some of the same reactions as CATECHOL OXIDASE. EC 1.14.18.1.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent.
A colorimetric reagent for iron, manganese, titanium, molybdenum, and complexes of zirconium. (From Merck Index, 11th ed)
A species of gram-negative bacteria in the genus PSEUDOMONAS, which is found in SOIL and WATER.
Substances which pollute the soil. Use for soil pollutants in general or for which there is no specific heading.
Compounds that contain a BENZENE ring fused to a furan ring.
An NADPH-dependent flavin monooxygenase that plays a key role in the catabolism of TRYPTOPHAN by catalyzing the HYDROXYLATION of KYNURENINE to 3-hydroxykynurenine. It was formerly characterized as EC 1.14.1.2 and EC 1.99.1.5.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
Proteins, usually acting in oxidation-reduction reactions, containing iron but no porphyrin groups. (Lehninger, Principles of Biochemistry, 1993, pG-10)
Pigment obtained by the oxidation of epinephrine.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.
The relationships of groups of organisms as reflected by their genetic makeup.
Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.
Benzophenones are synthetic organic compounds characterized as aromatic ketones, often used in chemical synthesis for various applications including sunscreen formulations due to their UV-absorbing properties.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A methylated metabolite of norepinephrine that is excreted in the urine and found in certain tissues. It is a marker for tumors.
Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1.
A family of gram-negative aerobic bacteria in the class BETA PROTEOBACTERIA, encompassing the acidovorans rRNA complex. Some species are pathogenic for PLANTS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A conditionally essential nutrient, important during mammalian development. It is present in milk but is isolated mostly from ox bile and strongly conjugates bile acids.

Catechols are a type of chemical compound that contain a benzene ring with two hydroxyl groups (-OH) attached to it in the ortho position. The term "catechol" is often used interchangeably with "ortho-dihydroxybenzene." Catechols are important in biology because they are produced through the metabolism of certain amino acids, such as phenylalanine and tyrosine, and are involved in the synthesis of various neurotransmitters and hormones. They also have antioxidant properties and can act as reducing agents. In chemistry, catechols can undergo various reactions, such as oxidation and polymerization, to form other classes of compounds.

Catechol 2,3-dioxygenase is an enzyme that catalyzes the conversion of catechols to muconic acids as part of the meta-cleavage pathway in the breakdown of aromatic compounds. This enzyme plays a crucial role in the degradation of various aromatic hydrocarbons, including lignin and environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Catechol 2,3-dioxygenase requires Fe(II) as a cofactor for its activity. The gene that encodes this enzyme is often used as a bioremediation marker to monitor the degradation of aromatic pollutants in the environment.

Dioxygenases are a class of enzymes that catalyze the incorporation of both atoms of molecular oxygen (O2) into their substrates. They are classified based on the type of reaction they catalyze and the number of iron atoms in their active site. The two main types of dioxygenases are:

1. Intradiol dioxygenases: These enzymes cleave an aromatic ring by inserting both atoms of O2 into a single bond between two carbon atoms, leading to the formation of an unsaturated diol (catechol) intermediate and the release of CO2. They contain a non-heme iron(III) center in their active site.

An example of intradiol dioxygenase is catechol 1,2-dioxygenase, which catalyzes the conversion of catechol to muconic acid.

2. Extradiol dioxygenases: These enzymes cleave an aromatic ring by inserting one atom of O2 at a position adjacent to the hydroxyl group and the other atom at a more distant position, leading to the formation of an unsaturated lactone or cyclic ether intermediate. They contain a non-heme iron(II) center in their active site.

An example of extradiol dioxygenase is homogentisate 1,2-dioxygenase, which catalyzes the conversion of homogentisate to maleylacetoacetate in the tyrosine degradation pathway.

Dioxygenases play important roles in various biological processes, including the metabolism of aromatic compounds, the biosynthesis of hormones and signaling molecules, and the detoxification of xenobiotics.

Catechol 1,2-dioxygenase is an enzyme that catalyzes the conversion of catechols to muconic acids as part of the meta-cleavage pathway in the breakdown of aromatic compounds in bacteria. The enzyme requires iron as a cofactor and functions by cleaving the aromatic ring between the two hydroxyl groups in the catechol molecule. This reaction is an important step in the degradation of various environmental pollutants, such as polychlorinated biphenyls (PCBs) and lignin, by certain bacterial species.

Oxygenases are a class of enzymes that catalyze the incorporation of molecular oxygen (O2) into their substrates. They play crucial roles in various biological processes, including the biosynthesis of many natural products, as well as the detoxification and degradation of xenobiotics (foreign substances).

There are two main types of oxygenases: monooxygenases and dioxygenases. Monooxygenases introduce one atom of molecular oxygen into a substrate while reducing the other to water. An example of this type of enzyme is cytochrome P450, which is involved in drug metabolism and steroid hormone synthesis. Dioxygenases, on the other hand, incorporate both atoms of molecular oxygen into their substrates, often leading to the formation of new carbon-carbon bonds or the cleavage of existing ones.

It's important to note that while oxygenases are essential for many life-sustaining processes, they can also contribute to the production of harmful reactive oxygen species (ROS) during normal cellular metabolism. An imbalance in ROS levels can lead to oxidative stress and damage to cells and tissues, which has been linked to various diseases such as cancer, neurodegeneration, and cardiovascular disease.

I'm sorry for any confusion, but "Estrogens, Catechol" is not a recognized medical term or classification. Estrogens are a group of steroid hormones that are primarily responsible for the development and maintenance of female sexual characteristics. They are produced mainly in the ovaries, but also in other tissues such as fat, liver, and breast tissue.

Catechols, on the other hand, are a type of chemical compound that contain a benzene ring with two hydroxyl groups attached to it in a particular arrangement. Some estrogens can be metabolized into catechol estrogen metabolites, which have been studied for their potential role in cancer development and progression.

If you have any specific questions about estrogens or catechols, I'd be happy to try to help answer them!

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an enzyme that is involved in the catabolism of aromatic amino acids such as tyrosine. The gene for HPPD is located on human chromosome 12q24.11.

The HPPD enzyme catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisate, which is then further metabolized in the catabolic pathway leading to fumarate and acetoacetate. Deficiencies in HPPD activity have been associated with certain genetic disorders such as tyrosinemia type III, which can result in neurological symptoms and developmental delays.

In addition to its role in normal metabolism, HPPD has also been identified as a target for herbicides that inhibit the enzyme's activity, leading to the accumulation of 4-hydroxyphenylpyruvate and other toxic intermediates that can disrupt plant growth and development.

Protocatechuate-3,4-dioxygenase is an enzyme that catalyzes the ortho-cleavage of protocatechuate, an aromatic compound, in the meta-cleavage pathway of aerobic bacterial catabolism. The enzyme requires Fe(II) as a cofactor and has two subunits: alpha and beta. The alpha subunit contains the catalytic site and is responsible for binding and cleaving protocatechuate, while the beta subunit serves a regulatory role.

The reaction catalyzed by protocatechuate-3,4-dioxygenase is as follows:

Protocatechuate + O2 -> 3-carboxy-cis,cis-muconate

This enzyme plays an important role in the degradation of various aromatic compounds and is widely distributed in bacteria, fungi, and plants. It has been studied extensively as a model system for understanding the mechanisms of aromatic ring cleavage and has potential applications in bioremediation and industrial biotechnology.

Cysteine dioxygenase (CDO) is an enzyme that catalyzes the conversion of the amino acid L-cysteine to L-cysteinesulfinic acid, which is the first step in the catabolism of L-cysteine. This reaction also generates molecular oxygen as a byproduct. CDO plays important roles in various biological processes such as neurotransmitter biosynthesis and oxidative stress response. It exists as two isoforms, CDO1 and CDO2, which are encoded by separate genes and have distinct tissue distributions and functions.

Tryptophan oxygenase, also known as tryptophan 2,3-dioxygenase (TDO) or tryptophan pyrrolase, is an enzyme that catalyzes the breakdown of the essential amino acid tryptophan. This enzyme requires molecular oxygen and plays a crucial role in regulating tryptophan levels within the body.

The reaction catalyzed by tryptophan oxygenase involves the oxidation of the indole ring of tryptophan, leading to the formation of N-formylkynurenine. This metabolite is further broken down through several enzymatic steps to produce other biologically active compounds, such as kynurenine and niacin (vitamin B3).

Tryptophan oxygenase activity is primarily found in the liver and is induced by various factors, including corticosteroids, cytokines, and tryptophan itself. The regulation of this enzyme has implications for several physiological processes, such as immune response, neurotransmitter synthesis, and energy metabolism. Dysregulation of tryptophan oxygenase activity can contribute to the development of various pathological conditions, including neurological disorders and cancer.

Catechol-O-methyltransferase (COMT) is an enzyme that plays a role in the metabolism of catecholamines, which are neurotransmitters and hormones such as dopamine, norepinephrine, and epinephrine. COMT mediates the transfer of a methyl group from S-adenosylmethionine (SAM) to a catechol functional group in these molecules, resulting in the formation of methylated products that are subsequently excreted.

The methylation of catecholamines by COMT regulates their concentration and activity in the body, and genetic variations in the COMT gene can affect enzyme function and contribute to individual differences in the metabolism of these neurotransmitters. This has been implicated in various neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD).

Homogentisate 1,2-dioxygenase (HGD) is an enzyme that plays a crucial role in the catabolism of tyrosine, an aromatic amino acid. This enzyme is involved in the third step of the tyrosine degradation pathway, also known as the tyrosine breakdown or catabolic pathway.

The homogentisate 1,2-dioxygenase enzyme catalyzes the conversion of homogentisic acid (HGA) into maleylacetoacetic acid. This reaction involves the cleavage of the aromatic ring of HGA and the introduction of oxygen, hence the name 'dioxygenase.' The reaction can be summarized as follows:

Homogentisate + O2 → Maleylacetoacetate

Deficiency or dysfunction in homogentisate 1,2-dioxygenase leads to a rare genetic disorder called alkaptonuria. In this condition, the body cannot break down tyrosine properly, resulting in an accumulation of HGA and its oxidation product, alkapton, which can cause damage to connective tissues and joints over time.

3-Hydroxyanthranilate 3,4-Dioxygenase is an enzyme that catalyzes the chemical reaction:

3-hydroxyanthranilate + O2 -> 2-amino-3-carboxymuconate semialdehyde

This enzyme is involved in the catabolism of tryptophan, an essential amino acid, through the kynurenine pathway. The reaction catalyzed by this enzyme involves the cleavage of the aromatic ring of 3-hydroxyanthranilate and the formation of 2-amino-3-carboxymuconate semialdehyde, which is further metabolized to produce NAD+ and other products. Defects in this enzyme have been associated with certain neurological disorders.

"Pseudomonas" is a genus of Gram-negative, rod-shaped bacteria that are widely found in soil, water, and plants. Some species of Pseudomonas can cause disease in animals and humans, with P. aeruginosa being the most clinically relevant as it's an opportunistic pathogen capable of causing various types of infections, particularly in individuals with weakened immune systems.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants, making infections caused by this bacterium difficult to treat. It can cause a range of healthcare-associated infections, such as pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. In addition, it can also cause external ear infections and eye infections.

Prompt identification and appropriate antimicrobial therapy are crucial for managing Pseudomonas infections, although the increasing antibiotic resistance poses a significant challenge in treatment.

Environmental biodegradation is the breakdown of materials, especially man-made substances such as plastics and industrial chemicals, by microorganisms such as bacteria and fungi in order to use them as a source of energy or nutrients. This process occurs naturally in the environment and helps to break down organic matter into simpler compounds that can be more easily absorbed and assimilated by living organisms.

Biodegradation in the environment is influenced by various factors, including the chemical composition of the substance being degraded, the environmental conditions (such as temperature, moisture, and pH), and the type and abundance of microorganisms present. Some substances are more easily biodegraded than others, and some may even be resistant to biodegradation altogether.

Biodegradation is an important process for maintaining the health and balance of ecosystems, as it helps to prevent the accumulation of harmful substances in the environment. However, some man-made substances, such as certain types of plastics and industrial chemicals, may persist in the environment for long periods of time due to their resistance to biodegradation, leading to negative impacts on wildlife and ecosystems.

In recent years, there has been increasing interest in developing biodegradable materials that can break down more easily in the environment as a way to reduce waste and minimize environmental harm. These efforts have led to the development of various biodegradable plastics, coatings, and other materials that are designed to degrade under specific environmental conditions.

Kynurenine is an organic compound that is produced in the human body as part of the metabolism of the essential amino acid tryptophan. It is an intermediate in the kynurenine pathway, which leads to the production of several neuroactive compounds and NAD+, a coenzyme involved in redox reactions.

Kynurenine itself does not have any known physiological function, but some of its metabolites have been found to play important roles in various biological processes, including immune response, inflammation, and neurological function. For example, the kynurenine pathway produces several neuroactive metabolites that can act as agonists or antagonists at various receptors in the brain, affecting neuronal excitability, synaptic plasticity, and neurotransmission.

Abnormalities in the kynurenine pathway have been implicated in several neurological disorders, including depression, schizophrenia, Alzheimer's disease, and Huntington's disease. Therefore, understanding the regulation of this pathway and its metabolites has become an important area of research in neuroscience and neuropsychopharmacology.

"Pseudomonas putida" is a species of gram-negative, rod-shaped bacteria that is commonly found in soil and water environments. It is a non-pathogenic, opportunistic microorganism that is known for its versatile metabolism and ability to degrade various organic compounds. This bacterium has been widely studied for its potential applications in bioremediation and industrial biotechnology due to its ability to break down pollutants such as toluene, xylene, and other aromatic hydrocarbons. It is also known for its resistance to heavy metals and antibiotics, making it a valuable tool in the study of bacterial survival mechanisms and potential applications in bioremediation and waste treatment.

Hydroxybenzoates are the salts or esters of hydroxybenzoic acids. They are commonly used as preservatives in food, cosmetics, and pharmaceutical products due to their antimicrobial and antifungal properties. The most common examples include methylparaben, ethylparaben, propylparaben, and butylparaben. These compounds work by inhibiting the growth of bacteria and fungi, thereby increasing the shelf life and safety of various products. However, there has been some concern about their potential health effects, including possible hormonal disruption, and their use in certain applications is being re-evaluated.

Rhodococcus is a genus of gram-positive, aerobic, actinomycete bacteria that are widely distributed in the environment, including soil and water. Some species of Rhodococcus can cause opportunistic infections in humans and animals, particularly in individuals with weakened immune systems. These infections can affect various organs and tissues, such as the lungs, skin, and brain, and can range from mild to severe.

Rhodococcus species are known for their ability to degrade a wide variety of organic compounds, including hydrocarbons, making them important players in bioremediation processes. They also have complex cell walls that make them resistant to many antibiotics and disinfectants, which can complicate treatment of Rhodococcus infections.

Phenol, also known as carbolic acid, is an organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is slightly soluble in water and has a melting point of 40-42°C. Phenol is a weak acid, but it is quite reactive and can be converted into a variety of other chemicals.

In a medical context, phenol is most commonly used as a disinfectant and antiseptic. It has a characteristic odor that is often described as "tarry" or " medicinal." Phenol is also used in some over-the-counter products, such as mouthwashes and throat lozenges, to help kill bacteria and freshen breath.

However, phenol is also a toxic substance that can cause serious harm if it is swallowed, inhaled, or absorbed through the skin. It can cause irritation and burns to the eyes, skin, and mucous membranes, and it can damage the liver and kidneys if ingested. Long-term exposure to phenol has been linked to an increased risk of cancer.

Because of its potential for harm, phenol is regulated as a hazardous substance in many countries, and it must be handled with care when used in medical or industrial settings.

Chlorobenzenes are a group of chemical compounds that consist of a benzene ring (a cyclic structure with six carbon atoms in a hexagonal arrangement) substituted with one or more chlorine atoms. They have the general formula C6H5Clx, where x represents the number of chlorine atoms attached to the benzene ring.

Chlorobenzenes are widely used as industrial solvents, fumigants, and intermediates in the production of other chemicals. Some common examples of chlorobenzenes include monochlorobenzene (C6H5Cl), dichlorobenzenes (C6H4Cl2), trichlorobenzenes (C6H3Cl3), and tetrachlorobenzenes (C6H2Cl4).

Exposure to chlorobenzenes can occur through inhalation, skin contact, or ingestion. They are known to be toxic and can cause a range of health effects, including irritation of the eyes, skin, and respiratory tract, headaches, dizziness, nausea, and vomiting. Long-term exposure has been linked to liver and kidney damage, neurological effects, and an increased risk of cancer.

It is important to handle chlorobenzenes with care and follow appropriate safety precautions to minimize exposure. If you suspect that you have been exposed to chlorobenzenes, seek medical attention immediately.

Sorbic acid is a chemical compound that is commonly used as a preservative in various food and cosmetic products. Medically, it's not typically used as a treatment for any specific condition. However, its preservative properties help prevent the growth of bacteria, yeast, and mold, which can improve the safety and shelf life of certain medical supplies such as ointments and eye drops.

The chemical structure of sorbic acid is that of a carboxylic acid with two double bonds, making it a unsaturated fatty acid. It's naturally found in some fruits like rowanberries and serviceberries, but most commercial sorbic acid is synthetically produced.

Food-grade sorbic acid is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA), and it has a wide range of applications in food preservation, including baked goods, cheeses, wines, and fruit juices. In cosmetics, it's often used to prevent microbial growth in products like creams, lotions, and makeup.

It is important to note that some people may have allergic reactions to sorbic acid or its salts (sorbates), so caution should be exercised when introducing new products containing these substances into personal care routines or diets.

Catechol oxidase, also known as polyphenol oxidase, is an enzyme that catalyzes the oxidation of catechols and other phenolic compounds to quinones. These quinones can then undergo further reactions to form various pigmented compounds, such as melanins. Catechol oxidase is widely distributed in nature and is found in plants, fungi, and some bacteria. In humans, catechol oxidase is involved in the metabolism of neurotransmitters such as dopamine and epinephrine.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

Chlorobenzoates are a group of chemical compounds that consist of a benzene ring substituted with one or more chlorine atoms and a carboxylate group. They are derivatives of benzoic acid, where one or more hydrogen atoms on the benzene ring have been replaced by chlorine atoms.

Chlorobenzoates can be found in various industrial applications, such as solvents, plasticizers, and pesticides. Some chlorobenzoates also have medical uses, for example, as antimicrobial agents or as intermediates in the synthesis of pharmaceuticals.

However, some chlorobenzoates can be toxic and harmful to the environment, so their use is regulated in many countries. It's important to handle and dispose of these substances properly to minimize potential health and environmental risks.

Toluene is not a medical condition or disease, but it is a chemical compound that is widely used in various industrial and commercial applications. Medically, toluene can be relevant as a substance of abuse due to its intoxicating effects when inhaled or sniffed. It is a colorless liquid with a distinctive sweet aroma, and it is a common solvent found in many products such as paint thinners, adhesives, and rubber cement.

In the context of medical toxicology, toluene exposure can lead to various health issues, including neurological damage, cognitive impairment, memory loss, nausea, vomiting, and hearing and vision problems. Chronic exposure to toluene can also cause significant harm to the developing fetus during pregnancy, leading to developmental delays, behavioral problems, and physical abnormalities.

Benzoates are the salts and esters of benzoic acid. They are widely used as preservatives in foods, cosmetics, and pharmaceuticals to prevent the growth of microorganisms. The chemical formula for benzoic acid is C6H5COOH, and when it is combined with a base (like sodium or potassium), it forms a benzoate salt (e.g., sodium benzoate or potassium benzoate). When benzoic acid reacts with an alcohol, it forms a benzoate ester (e.g., methyl benzoate or ethyl benzoate).

Benzoates are generally considered safe for use in food and cosmetics in small quantities. However, some people may have allergies or sensitivities to benzoates, which can cause reactions such as hives, itching, or asthma symptoms. In addition, there is ongoing research into the potential health effects of consuming high levels of benzoates over time, particularly in relation to gut health and the development of certain diseases.

In a medical context, benzoates may also be used as a treatment for certain conditions. For example, sodium benzoate is sometimes given to people with elevated levels of ammonia in their blood (hyperammonemia) to help reduce those levels and prevent brain damage. This is because benzoates can bind with excess ammonia in the body and convert it into a form that can be excreted in urine.

Mixed Function Oxygenases (MFOs) are a type of enzyme that catalyze the addition of one atom each from molecular oxygen (O2) to a substrate, while reducing the other oxygen atom to water. These enzymes play a crucial role in the metabolism of various endogenous and exogenous compounds, including drugs, carcinogens, and environmental pollutants.

MFOs are primarily located in the endoplasmic reticulum of cells and consist of two subunits: a flavoprotein component that contains FAD or FMN as a cofactor, and an iron-containing heme protein. The most well-known example of MFO is cytochrome P450, which is involved in the oxidation of xenobiotics and endogenous compounds such as steroids, fatty acids, and vitamins.

MFOs can catalyze a variety of reactions, including hydroxylation, epoxidation, dealkylation, and deamination, among others. These reactions often lead to the activation or detoxification of xenobiotics, making MFOs an important component of the body's defense system against foreign substances. However, in some cases, these reactions can also produce reactive intermediates that may cause toxicity or contribute to the development of diseases such as cancer.

Sphingomonas is a genus of gram-negative, aerobic bacteria that are widely distributed in the environment. They are known for their ability to degrade various organic compounds and are often found in water, soil, and air samples. The cells of Sphingomonas species are typically straight or slightly curved rods, and they do not form spores.

One distinctive feature of Sphingomonas species is the presence of a unique lipid called sphingolipid in their cell membranes. This lipid contains a long-chain base called sphingosine, which is not found in the cell membranes of other gram-negative bacteria. The genus Sphingomonas includes several species that have been associated with human infections, particularly in immunocompromised individuals. These infections can include bacteremia, pneumonia, and urinary tract infections. However, Sphingomonas species are generally considered to be of low virulence and are not typically regarded as major pathogens.

Burkholderia is a genus of gram-negative, rod-shaped bacteria that are widely distributed in the environment, including soil, water, and associated with plants. Some species of Burkholderia are opportunistic pathogens, meaning they can cause infection in individuals with weakened immune systems or underlying medical conditions.

One of the most well-known species of Burkholderia is B. cepacia, which can cause respiratory infections in people with cystic fibrosis and chronic granulomatous disease. Other notable species include B. pseudomallei, the causative agent of melioidosis, a potentially serious infection that primarily affects the respiratory system; and B. mallei, which causes glanders, a rare but severe disease that can affect humans and animals.

Burkholderia species are known for their resistance to many antibiotics, making them difficult to treat in some cases. Proper identification of the specific Burkholderia species involved in an infection is important for determining the most appropriate treatment approach.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Benzoic acid is an organic compound with the formula C6H5COOH. It is a colorless crystalline solid that is slightly soluble in water and more soluble in organic solvents. Benzoic acid occurs naturally in various plants and serves as an intermediate in the synthesis of other chemical compounds.

In medical terms, benzoic acid and its salts (sodium benzoate, potassium benzoate) are used as preservatives in food, beverages, and cosmetics to prevent bacterial growth. They work by inhibiting the growth of bacteria, particularly gram-positive bacteria, through the disruption of their energy production processes.

Additionally, sodium benzoate is sometimes used as a treatment for hyperammonemia, a condition characterized by high levels of ammonia in the blood. In this case, sodium benzoate acts as a detoxifying agent by binding to excess ammonia and converting it into a more easily excreted compound called hippuric acid.

It is important to note that benzoic acid and its salts can cause allergic reactions or skin irritation in some individuals, particularly those with pre-existing sensitivities or conditions. As with any medication or chemical substance, it should be used under the guidance of a healthcare professional.

I'm sorry for any confusion, but "Gentisates" does not appear to be a recognized term in medical or physiological sciences. It is possible that you may have misspelled or misremembered the term. If you meant "Gentiates," then it refers to a class of enzymes (also known as beta-galactosidases) that can break down certain complex carbohydrates, such as the disaccharide melibiose into galactose and glucose. However, I would recommend double-checking the spelling or context to ensure you have the correct term, as my response is based on the assumption that "Gentiates" was the intended word.

'Alcaligenes' is a genus of gram-negative, aerobic bacteria that are commonly found in soil, water, and the respiratory and intestinal tracts of animals. These bacteria are capable of using a variety of organic compounds as their sole source of carbon and energy. Some species of Alcaligenes have been known to cause opportunistic infections in humans, particularly in individuals with weakened immune systems. However, they are not considered major human pathogens.

The name 'Alcaligenes' comes from the Latin word "alcali," meaning "alkali," and the Greek word "genos," meaning "kind" or "race." This is because many species of Alcaligenes can grow in alkaline environments with a pH above 7.

It's worth noting that while Alcaligenes species are not typically harmful to healthy individuals, they may be resistant to certain antibiotics and can cause serious infections in people with compromised immune systems. Therefore, it is important for healthcare professionals to consider the possibility of Alcaligenes infection in patients who are at risk and to choose appropriate antibiotic therapy based on laboratory testing.

Benzene is a colorless, flammable liquid with a sweet odor. It has the molecular formula C6H6 and is composed of six carbon atoms arranged in a ring, bonded to six hydrogen atoms. Benzene is an important industrial solvent and is used as a starting material in the production of various chemicals, including plastics, rubber, resins, and dyes. It is also a natural component of crude oil and gasoline.

In terms of medical relevance, benzene is classified as a human carcinogen by the International Agency for Research on Cancer (IARC) and the Environmental Protection Agency (EPA). Long-term exposure to high levels of benzene can cause various health effects, including anemia, leukemia, and other blood disorders. Occupational exposure to benzene is regulated by the Occupational Safety and Health Administration (OSHA) to protect workers from potential health hazards.

It's important to note that while benzene has legitimate uses in industry, it should be handled with care due to its known health risks. Exposure to benzene can occur through inhalation, skin contact, or accidental ingestion, so appropriate safety measures must be taken when handling this chemical.

Adipates are a group of chemical compounds that are esters of adipic acid. Adipic acid is a dicarboxylic acid with the formula (CH₂)₄(COOH)₂. Adipates are commonly used as plasticizers in the manufacture of polyvinyl chloride (PVC) products, such as pipes, cables, and flooring. They can also be found in cosmetics, personal care products, and some food additives.

Adipates are generally considered to be safe for use in consumer products, but like all chemicals, they should be used with caution and in accordance with recommended guidelines. Some adipates have been shown to have potential health effects, such as endocrine disruption and reproductive toxicity, at high levels of exposure. Therefore, it is important to follow proper handling and disposal procedures to minimize exposure.

Equilenin is an estrogen compound that is found in certain plants and is also produced synthetically. It is structurally similar to the natural estrogens produced by the human body, such as estradiol and estrone. Equilenin has been used in some forms of hormone replacement therapy and in the treatment of certain medical conditions, such as breast cancer and prostate cancer. However, its use is not as common as other synthetic estrogens due to its potential side effects and risks.

Like other estrogen compounds, equilenin works by binding to estrogen receptors in the body, which are found in various tissues including the breasts, uterus, bones, and brain. This binding action can stimulate cell growth and development, as well as regulate various physiological processes such as bone density, cholesterol levels, and mood.

It is important to note that the use of estrogen therapy, including equilenin, carries certain risks, particularly for postmenopausal women. Long-term use of estrogen therapy has been associated with an increased risk of breast cancer, endometrial cancer, stroke, and blood clots. Therefore, it should only be used under the close supervision of a healthcare provider and for the shortest duration necessary to treat the underlying medical condition.

'Comamonas' is a genus of gram-negative, aerobic, motile bacteria that are commonly found in various environments such as soil, water, and clinical specimens. The cells are typically rod-shaped and may be straight or curved. Comamonas species are capable of utilizing a wide range of organic compounds as carbon and energy sources. Some species have been associated with human infections, although they are generally considered to be of low pathogenicity.

It's worth noting that while some strains of Comamonas have been found to cause infections in humans, they are relatively rare and often occur in individuals with compromised immune systems or underlying medical conditions. Further research is needed to fully understand the role of Comamonas species in human health and disease.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Homogentisic acid is not a medical condition, but rather an organic compound that plays a role in certain metabolic processes. It is a breakdown product of the amino acid tyrosine, and is normally further metabolized by the enzyme homogentisate 1,2-dioxygenase.

In some individuals, a genetic mutation can result in a deficiency of this enzyme, leading to a condition called alkaptonuria. In alkaptonuria, homogentisic acid accumulates in the body and can cause damage to connective tissues, joints, and other organs over time. Symptoms may include dark urine, arthritis, and pigmentation of the ears and eyes. However, it is important to note that alkaptonuria is a rare condition, affecting only about 1 in 250,000 people worldwide.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

'Acinetobacter' is a genus of gram-negative, aerobic bacteria that are commonly found in the environment, including water, soil, and healthcare settings. They are known for their ability to survive in a wide range of temperatures and pH levels, as well as their resistance to many antibiotics.

Some species of Acinetobacter can cause healthcare-associated infections, particularly in patients who are hospitalized, have weakened immune systems, or have been exposed to medical devices such as ventilators or catheters. These infections can include pneumonia, bloodstream infections, wound infections, and meningitis.

Acinetobacter baumannii is one of the most common species associated with human infection and is often resistant to multiple antibiotics, making it a significant public health concern. Infections caused by Acinetobacter can be difficult to treat and may require the use of last-resort antibiotics.

Preventing the spread of Acinetobacter in healthcare settings is important and includes practices such as hand hygiene, environmental cleaning, and contact precautions for patients with known or suspected infection.

Pyrogallol is not typically considered a medical term, but it does have relevance to the field of pathology as a chemical reagent. Pyrogallol is an organic compound with the formula C6H3(OH)3. It is a type of phenol and can be used in histological stains to demonstrate the presence of certain enzymes or structures within tissue samples.

In a medical context, pyrogallol may be mentioned in pathology reports related to the use of this chemical in laboratory tests. However, it is not a condition or disease entity itself.

Brevibacterium is a genus of Gram-positive, rod-shaped bacteria that are commonly found in nature, particularly in soil, water, and various types of decaying organic matter. Some species of Brevibacterium can also be found on the skin of animals and humans, where they play a role in the production of body odor.

Brevibacterium species are known for their ability to produce a variety of enzymes that allow them to break down complex organic compounds into simpler molecules. This makes them useful in a number of industrial applications, such as the production of cheese and other fermented foods, as well as in the bioremediation of contaminated environments.

In medical contexts, Brevibacterium species are rarely associated with human disease. However, there have been occasional reports of infections caused by these bacteria, particularly in individuals with weakened immune systems or who have undergone surgical procedures. These infections can include bacteremia (bloodstream infections), endocarditis (inflammation of the heart valves), and soft tissue infections. Treatment typically involves the use of antibiotics that are effective against Gram-positive bacteria, such as vancomycin or teicoplanin.

Aromatic hydrocarbons, also known as aromatic compounds or arenes, are a class of organic compounds characterized by a planar ring structure with delocalized electrons that give them unique chemical properties. The term "aromatic" was originally used to describe their distinctive odors, but it now refers to their characteristic molecular structure and stability.

Aromatic hydrocarbons contain one or more benzene rings, which are cyclic structures consisting of six carbon atoms arranged in a planar hexagonal shape. Each carbon atom in the benzene ring is bonded to two other carbon atoms and one hydrogen atom, forming alternating double and single bonds between the carbon atoms. However, the delocalized electrons in the benzene ring are evenly distributed around the ring, leading to a unique electronic structure that imparts stability and distinctive chemical properties to aromatic hydrocarbons.

Examples of aromatic hydrocarbons include benzene, toluene, xylene, and naphthalene. These compounds have important uses in industry, but they can also pose health risks if not handled properly. Exposure to high levels of aromatic hydrocarbons has been linked to various health effects, including cancer, neurological damage, and respiratory problems.

Phenols, also known as phenolic acids or phenol derivatives, are a class of chemical compounds consisting of a hydroxyl group (-OH) attached to an aromatic hydrocarbon ring. In the context of medicine and biology, phenols are often referred to as a type of antioxidant that can be found in various foods and plants.

Phenols have the ability to neutralize free radicals, which are unstable molecules that can cause damage to cells and contribute to the development of chronic diseases such as cancer, heart disease, and neurodegenerative disorders. Some common examples of phenolic compounds include gallic acid, caffeic acid, ferulic acid, and ellagic acid, among many others.

Phenols can also have various pharmacological activities, including anti-inflammatory, antimicrobial, and analgesic effects. However, some phenolic compounds can also be toxic or irritating to the body in high concentrations, so their use as therapeutic agents must be carefully monitored and controlled.

"Ralstonia" is a genus of gram-negative, aerobic bacteria that are commonly found in soil and water. Some species of Ralstonia are known to cause healthcare-associated infections, particularly in patients with compromised immune systems. These infections can include pneumonia, bacteremia, and meningitis. One notable species, Ralstonia solanacearum, is a plant pathogen that causes bacterial wilt in a wide range of plants.

Ralstonia bacteria are known for their ability to form biofilms, which can make them resistant to antibiotics and disinfectants. They can also survive in harsh environments, such as those with low nutrient availability and high salt concentrations. These characteristics make Ralstonia a challenging organism to control in healthcare settings and in the environment.

It's important to note that while Ralstonia bacteria can cause serious infections, they are not typically considered highly virulent or contagious. Instead, infections are often associated with contaminated medical equipment or solutions, such as intravenous fluids, respiratory therapy equipment, and contaminated water sources. Proper infection control practices, including environmental cleaning and disinfection, can help prevent the spread of Ralstonia in healthcare settings.

Hydroquinones are a type of chemical compound that belong to the group of phenols. In a medical context, hydroquinones are often used as topical agents for skin lightening and the treatment of hyperpigmentation disorders such as melasma, age spots, and freckles. They work by inhibiting the enzyme tyrosinase, which is necessary for the production of melanin, the pigment that gives skin its color.

It's important to note that hydroquinones can have side effects, including skin irritation, redness, and contact dermatitis. Prolonged use or high concentrations may also cause ochronosis, a condition characterized by blue-black discoloration of the skin. Therefore, they should be used under the supervision of a healthcare provider and for limited periods of time.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

I'm sorry for any confusion, but "Planococcus bacteria" is not a specific type of bacterium that has a widely accepted medical definition. The genus Planococcus belongs to the family Planococcaceae and includes several species of Gram-positive, catalase-positive, aerobic or facultatively anaerobic cocci. These bacteria are typically found in various environments such as soil, water, and food. While some species can cause opportunistic infections in humans, they are not commonly associated with significant medical issues.

If you're looking for information on a specific bacterium or medical condition, please provide more details so I can give you a more accurate and helpful response.

In the context of medicine, iron is an essential micromineral and key component of various proteins and enzymes. It plays a crucial role in oxygen transport, DNA synthesis, and energy production within the body. Iron exists in two main forms: heme and non-heme. Heme iron is derived from hemoglobin and myoglobin in animal products, while non-heme iron comes from plant sources and supplements.

The recommended daily allowance (RDA) for iron varies depending on age, sex, and life stage:

* For men aged 19-50 years, the RDA is 8 mg/day
* For women aged 19-50 years, the RDA is 18 mg/day
* During pregnancy, the RDA increases to 27 mg/day
* During lactation, the RDA for breastfeeding mothers is 9 mg/day

Iron deficiency can lead to anemia, characterized by fatigue, weakness, and shortness of breath. Excessive iron intake may result in iron overload, causing damage to organs such as the liver and heart. Balanced iron levels are essential for maintaining optimal health.

Hydroxylation is a biochemical process that involves the addition of a hydroxyl group (-OH) to a molecule, typically a steroid or xenobiotic compound. This process is primarily catalyzed by enzymes called hydroxylases, which are found in various tissues throughout the body.

In the context of medicine and biochemistry, hydroxylation can have several important functions:

1. Drug metabolism: Hydroxylation is a common way that the liver metabolizes drugs and other xenobiotic compounds. By adding a hydroxyl group to a drug molecule, it becomes more polar and water-soluble, which facilitates its excretion from the body.
2. Steroid hormone biosynthesis: Hydroxylation is an essential step in the biosynthesis of many steroid hormones, including cortisol, aldosterone, and the sex hormones estrogen and testosterone. These hormones are synthesized from cholesterol through a series of enzymatic reactions that involve hydroxylation at various steps.
3. Vitamin D activation: Hydroxylation is also necessary for the activation of vitamin D in the body. In order to become biologically active, vitamin D must undergo two successive hydroxylations, first in the liver and then in the kidneys.
4. Toxin degradation: Some toxic compounds can be rendered less harmful through hydroxylation. For example, phenol, a toxic compound found in cigarette smoke and some industrial chemicals, can be converted to a less toxic form through hydroxylation by enzymes in the liver.

Overall, hydroxylation is an important biochemical process that plays a critical role in various physiological functions, including drug metabolism, hormone biosynthesis, and toxin degradation.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Parabens are a group of synthetic preservatives that have been widely used in the cosmetics and personal care product industry since the 1920s. They are effective at inhibiting the growth of bacteria, yeasts, and molds, which helps to prolong the shelf life of these products. Parabens are commonly found in shampoos, conditioners, lotions, creams, deodorants, and other personal care items.

The most commonly used parabens include methylparaben, ethylparaben, propylparaben, and butylparaben. These compounds are often used in combination to provide broad-spectrum protection against microbial growth. Parabens work by penetrating the cell wall of microorganisms and disrupting their metabolism, which prevents them from multiplying.

Parabens have been approved for use as preservatives in cosmetics and personal care products by regulatory agencies around the world, including the U.S. Food and Drug Administration (FDA) and the European Commission's Scientific Committee on Consumer Safety (SCCS). However, there has been some controversy surrounding their safety, with concerns raised about their potential to mimic the hormone estrogen in the body and disrupt normal endocrine function.

While some studies have suggested that parabens may be associated with health problems such as breast cancer and reproductive toxicity, the evidence is not conclusive, and more research is needed to fully understand their potential risks. In response to these concerns, many manufacturers have begun to remove parabens from their products or offer paraben-free alternatives. It's important to note that while avoiding parabens may be a personal preference for some individuals, there is currently no scientific consensus on the need to avoid them entirely.

Polychlorinated biphenyls (PCBs) are a group of man-made organic chemicals consisting of 209 individual compounds, known as congeners. The congeners are formed by the combination of two benzene rings with varying numbers and positions of chlorine atoms.

PCBs were widely used in electrical equipment, such as transformers and capacitors, due to their non-flammability, chemical stability, and insulating properties. They were also used in other applications, including coolants and lubricants, plasticizers, pigments, and copy oils. Although PCBs were banned in many countries in the 1970s and 1980s due to their toxicity and environmental persistence, they still pose significant health and environmental concerns because of their continued presence in the environment and in products manufactured before the ban.

PCBs are known to have various adverse health effects on humans and animals, including cancer, immune system suppression, reproductive and developmental toxicity, and endocrine disruption. They can also cause neurological damage and learning and memory impairment in both human and animal populations. PCBs are highly persistent in the environment and can accumulate in the food chain, leading to higher concentrations in animals at the top of the food chain, including humans.

'Gram-Negative Aerobic Rods and Cocci' are categorizations used in microbiology to describe certain types of bacteria based on their shape and staining characteristics.

1. Gram-Negative: This refers to the bacterial cells that do not retain crystal violet dye during the Gram staining procedure. Instead, they take up a counterstain such as safranin or fuchsin, making them appear pink or red under a microscope. Gram-negative bacteria possess an outer membrane in addition to the inner cytoplasmic membrane, which contains lipopolysaccharides (endotoxins) that can cause severe reactions and illnesses in humans. Examples of gram-negative bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.

2. Aerobic: This term describes organisms that require oxygen to grow and metabolize. Aerobic bacteria use molecular oxygen as the final electron acceptor in their respiratory chain, which allows them to generate more energy compared to anaerobic bacteria. Many gram-negative bacteria are aerobic or facultatively anaerobic, meaning they can grow with or without oxygen.

3. Rods and Cocci: These terms describe the shape of bacterial cells. Rods (bacilli) are elongated, rod-shaped bacteria, while cocci are round or oval-shaped bacteria. Examples of gram-negative aerobic rods include Pseudomonas aeruginosa and Escherichia coli, while Neisseria meningitidis and Moraxella catarrhalis are examples of gram-negative aerobic cocci.

In summary, 'Gram-Negative Aerobic Rods and Cocci' is a collective term for bacteria that do not retain crystal violet during Gram staining, require oxygen to grow, and have either rod or coccus shapes. These bacteria can cause various infections and diseases in humans and are often resistant to multiple antibiotics.

Ferredoxins are iron-sulfur proteins that play a crucial role in electron transfer reactions in various biological systems, particularly in photosynthesis and nitrogen fixation. They contain one or more clusters of iron and sulfur atoms (known as the iron-sulfur cluster) that facilitate the movement of electrons between different molecules during metabolic processes.

Ferredoxins have a relatively simple structure, consisting of a polypeptide chain that binds to the iron-sulfur cluster. This simple structure allows ferredoxins to participate in a wide range of redox reactions and makes them versatile electron carriers in biological systems. They can accept electrons from various donors and transfer them to different acceptors, depending on the needs of the cell.

In photosynthesis, ferredoxins play a critical role in the light-dependent reactions by accepting electrons from photosystem I and transferring them to NADP+, forming NADPH. This reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is then used in the Calvin cycle for carbon fixation and the production of glucose.

In nitrogen fixation, ferredoxins help transfer electrons to the nitrogenase enzyme complex, which reduces atmospheric nitrogen gas (N2) into ammonia (NH3), making it available for assimilation by plants and other organisms.

Overall, ferredoxins are essential components of many metabolic pathways, facilitating electron transfer and energy conversion in various biological systems.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Cresols are a group of chemical compounds that are phenolic derivatives of benzene, consisting of methyl substituted cresidines. They have the formula C6H4(OH)(\_3CH3). There are three isomers of cresol, depending on the position of the methyl group: ortho-cresol (m-cresol), meta-cresol (p-cresol), and para-cresol (o-cresol). Cresols are used as disinfectants, antiseptics, and preservatives in various industrial and commercial applications. They have a characteristic odor and are soluble in alcohol and ether. In medical terms, cresols may be used as topical antiseptic agents, but they can also cause skin irritation and sensitization.

Burkholderiaceae is a family of gram-negative, aerobic bacteria within the order Burkholderiales. This family includes several genera of medically important organisms, such as Burkholderia and Bordetella. Many species in this family are environmental organisms that can be found in soil, water, and associated with plants. However, some members of this family are also known to cause various types of human infections.

For example, Burkholderia cepacia complex (BCC) is a group of closely related species that can cause serious respiratory infections in people with weakened immune systems or chronic lung diseases such as cystic fibrosis. B. pseudomallei and B. mallei are two other species in this family that can cause severe and potentially life-threatening infections, including melioidosis and glanders, respectively.

Bordetella species, on the other hand, are known to cause respiratory tract infections in humans, such as whooping cough (caused by B. pertussis) and kennel cough (caused by B. bronchiseptica).

Overall, Burkholderiaceae is a diverse family of bacteria that includes both environmental organisms and important human pathogens. Accurate identification and characterization of these organisms is essential for appropriate diagnosis and treatment of infections caused by members of this family.

3-Hydroxyanthranilic acid is an intermediate metabolite in the catabolism (breakdown) of tryptophan, an essential amino acid. It is formed from the oxidation of 3-hydroxykynurenine by the enzyme kynureninase. Further breakdown of 3-hydroxyanthranilic acid can lead to the formation of various other metabolites, including quinolinic acid and picolinic acid, which are involved in the synthesis of nicotinamide adenine dinucleotide (NAD+), a coenzyme that plays a crucial role in cellular metabolism.

Abnormal accumulation or dysregulation of 3-hydroxyanthranilic acid has been implicated in several pathological conditions, including neurodegenerative disorders and certain types of cancer. However, more research is needed to fully understand the role of this metabolite in human health and disease.

Gamma-Butyrobetaine Dioxygenase (GBD, or also known as ETHE1) is an enzyme that catalyzes the conversion of gamma-butyrobetaine to succinate and hydrogen peroxide in the final step of L-carnitine biosynthesis. This mitochondrial matrix enzyme requires iron (Fe2+) as a cofactor for its activity. Deficiency or mutations in this enzyme can lead to a rare genetic disorder called "ethylmalonic aciduria and combined oxidative phosphorylation deficiency type 6" (ETHE1), which is characterized by the accumulation of ethylmalonic acid, gamma-butyrobetaine, and other organic acids in body fluids.

Arthrobacter is a genus of Gram-positive, catalase-positive, aerobic bacteria that are commonly found in soil and water. These bacteria are known for their ability to degrade various organic compounds, including hydrocarbons, and are often used in bioremediation applications. The cells of Arthrobacter species are typically rod-shaped and may appear slightly curved or irregular. They can form dormant structures called exospores that allow them to survive in harsh environments. Arthrobacter species are not considered human pathogens and do not cause disease in humans.

Alkaptonuria is a rare inherited metabolic disorder characterized by the accumulation of homogentisic acid in various tissues and body fluids due to a deficiency in the enzyme homogentisate 1,2-dioxygenase. This enzyme deficiency leads to an inability to break down tyrosine and phenylalanine amino acids properly, causing their byproduct, homogentisic acid, to build up in the body.

The accumulation of homogentisic acid can result in several clinical manifestations:

1. Dark urine: Homogentisic acid oxidizes and turns dark brown or black when exposed to air, giving the condition its name "alkaptonuria," derived from Greek words 'alos' (meaning 'strange') and 'kapto' (meaning 'I become black').
2. Arthritis: Over time, homogentisic acid deposits in connective tissues, particularly cartilage, causing damage and leading to a form of arthritis called ochronosis. This can result in stiffness, pain, and limited mobility in affected joints.
3. Heart problems: Homogentisic acid accumulation in heart valves may lead to thickening and calcification, potentially resulting in heart disease and valve dysfunction.
4. Kidney stones: The accumulation of homogentisic acid can form kidney stones, which can cause pain and potential kidney damage if they become lodged in the urinary tract.

There is no cure for alkaptonuria; however, treatment aims to manage symptoms and slow disease progression. A low-protein diet may help reduce tyrosine and phenylalanine intake, while increased hydration can help prevent kidney stone formation. Nitisinone, a medication that inhibits the production of homogentisic acid, has shown promise in managing alkaptonuria symptoms. Regular monitoring and early intervention are crucial to minimize complications associated with this rare condition.

Xylenes are aromatic hydrocarbons that are often used as solvents in the industrial field. They are composed of two benzene rings with methyl side groups (-CH3) and can be found as a mixture of isomers: ortho-xylene, meta-xylene, and para-xylene.

In a medical context, xylenes may be relevant due to their potential for exposure in occupational settings or through environmental contamination. Short-term exposure to high levels of xylenes can cause irritation of the eyes, nose, throat, and lungs, as well as symptoms such as headache, dizziness, and nausea. Long-term exposure has been linked to neurological effects, including memory impairment, hearing loss, and changes in behavior and mood.

It is worth noting that xylenes are not typically considered a direct medical diagnosis, but rather a potential exposure hazard or environmental contaminant that may have health impacts.

Alpha-ketoglutaric acid, also known as 2-oxoglutarate, is not an acid in the traditional sense but is instead a key molecule in the Krebs cycle (citric acid cycle), which is a central metabolic pathway involved in cellular respiration. Alpha-ketoglutaric acid is a crucial intermediate in the process of converting carbohydrates, fats, and proteins into energy through oxidation. It plays a vital role in amino acid synthesis and the breakdown of certain amino acids. Additionally, it serves as an essential cofactor for various enzymes involved in numerous biochemical reactions within the body. Any medical conditions or disorders related to alpha-ketoglutaric acid would typically be linked to metabolic dysfunctions or genetic defects affecting the Krebs cycle.

Biphenyl compounds, also known as diphenyls, are a class of organic compounds consisting of two benzene rings linked by a single carbon-carbon bond. The chemical structure of biphenyl compounds can be represented as C6H5-C6H5. These compounds are widely used in the industrial sector, including as intermediates in the synthesis of other chemicals, as solvents, and in the production of plastics and dyes. Some biphenyl compounds also have biological activity and can be found in natural products. For example, some plant-derived compounds that belong to this class have been shown to have anti-inflammatory, antioxidant, and anticancer properties.

Salicylates are a group of chemicals found naturally in certain fruits, vegetables, and herbs, as well as in some medications like aspirin. They are named after willow bark's active ingredient, salicin, from which they were derived. Salicylates have anti-inflammatory, analgesic (pain-relieving), and antipyretic (fever-reducing) properties.

In a medical context, salicylates are often used to relieve pain, reduce inflammation, and lower fever. High doses of salicylates can have blood thinning effects and may be used in the prevention of strokes or heart attacks. Commonly prescribed salicylate medications include aspirin, methylsalicylate, and sodium salicylate.

It is important to note that some people may have allergic reactions to salicylates, and overuse can lead to side effects such as stomach ulcers, ringing in the ears, and even kidney or liver damage.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Intramolecular lyases are a type of enzyme that catalyzes the breakdown of a molecule by removing a group of atoms from within the same molecule, creating a new chemical bond in the process. These enzymes specifically cleave a molecule through an intramolecular mechanism, meaning they act on a single substrate molecule. Intramolecular lyases are involved in various biological processes, such as DNA replication, repair, and recombination. They play a crucial role in maintaining the integrity of genetic material by removing or adding specific groups of atoms to DNA or RNA molecules.

Ferrous compounds are inorganic substances that contain iron (Fe) in its +2 oxidation state. The term "ferrous" is derived from the Latin word "ferrum," which means iron. Ferrous compounds are often used in medicine, particularly in the treatment of iron-deficiency anemia due to their ability to provide bioavailable iron to the body.

Examples of ferrous compounds include ferrous sulfate, ferrous gluconate, and ferrous fumarate. These compounds are commonly found in dietary supplements and multivitamins. Ferrous sulfate is one of the most commonly used forms of iron supplementation, as it has a high iron content and is relatively inexpensive.

It's important to note that ferrous compounds can be toxic in large doses, so they should be taken under the guidance of a healthcare professional. Overdose can lead to symptoms such as nausea, vomiting, diarrhea, abdominal pain, and potentially fatal consequences if left untreated.

Toluidines are a group of organic compounds that consist of a benzene ring with two methyl groups and an amine group. They are derivatives of toluene, hence the name. There are three isomers of toluidines, depending on the position of the amino group: ortho-toluidine, meta-toluidine, and para-toluidine.

In a medical context, toluidines may be used as chemical reagents for diagnostic tests or in research. For example, they have been used in histology to stain tissues for microscopic examination. However, exposure to toluidines has been associated with an increased risk of bladder cancer, so appropriate safety precautions should be taken when handling these chemicals.

Enzyme induction is a process by which the activity or expression of an enzyme is increased in response to some stimulus, such as a drug, hormone, or other environmental factor. This can occur through several mechanisms, including increasing the transcription of the enzyme's gene, stabilizing the mRNA that encodes the enzyme, or increasing the translation of the mRNA into protein.

In some cases, enzyme induction can be a beneficial process, such as when it helps the body to metabolize and clear drugs more quickly. However, in other cases, enzyme induction can have negative consequences, such as when it leads to the increased metabolism of important endogenous compounds or the activation of harmful procarcinogens.

Enzyme induction is an important concept in pharmacology and toxicology, as it can affect the efficacy and safety of drugs and other xenobiotics. It is also relevant to the study of drug interactions, as the induction of one enzyme by a drug can lead to altered metabolism and effects of another drug that is metabolized by the same enzyme.

Ortho-Aminobenzoates are chemical compounds that contain a benzene ring substituted with an amino group in the ortho position and an ester group in the form of a benzoate. They are often used as pharmaceutical intermediates, plastic additives, and UV stabilizers. In medical contexts, one specific ortho-aminobenzoate, para-aminosalicylic acid (PABA), is an antibiotic used in the treatment of tuberculosis. However, it's important to note that "ortho-aminobenzoates" in general do not have a specific medical definition and can refer to any compound with this particular substitution pattern on a benzene ring.

Vanillic Acid is not a medical term, but it is a chemical compound with the name 4-hydroxy-3-methoxybenzoic acid. It is a type of phenolic acid that occurs naturally in some foods and plants, including vanilla beans, pineapples, and certain types of mushrooms.

Vanillic Acid has been studied for its potential antioxidant, anti-inflammatory, and neuroprotective properties. However, it is not considered a medication or a medical treatment and does not have a specific medical definition.

Biotransformation is the metabolic modification of a chemical compound, typically a xenobiotic (a foreign chemical substance found within an living organism), by a biological system. This process often involves enzymatic conversion of the parent compound to one or more metabolites, which may be more or less active, toxic, or mutagenic than the original substance.

In the context of pharmacology and toxicology, biotransformation is an important aspect of drug metabolism and elimination from the body. The liver is the primary site of biotransformation, but other organs such as the kidneys, lungs, and gastrointestinal tract can also play a role.

Biotransformation can occur in two phases: phase I reactions involve functionalization of the parent compound through oxidation, reduction, or hydrolysis, while phase II reactions involve conjugation of the metabolite with endogenous molecules such as glucuronic acid, sulfate, or acetate to increase its water solubility and facilitate excretion.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

I'm sorry for any confusion, but "Sulfanilic Acids" is not a recognized medical term or a specific medical condition. Sulfanilic acid is a chemical compound with the formula H2SO3NCH2COOH. It is used in various industrial applications such as dye and drug synthesis, but it is not a term that would be commonly used in medical contexts.

If you have any questions related to medical topics or conditions, I'd be happy to help! Please provide more information so I can give you a relevant and accurate response.

Phenanthrenes are not typically defined in a medical context, but they are a class of organic compounds that have a polycyclic aromatic hydrocarbon structure consisting of three benzene rings fused together. They can be found in some natural products and have been studied for their potential pharmacological properties. Some phenanthrenes have shown anti-inflammatory, antioxidant, and cytotoxic activities, among others. However, more research is needed to fully understand their therapeutic potential and safety profile.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Iron-sulfur proteins are a group of metalloproteins that contain iron and sulfur atoms in their active centers. These clusters of iron and sulfur atoms, also known as iron-sulfur clusters, can exist in various forms, including Fe-S, 2Fe-2S, 3Fe-4S, and 4Fe-4S structures. The iron atoms are coordinated to the protein through cysteine residues, while the sulfur atoms can be in the form of sulfide (S2-) or sulfane (-S-).

These proteins play crucial roles in many biological processes, such as electron transfer, redox reactions, and enzyme catalysis. They are found in various organisms, from bacteria to humans, and are involved in a wide range of cellular functions, including energy metabolism, photosynthesis, nitrogen fixation, and DNA repair.

Iron-sulfur proteins can be classified into several categories based on their structure and function, such as ferredoxins, Rieske proteins, high-potential iron-sulfur proteins (HiPIPs), and radical SAM enzymes. Dysregulation or mutations in iron-sulfur protein genes have been linked to various human diseases, including neurodegenerative disorders, cancer, and mitochondrial disorders.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Naphthalene is not typically referred to as a medical term, but it is a chemical compound with the formula C10H8. It is a white crystalline solid that is aromatic and volatile, and it is known for its distinctive mothball smell. In a medical context, naphthalene is primarily relevant as a potential toxin or irritant.

Naphthalene can be found in some chemical products, such as mothballs and toilet deodorant blocks. Exposure to high levels of naphthalene can cause symptoms such as nausea, vomiting, diarrhea, and headaches. Long-term exposure has been linked to anemia and damage to the liver and nervous system.

In addition, naphthalene is a known environmental pollutant that can be found in air, water, and soil. It is produced by the combustion of fossil fuels and is also released from some industrial processes. Naphthalene has been shown to have toxic effects on aquatic life and may pose a risk to human health if exposure levels are high enough.

Benzene derivatives are chemical compounds that are derived from benzene, which is a simple aromatic hydrocarbon with the molecular formula C6H6. Benzene has a planar, hexagonal ring structure, and its derivatives are formed by replacing one or more of the hydrogen atoms in the benzene molecule with other functional groups.

Benzene derivatives have a wide range of applications in various industries, including pharmaceuticals, dyes, plastics, and explosives. Some common examples of benzene derivatives include toluene, xylene, phenol, aniline, and nitrobenzene. These compounds can have different physical and chemical properties depending on the nature and position of the substituents attached to the benzene ring.

It is important to note that some benzene derivatives are known to be toxic or carcinogenic, and their production, use, and disposal must be carefully regulated to ensure safety and protect public health.

Hydroxyestrones are metabolites of estrogens, which are female sex hormones. They are formed in the liver and other tissues when estrogens are broken down. Hydroxyestrones have weak estrogenic activity and can also act as antioxidants. Some hydroxyestrones, such as 2-hydroxyestrone and 4-hydroxyestrone, have been studied for their potential role in cancer development and progression, particularly hormone-dependent cancers like breast cancer. However, more research is needed to fully understand their effects on human health.

Quinolinic acid is a metabolite found in the human body, produced during the metabolism of tryptophan, an essential amino acid. It is a component of the kynurenine pathway and acts as a neuroexcitatory chemical in the brain. In excessive amounts, quinolinic acid can lead to neurotoxicity, causing damage to neurons and contributing to several neurological disorders such as Huntington's disease, Alzheimer's disease, Parkinson's disease, AIDS-dementia complex, and multiple sclerosis. It also plays a role in the pathogenesis of psychiatric conditions like schizophrenia and major depressive disorder.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

"Pseudomonas stutzeri" is a gram-negative, rod-shaped bacterium that is widely found in various environments such as soil, water, and plants. It is a non-fermentative, motile bacterium that can survive in diverse conditions due to its metabolic versatility. While it is not typically considered a human pathogen, there have been reports of P. stutzeri causing infections in immunocompromised individuals or those with underlying medical conditions. These infections can include respiratory tract infections, urinary tract infections, and bacteremia. However, such cases are relatively rare, and the bacterium is generally considered to have low pathogenic potential for humans.

"Delftia acidovorans" is a species of gram-negative, motile, aerobic bacteria that is commonly found in various environments such as soil, water, and clinical settings. It is a rod-shaped bacterium that is known to be able to degrade a wide range of organic compounds, including aromatic hydrocarbons and other pollutants.

In clinical settings, "Delftia acidovorans" has been isolated from various types of human infections, including respiratory tract infections, urinary tract infections, and bacteremia. However, it is considered to be a rare cause of infection, and its clinical significance is not well understood.

It's worth noting that the genus "Delftia" was previously classified as part of the genus "Comamonas," but was reclassified based on genetic and biochemical evidence. Therefore, some older literature may refer to this bacterium as "Comamonas acidovorans."

Electron Spin Resonance (ESR) Spectroscopy, also known as Electron Paramagnetic Resonance (EPR) Spectroscopy, is a technique used to investigate materials with unpaired electrons. It is based on the principle of absorption of energy by the unpaired electrons when they are exposed to an external magnetic field and microwave radiation.

In this technique, a sample is placed in a magnetic field and microwave radiation is applied. The unpaired electrons in the sample absorb energy and change their spin state when the energy of the microwaves matches the energy difference between the spin states. This absorption of energy is recorded as a function of the magnetic field strength, producing an ESR spectrum.

ESR spectroscopy can provide information about the number, type, and behavior of unpaired electrons in a sample, as well as the local environment around the electron. It is widely used in physics, chemistry, and biology to study materials such as free radicals, transition metal ions, and defects in solids.

Chlorophenols are a group of chemical compounds that consist of a phenol ring substituted with one or more chlorine atoms. They are widely used as pesticides, disinfectants, and preservatives. Some common examples of chlorophenols include pentachlorophenol, trichlorophenol, and dichlorophenol.

Chlorophenols can be harmful to human health and the environment. They have been linked to a variety of adverse health effects, including skin and eye irritation, respiratory problems, damage to the liver and kidneys, and an increased risk of cancer. Exposure to chlorophenols can occur through contact with contaminated soil, water, or air, as well as through ingestion or absorption through the skin.

It is important to handle chlorophenols with care and to follow proper safety precautions when using them. If you are concerned about exposure to chlorophenols, it is recommended that you speak with a healthcare professional for further guidance.

'Acinetobacter calcoaceticus' is a species of gram-negative, aerobic bacteria that is commonly found in the environment, such as in soil and water. It is a non-motile, oxidase-negative organism that can form biofilms and has the ability to survive in a wide range of temperatures and pH levels.

While 'Acinetobacter calcoaceticus' itself is generally considered to be a low-virulence bacterium, it is closely related to other species within the genus 'Acinetobacter' that are known to cause healthcare-associated infections, particularly in immunocompromised patients or those with underlying medical conditions. These infections can include pneumonia, bloodstream infections, meningitis, and wound infections.

It is important to note that the identification of 'Acinetobacter calcoaceticus' can be challenging due to its tendency to form mixed cultures with other 'Acinetobacter' species, as well as its ability to undergo genetic changes that can make it difficult to distinguish from other members of the genus. Accurate identification and antimicrobial susceptibility testing are critical for appropriate treatment and infection control measures.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

3,4-Dihydroxyphenylacetic Acid (3,4-DOPAC) is a major metabolite of dopamine, which is a neurotransmitter in the brain. Dopamine is metabolized by the enzyme monoamine oxidase to form dihydroxyphenylacetaldehyde, which is then further metabolized to 3,4-DOPAC by the enzyme aldehyde dehydrogenase.

3,4-DOPAC is found in the urine and can be used as a marker for dopamine turnover in the brain. Changes in the levels of 3,4-DOPAC have been associated with various neurological disorders such as Parkinson's disease and schizophrenia. Additionally, 3,4-DOPAC has been shown to have antioxidant properties and may play a role in protecting against oxidative stress in the brain.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Burkholderia cepacia is a gram-negative, motile bacillus that is commonly found in the environment, particularly in water and soil. It is a conditional pathogen, meaning it can cause infection in individuals with weakened immune systems or underlying lung conditions such as cystic fibrosis.

Infections caused by B. cepacia can be difficult to treat due to its resistance to many antibiotics. The bacteria can colonize the lungs and cause a chronic respiratory infection that can lead to decline in lung function, increased frequency of exacerbations, and even death in some cases. It is also associated with outbreaks in healthcare settings, particularly in patients receiving respiratory therapy or using contaminated medical equipment.

It's important to note that B. cepacia is not typically considered a community-acquired pathogen and is not commonly associated with typical pneumonia or other respiratory infections in healthy individuals.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Hydrolases are a class of enzymes that help facilitate the breakdown of various types of chemical bonds through a process called hydrolysis, which involves the addition of water. These enzymes catalyze the cleavage of bonds in substrates by adding a molecule of water, leading to the formation of two or more smaller molecules.

Hydrolases play a crucial role in many biological processes, including digestion, metabolism, and detoxification. They can act on a wide range of substrates, such as proteins, lipids, carbohydrates, and nucleic acids, breaking them down into smaller units that can be more easily absorbed or utilized by the body.

Examples of hydrolases include:

1. Proteases: enzymes that break down proteins into smaller peptides or amino acids.
2. Lipases: enzymes that hydrolyze lipids, such as triglycerides, into fatty acids and glycerol.
3. Amylases: enzymes that break down complex carbohydrates, like starches, into simpler sugars, such as glucose.
4. Nucleases: enzymes that cleave nucleic acids, such as DNA or RNA, into smaller nucleotides or oligonucleotides.
5. Phosphatases: enzymes that remove phosphate groups from various substrates, including proteins and lipids.
6. Esterases: enzymes that hydrolyze ester bonds in a variety of substrates, such as those found in some drugs or neurotransmitters.

Hydrolases are essential for maintaining proper cellular function and homeostasis, and their dysregulation can contribute to various diseases and disorders.

Beta-Carotene 15,15'-Monooxygenase is an enzyme that catalyzes the conversion of beta-carotene to retinal, which is a form of vitamin A. This enzyme adds a single oxygen atom to the beta-carotene molecule at the 15,15' position, creating two molecules of retinal.

Retinal is an essential nutrient that plays a critical role in vision, immune function, and cell growth and differentiation. Deficiency in vitamin A can lead to various health issues, including night blindness, impaired immunity, and growth retardation.

Beta-Carotene 15,15'-Monooxygenase is primarily found in the intestinal mucosa of humans and other mammals, where it helps convert dietary beta-carotene into a usable form of vitamin A. This enzyme is also present in some bacteria and fungi, where it plays a similar role in their metabolism of carotenoids.

Oxygen isotopes are different forms or varieties of the element oxygen that have the same number of protons in their atomic nuclei, which is 8, but a different number of neutrons. The most common oxygen isotopes are oxygen-16 (^{16}O), which contains 8 protons and 8 neutrons, and oxygen-18 (^{18}O), which contains 8 protons and 10 neutrons.

The ratio of these oxygen isotopes can vary in different substances, such as water molecules, and can provide valuable information about the origins and history of those substances. For example, scientists can use the ratio of oxygen-18 to oxygen-16 in ancient ice cores or fossilized bones to learn about past climate conditions or the diets of ancient organisms.

In medical contexts, oxygen isotopes may be used in diagnostic tests or treatments, such as positron emission tomography (PET) scans, where a radioactive isotope of oxygen (such as oxygen-15) is introduced into the body and emits positrons that can be detected by specialized equipment to create detailed images of internal structures.

Enzyme reactivators are substances or compounds that restore the activity of an enzyme that has been inhibited or inactivated. This can occur due to various reasons such as exposure to certain chemicals, oxidation, or heavy metal ions. Enzyme reactivators work by binding to the enzyme and reversing the effects of the inhibitor or promoting the repair of any damage caused.

One example of an enzyme reactivator is methionine sulfoxide reductase (Msr), which can reduce oxidized methionine residues in proteins, thereby restoring their function. Another example is 2-phenylethynesulfonamide (PESNA), which has been shown to reactivate the enzyme parkinsonism-associated deglycase (DJ-1) that is mutated in some cases of familial Parkinson's disease.

It is important to note that not all enzyme inhibitors can be reversed by reactivators, and the development of specific reactivators for particular enzymes is an active area of research with potential therapeutic applications.

Tyrosinemia is a rare genetic disorder that affects the way the body metabolizes the amino acid tyrosine, which is found in many protein-containing foods. There are three types of tyrosinemia, but type I, also known as hepatorenal tyrosinemia or Hawkins' syndrome, is the most severe and common form.

Tyrosinemia type I is caused by a deficiency of the enzyme fumarylacetoacetase, which is necessary for the breakdown of tyrosine in the body. As a result, toxic intermediates accumulate and can cause damage to the liver, kidneys, and nervous system. Symptoms of tyrosinemia type I may include failure to thrive, vomiting, diarrhea, abdominal pain, jaundice, and mental developmental delays.

If left untreated, tyrosinemia type I can lead to serious complications such as liver cirrhosis, liver cancer, kidney damage, and neurological problems. Treatment typically involves a low-tyrosine diet, medication to reduce tyrosine production, and sometimes liver transplantation. Early diagnosis and treatment are essential for improving outcomes in individuals with tyrosinemia type I.

Naphthols are chemical compounds that consist of a naphthalene ring (a polycyclic aromatic hydrocarbon made up of two benzene rings) substituted with a hydroxyl group (-OH). They can be classified as primary or secondary naphthols, depending on whether the hydroxyl group is directly attached to the naphthalene ring (primary) or attached through a carbon atom (secondary). Naphthols are important intermediates in the synthesis of various chemical and pharmaceutical products. They have been used in the production of azo dyes, antioxidants, and pharmaceuticals such as analgesics and anti-inflammatory agents.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

2,4-Dichlorophenoxyacetic acid (2,4-D) is a type of synthetic auxin, which is a plant growth regulator. It is a white crystalline powder with a sour taste and mild characteristic odor. It is soluble in water, alcohol, and acetone, and has a melting point of 130-140°C.

2,4-D is a widely used herbicide that is primarily used to control broadleaf weeds in a variety of settings, including agriculture, lawns, and golf courses. It works by mimicking the natural plant hormone auxin, which causes uncontrolled growth in susceptible plants leading to their death.

In medicine, 2,4-D has been used experimentally as a cytotoxic agent for the treatment of cancer, but its use is not widespread due to its toxicity and potential carcinogenicity. It is important to handle this chemical with care, as it can cause skin and eye irritation, and prolonged exposure can lead to more serious health effects.

Stereoisomerism is a type of isomerism (structural arrangement of atoms) in which molecules have the same molecular formula and sequence of bonded atoms, but differ in the three-dimensional orientation of their atoms in space. This occurs when the molecule contains asymmetric carbon atoms or other rigid structures that prevent free rotation, leading to distinct spatial arrangements of groups of atoms around a central point. Stereoisomers can have different chemical and physical properties, such as optical activity, boiling points, and reactivities, due to differences in their shape and the way they interact with other molecules.

There are two main types of stereoisomerism: enantiomers (mirror-image isomers) and diastereomers (non-mirror-image isomers). Enantiomers are pairs of stereoisomers that are mirror images of each other, but cannot be superimposed on one another. Diastereomers, on the other hand, are non-mirror-image stereoisomers that have different physical and chemical properties.

Stereoisomerism is an important concept in chemistry and biology, as it can affect the biological activity of molecules, such as drugs and natural products. For example, some enantiomers of a drug may be active, while others are inactive or even toxic. Therefore, understanding stereoisomerism is crucial for designing and synthesizing effective and safe drugs.

"Maleate" is not a medical term in and of itself, but it is a chemical compound that can be found in some medications. Maleic acid or its salts (maleates) are used as a keratolytic agent in topical medications, which means they help to break down and remove dead skin cells. They can also be used as a preservative or a buffering agent in various pharmaceutical preparations.

Maleic acid is a type of organic compound known as a dicarboxylic acid, which contains two carboxyl groups. In the case of maleic acid, these carboxyl groups are located on a single carbon atom, which makes it a cis-conjugated diacid. This structural feature gives maleic acid unique chemical properties that can be useful in various pharmaceutical and industrial applications.

It's worth noting that maleic acid and its salts should not be confused with "maleate" as a gender-specific term, which refers to something related to or characteristic of males.

I apologize, but there seems to be a misunderstanding. "Soil microbiology" is not a medical term; rather, it is a branch of microbiology that deals with the study of microorganisms in soil. It involves understanding the diversity, ecology, and biochemistry of bacteria, fungi, algae, protozoa, and other microscopic life forms found in soil. This field has applications in agriculture, environmental science, and waste management but is not directly related to medical definitions or human health.

Trichloroethylene (TCE) is a volatile, colorless liquid with a chloroform-like odor. In the medical field, it is primarily used as a surgical anesthetic and an analgesic. However, its use in medicine has significantly decreased due to the availability of safer alternatives.

In a broader context, TCE is widely used in various industries as a solvent for cleaning metal parts, degreasing fabrics and other materials, and as a refrigerant. It's also present in some consumer products like paint removers, adhesives, and typewriter correction fluids.

Prolonged or repeated exposure to TCE can lead to various health issues, including neurological problems, liver and kidney damage, and an increased risk of certain cancers. Therefore, its use is regulated by environmental and occupational safety agencies worldwide.

"Pseudomonas pseudoalcaligenes" is a gram-negative, rod-shaped bacterium that is widely found in various environments such as soil, water, and clinical samples. It is a close relative to the Pseudomonas genus but can be differentiated by its biochemical characteristics. This bacterium is generally considered to be non-pathogenic to humans, but it has been occasionally associated with infections in immunocompromised individuals or those with underlying medical conditions. It is known for its ability to degrade a wide range of organic compounds and can be used in bioremediation applications.

Aniline compounds, also known as aromatic amines, are organic compounds that contain a benzene ring substituted with an amino group (-NH2). Aniline itself is the simplest and most common aniline compound, with the formula C6H5NH2.

Aniline compounds are important in the chemical industry and are used in the synthesis of a wide range of products, including dyes, pharmaceuticals, and rubber chemicals. They can be produced by reducing nitrobenzene or by directly substituting ammonia onto benzene in a process called amination.

It is important to note that aniline compounds are toxic and can cause serious health effects, including damage to the liver, kidneys, and central nervous system. They can also be absorbed through the skin and are known to have carcinogenic properties. Therefore, appropriate safety measures must be taken when handling aniline compounds.

Siderophores are low-molecular-weight organic compounds that are secreted by microorganisms, such as bacteria and fungi, to chelate and solubilize iron from their environment. They are able to bind ferric iron (Fe3+) with very high affinity and form a siderophore-iron complex, which can then be taken up by the microorganism through specific transport systems. This allows them to acquire iron even in environments where it is present at very low concentrations or in forms that are not readily available for uptake. Siderophores play an important role in the survival and virulence of many pathogenic microorganisms, as they help them to obtain the iron they need to grow and multiply.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Quinones are a class of organic compounds that contain a fully conjugated diketone structure. This structure consists of two carbonyl groups (C=O) separated by a double bond (C=C). Quinones can be found in various biological systems and synthetic compounds. They play important roles in many biochemical processes, such as electron transport chains and redox reactions. Some quinones are also known for their antimicrobial and anticancer properties. However, some quinones can be toxic or mutagenic at high concentrations.

Gram-negative aerobic bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, which is a technique used to differentiate bacterial species based on their cell wall composition. These bacteria have a thin peptidoglycan layer and an outer membrane containing lipopolysaccharides (LPS), making them resistant to many antibiotics and disinfectants. They are called aerobic because they require oxygen for their growth and metabolism. Examples of Gram-negative aerobic bacteria include Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. These bacteria can cause various infections in humans, such as pneumonia, urinary tract infections, and sepsis.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Tyrosinase, also known as monophenol monooxygenase, is an enzyme (EC 1.14.18.1) that catalyzes the ortho-hydroxylation of monophenols (like tyrosine) to o-diphenols (like L-DOPA) and the oxidation of o-diphenols to o-quinones. This enzyme plays a crucial role in melanin synthesis, which is responsible for the color of skin, hair, and eyes in humans and animals. Tyrosinase is found in various organisms, including plants, fungi, and animals. In humans, tyrosinase is primarily located in melanocytes, the cells that produce melanin. The enzyme's activity is regulated by several factors, such as pH, temperature, and metal ions like copper, which are essential for its catalytic function.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Isomerases are a class of enzymes that catalyze the interconversion of isomers of a single molecule. They do this by rearranging atoms within a molecule to form a new structural arrangement or isomer. Isomerases can act on various types of chemical bonds, including carbon-carbon and carbon-oxygen bonds.

There are several subclasses of isomerases, including:

1. Racemases and epimerases: These enzymes interconvert stereoisomers, which are molecules that have the same molecular formula but different spatial arrangements of their atoms in three-dimensional space.
2. Cis-trans isomerases: These enzymes interconvert cis and trans isomers, which differ in the arrangement of groups on opposite sides of a double bond.
3. Intramolecular oxidoreductases: These enzymes catalyze the transfer of electrons within a single molecule, resulting in the formation of different isomers.
4. Mutases: These enzymes catalyze the transfer of functional groups within a molecule, resulting in the formation of different isomers.
5. Tautomeres: These enzymes catalyze the interconversion of tautomers, which are isomeric forms of a molecule that differ in the location of a movable hydrogen atom and a double bond.

Isomerases play important roles in various biological processes, including metabolism, signaling, and regulation.

Gallic acid is an organic compound that is widely found in nature. It's a type of phenolic acid, which means it contains a hydroxyl group (-OH) attached to an aromatic ring. Gallic acid is a white crystalline solid that is soluble in water and alcohol.

In the medical field, gallic acid is known for its antioxidant properties. It has been shown to neutralize free radicals, which are unstable molecules that can damage cells and contribute to aging and diseases such as cancer and heart disease. Gallic acid also has anti-inflammatory, antibacterial, and antifungal properties.

Gallic acid is found in a variety of plants, including tea leaves, grapes, oak bark, and sumac. It can be extracted from these plants and used in the production of pharmaceuticals, food additives, and cosmetics. In some cases, gallic acid may be used as a marker for the identification and authentication of plant-based materials.

It's important to note that while gallic acid has potential health benefits, it should not be taken as a substitute for medical treatment or advice from a healthcare professional.

1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt is a chemical compound with the formula Na2C6H4O6S2. It is also known as pyrocatechol-3,5-disulfonic acid disodium salt or sodium salt of 1,2-dihydroxybenzene-3,5-disulfonic acid.

This compound is a white crystalline powder that is soluble in water and has a variety of uses in the chemical industry. It can be used as a reducing agent, a chelating agent, and a developer in photographic processes. It may also have potential applications in the medical field, such as in the treatment of heavy metal poisoning, although more research is needed to confirm its effectiveness and safety for this use.

It's important to note that while 1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt may have various applications, it should be handled with care and used under appropriate conditions, as with any chemical compound.

"Pseudomonas mendocina" is a gram-negative, rod-shaped bacterium that belongs to the family Pseudomonadaceae. It is commonly found in soil and water environments. This species is generally considered to be nonpathogenic, meaning it does not typically cause disease in humans. However, there have been rare cases of infection associated with this bacterium, particularly in individuals with weakened immune systems.

The name "mendocina" comes from the location where the bacterium was first isolated, which is Mendocino County in California, USA. Like other Pseudomonas species, it can survive under a wide range of environmental conditions and can metabolize various organic compounds as its energy source.

It's worth noting that while "Pseudomonas mendocina" is not a common human pathogen, identifying the specific bacterial species involved in an infection is important for appropriate treatment. Therefore, laboratory testing and identification of bacteria to the species level can be helpful in guiding medical decision-making.

I'm sorry for any confusion, but "soil pollutants" is not a term typically used in medical definitions. Soil pollution refers to the presence or accumulation of hazardous substances, chemicals, or other pollutants in soil that can have negative effects on plant life, human health, and the environment.

However, if you're asking about potential health effects of exposure to soil pollutants, it could include a variety of symptoms or diseases, depending on the specific pollutant. For example, exposure to lead-contaminated soil can lead to developmental delays in children, while exposure to certain pesticides or industrial chemicals can cause neurological problems, respiratory issues, and even cancer.

If you have more specific information about a particular substance or context, I may be able to provide a more precise answer.

Benzofurans are a class of organic compounds that consist of a benzene ring fused to a furan ring. The furan ring is a five-membered aromatic heterocycle containing one oxygen atom and four carbon atoms. Benzofurans can be found in various natural and synthetic substances. Some benzofuran derivatives have biological activity and are used in medicinal chemistry, while others are used as flavorings or fragrances. However, some benzofuran compounds are also known to have psychoactive effects and can be abused as recreational drugs.

Kynurenine 3-Monooxygenase (KMO) is an enzyme that is involved in the metabolism of the amino acid tryptophan. Specifically, it is a key enzyme in the kynurenine pathway, which is the primary route of tryptophan breakdown in mammals.

KMO catalyzes the conversion of L-kynurenine to 3-hydroxykynurenine using molecular oxygen and nicotinamide adenine dinucleotide phosphate (NADPH) as cofactors. This reaction is an important step in the production of several neuroactive metabolites, including quinolinic acid and kynurenic acid, which have been implicated in various neurological disorders such as Alzheimer's disease, Parkinson's disease, and depression.

Inhibition of KMO has been suggested as a potential therapeutic strategy for the treatment of these disorders due to its role in regulating the balance between neuroprotective and neurotoxic kynurenine metabolites.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

Non-heme iron proteins are a type of iron-containing protein that do not contain heme as their prosthetic group. Heme is a complex molecule consisting of an iron atom contained in the center of a porphyrin ring, which is a large organic molecule made up of four pyrrole rings joined together. In contrast, non-heme iron proteins contain iron that is bound to the protein in other ways, such as through coordination with amino acid side chains or through association with an iron-sulfur cluster.

Examples of non-heme iron proteins include ferritin and transferrin, which are involved in the storage and transport of iron in the body, respectively. Ferritin is a protein that stores iron in a form that is safe and bioavailable for use by the body. Transferrin, on the other hand, binds to iron in the intestines and transports it to cells throughout the body.

Non-heme iron proteins are important for many biological processes, including oxygen transport, electron transfer, and enzyme catalysis. They play a crucial role in energy metabolism, DNA synthesis, and other essential functions.

Adrenochrome is a chemical compound that is formed when adrenaline (epinephrine) is oxidized. It is not a naturally occurring hormone or neurotransmitter, but rather a byproduct of the breakdown of these substances. The existence of adrenochrome in the human body is controversial and its effects on the human brain are not well understood.

In popular culture, adrenochrome has been associated with theories about its psychoactive properties and alleged use as a drug in illegal or illicit activities. However, there is no scientific evidence to support these claims and they should be regarded with skepticism. The misinformation surrounding adrenochrome may have originated from Hunter S. Thompson's book "Fear and Loathing in Las Vegas," where it was described as a drug that produces intense hallucinations and feelings of euphoria. However, this portrayal is not based on any scientific evidence and should be considered fiction.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Multienzyme complexes are specialized protein structures that consist of multiple enzymes closely associated or bound together, often with other cofactors and regulatory subunits. These complexes facilitate the sequential transfer of substrates along a series of enzymatic reactions, also known as a metabolic pathway. By keeping the enzymes in close proximity, multienzyme complexes enhance reaction efficiency, improve substrate specificity, and maintain proper stoichiometry between different enzymes involved in the pathway. Examples of multienzyme complexes include the pyruvate dehydrogenase complex, the citrate synthase complex, and the fatty acid synthetase complex.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

A chemical model is a simplified representation or description of a chemical system, based on the laws of chemistry and physics. It is used to explain and predict the behavior of chemicals and chemical reactions. Chemical models can take many forms, including mathematical equations, diagrams, and computer simulations. They are often used in research, education, and industry to understand complex chemical processes and develop new products and technologies.

For example, a chemical model might be used to describe the way that atoms and molecules interact in a particular reaction, or to predict the properties of a new material. Chemical models can also be used to study the behavior of chemicals at the molecular level, such as how they bind to each other or how they are affected by changes in temperature or pressure.

It is important to note that chemical models are simplifications of reality and may not always accurately represent every aspect of a chemical system. They should be used with caution and validated against experimental data whenever possible.

Benzophenones are a class of chemical compounds that consist of a diphenylmethane structure with a carbonyl group attached to the central carbon atom. They are known for their ability to absorb ultraviolet (UV) light and are often used as UV absorbers or photoinitiators in various applications, such as plastics, coatings, and personal care products.

In the medical field, benzophenones may be used in topical medications as sunscreen agents or in pharmaceutical formulations as photostabilizers to prevent drug degradation caused by UV light exposure. However, some benzophenones have been found to have potential endocrine-disrupting properties and may pose health concerns at high levels of exposure. Therefore, their use is regulated in certain applications, and alternative sunscreen agents are being explored.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Gas Chromatography-Mass Spectrometry (GC-MS) is a powerful analytical technique that combines the separating power of gas chromatography with the identification capabilities of mass spectrometry. This method is used to separate, identify, and quantify different components in complex mixtures.

In GC-MS, the mixture is first vaporized and carried through a long, narrow column by an inert gas (carrier gas). The various components in the mixture interact differently with the stationary phase inside the column, leading to their separation based on their partition coefficients between the mobile and stationary phases. As each component elutes from the column, it is then introduced into the mass spectrometer for analysis.

The mass spectrometer ionizes the sample, breaks it down into smaller fragments, and measures the mass-to-charge ratio of these fragments. This information is used to generate a mass spectrum, which serves as a unique "fingerprint" for each compound. By comparing the generated mass spectra with reference libraries or known standards, analysts can identify and quantify the components present in the original mixture.

GC-MS has wide applications in various fields such as forensics, environmental analysis, drug testing, and research laboratories due to its high sensitivity, specificity, and ability to analyze volatile and semi-volatile compounds.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Normetanephrine is defined as a major metabolite of epinephrine (adrenaline), which is formed by the action of catechol-O-methyltransferase (COMT) on metanephrine. It is primarily produced in the adrenal gland and is also found in the sympathetic nervous system. Normetanephrine is often measured in clinical testing to help diagnose pheochromocytoma, a rare tumor of the adrenal glands that can cause high blood pressure and other symptoms due to excessive production of catecholamines. Increased levels of normetanephrine in the urine or plasma may indicate the presence of a pheochromocytoma or other conditions associated with increased catecholamine release.

Carboxy-lyases are a class of enzymes that catalyze the removal of a carboxyl group from a substrate, often releasing carbon dioxide in the process. These enzymes play important roles in various metabolic pathways, such as the biosynthesis and degradation of amino acids, sugars, and other organic compounds.

Carboxy-lyases are classified under EC number 4.2 in the Enzyme Commission (EC) system. They can be further divided into several subclasses based on their specific mechanisms and substrates. For example, some carboxy-lyases require a cofactor such as biotin or thiamine pyrophosphate to facilitate the decarboxylation reaction, while others do not.

Examples of carboxy-lyases include:

1. Pyruvate decarboxylase: This enzyme catalyzes the conversion of pyruvate to acetaldehyde and carbon dioxide during fermentation in yeast and other organisms.
2. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO): This enzyme is essential for photosynthesis in plants and some bacteria, as it catalyzes the fixation of carbon dioxide into an organic molecule during the Calvin cycle.
3. Phosphoenolpyruvate carboxylase: Found in plants, algae, and some bacteria, this enzyme plays a role in anaplerotic reactions that replenish intermediates in the citric acid cycle. It catalyzes the conversion of phosphoenolpyruvate to oxaloacetate and inorganic phosphate.
4. Aspartate transcarbamylase: This enzyme is involved in the biosynthesis of pyrimidines, a class of nucleotides. It catalyzes the transfer of a carboxyl group from carbamoyl aspartate to carbamoyl phosphate, forming cytidine triphosphate (CTP) and fumarate.
5. Urocanase: Found in animals, this enzyme is involved in histidine catabolism. It catalyzes the conversion of urocanate to formiminoglutamate and ammonia.

Comamonadaceae is a family of gram-negative, aerobic or facultatively anaerobic bacteria that are commonly found in various environments such as soil, water, and the rhizosphere of plants. The name Comamonadaceae comes from the type genus Comamonas. Members of this family are known to be metabolically versatile and can degrade a wide range of organic compounds, including aromatic compounds and polysaccharides. Some species in this family are also known to be opportunistic pathogens in humans, causing infections such as pneumonia, bacteremia, and meningitis.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Taurine is an organic compound that is widely distributed in animal tissues. It is a conditionally essential amino acid, meaning it can be synthesized by the human body under normal circumstances, but there may be increased requirements during certain periods such as infancy, infection, or illness. Taurine plays important roles in various physiological functions, including bile salt formation, membrane stabilization, neuromodulation, and antioxidation. It is particularly abundant in the brain, heart, retina, and skeletal muscles. In the human body, taurine is synthesized from the amino acids cysteine and methionine with the aid of vitamin B6.

Taurine can also be found in certain foods like meat, fish, and dairy products, as well as in energy drinks, where it is often added as a supplement for its potential performance-enhancing effects. However, there is ongoing debate about the safety and efficacy of taurine supplementation in healthy individuals.

Pascal RA, Huang DS (July 1986). "Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases". Archives ... a family of catechol dioxygenases that cleaves the bond between the phenolic hydroxyl groups of catechol using an Fe3+ cofactor ... Two families of dioxygenases were discovered by Osamu Hayaishi and Kizo Hashimoto in 1950: catechol 1,2-dioxygenase and ... catechol dioxygenase, pyrocatechase, pyrocatechol 1,2-dioxygenase, CD I, CD II) is an enzyme that catalyzes the oxidative ring ...
The aim of the study was to purify, characterize and predict template-based three-dimensional structure of catechol 1,2- ... dioxygenase (C12O) from indigenous Pseudomonas chlororaphis strain UFB2 (PcUFB2). Preliminary studies showed that PcUFB2 could ... Catechol dioxygenases in microorganisms cleave catechol into cis-cis-muconic acid or 2-hydroxymuconic semialdehyde via the ... Characterization and optimization of C12O activity can assist in understanding the 2,4-DCP metabolic pathway in PcUFB2 and its ...
... dioxygenase from Genetic Modified Strain of Pseudomonas aeruginosa ... Purification and Properties of ortho Ring Cleavage Enzyme Catechol 1, 2 - ... They synthesized catechol 1, 2 - dioxygense enzyme which is unique its properties to transform catechol to cis, cis - muconic ... Keywords : 4-cholorobenzoic acid; Pseudomonas aeruginosa; catechol 1; 2-dioxygenase chlorocatechol; catechol; cis; cis-muconic ...
... catechol , 4-methylcatechol , 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors ( ... It exhibited a half life of 30 min at 80 C and 81 min at 75 C, making it the most thermostable extradiol dioxygenase studied. ... The metal ligands and active site residues of extradiol dioxygenases are conserved although several amino acid residues found ... A decrease in Km accompanied an increase in temperature and the Km value of 0.095 uM for 2,3-dihydroxybiphenyl (at 60 C) is ...
Catechol 2,3-dioxygenase (C23O) gene was found andamplified with the designed primers from the total DNA of C-14-1. The result ... Corynebacterium jeikeium dioxygenases were physiologically induced by 3,4-DCBA compound. They were analyzed for both ortho or ... LTEP-a-2 cells were treated with various concentrations of ABPS (0, 0.2, 0.4, 0.6, 0.8 and 1 mg/mL) for 48h. Subsequently, cell ... Only 1,2-dioxygenase activity was detected which mean that the cleavage is through the ortho pathway. This microorganism can be ...
Ring-hydroxylating dioxygenase alpha subunit. GOSPT_109_00160 GOSPT_044_00070 GOSPT_141_00330. ... Catechol degradation (beta-ketoadipate pathway)(NFUNC_0013). 必須. A. CATA. (NRULE_0052) ... Ring-hydroxylating dioxygenase alpha subunit. GOSPT_044_00070 GOSPT_141_00330 GOSPT_109_00160. ... Ring-hydroxylating dioxygenase alpha subunit. GOSPT_109_00160 GOSPT_044_00070 GOSPT_141_00330. ...
... dioxygenase enzyme (the catechol ring-splitting step in the microbial degradation of benzene and toluene). This is in ... 2006) suggested that this was a result of the saturation of the catechol,1,2, ... Table 1 Air Quality Indices and guidelines for some developed and developing countries (Australia 2019; Britain 2020; Li et al ... 2007) (Table 2).. Table 2 Occupational exposure limits (OELs) of a cohort of administrations for prominent VOCs. Full size ...
Exploring the catalytic mechanism of the extradiol catechol dioxygenases. T. D. H. Bugg, J. Sanvoisin, E. L. Spence, ... Pre-Steady-State Kinetic Analysis of 2-Hydroxy-6-keto-nona-2,4-diene-1,9-dioic Acid 5,6-Hydrolase: Kinetic Evidence for Enol/ ... Chemical and biochemical properties of 2-hydroxypentadienoic acid, a homolog of enolpyruvic acid. J. R. Pollard, I. M. ... Purification, Characterization, and Stereochemical Analysis of a C-C Hydrolase: 2-Hydroxy-6-keto-nona-2,4-diene-1,9-Dioic Acid ...
... under CATECHOL 1973-1974. History Note. 2006(1980); use DIOXYGENASES 1975-1979 & CATECHOL 1973-1974. Date Established. 2006/01/ ... Dioxygenases [D08.811.682.690.416] * AlkB Enzymes [D08.811.682.690.416.139] * Catechol 1,2-Dioxygenase [D08.811.682.690.416.277 ... 3-Hydroxyanthranilate 3,4-Dioxygenase [D08.811.682.690.416.328] * 4-Hydroxyphenylpyruvate Dioxygenase [D08.811.682.690.416.330] ... Catechol 1,2-Dioxygenase Preferred Concept UI. M0072800. Registry Number. EC 1.13.11.1. Related Numbers. 9027-16-1. Scope Note ...
... phenol hydroxylases or catechol dioxygenases). Interestingly, we found very similar degradation pathways for complex polymers ... Lake Stechlin is a large oligotrophic lake with DOC concentrations of 4.3 mg L-1 whereas Lake Grosse Fuchskuhle is a small ... 2 isolates). The Polynucleobacter strain was isolated from Lake Grosse Fuchskuhle. This bacterium is highly abundant in ... shallow lake adjacent to a peat bog area with DOC concentrations up to 24.8 mg L-1. In total we took 62 samples covering oxic ...
... regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in ... Figure 2. Comparison of USA300-FPR transcriptional factors (TFs) with other S. aureus strains. TFs identified in S. aureus ... Figure 1. Classification of transcriptional factors (TFs) in S. aureus strain USA300-FPR3757. TFs were grouped after performing ... Table 1 Possible role for uncharacterized TFs in S. aureus USA300 Full size table. ...
Label: catechol dioxygenase activity Synonyms: catechol dioxygenase activity Alternative IDs: als API: GO ...
catechol_proteo. id: TIGR02439. name: catechol_proteo. namespace: tigrfam. type: tigr. obsolete: False. ...
... catechol) â (Acetyl-CoA) â and further entering into TCA cycle. Genome sequencing of IITR89 revealed the presence of gene ... catechol 1,2-dioxygenase; catB, cis, cis-muconate cycloisomerase; and catC, muconolactone D-isomerase which play an active role ... 18F]2 (hCB2 Ki = 96.5 nM) and [18F]9 (hCB2 Ki = 7.7 nM) were prepared using Cu-mediated 18F-fluorination with non-decay- ... Meleagrin (1) and oxaline (2) were isolated from it. In addition, we first reported that compounds 1 and 2 could effectively ...
catechol dioxygenase activity. IEP. Enrichment. BP. GO:0019319. hexose biosynthetic process. IEP. Enrichment. ... catechol-containing compound metabolic process. IEP. Enrichment. BP. GO:0016054. organic acid catabolic process. IEP. ... catechol 1,2-dioxygenase activity. IEP. Enrichment. BP. GO:0018958. phenol-containing compound metabolic process. IEP. ...
anthranilate dioxygenase large subunit (NCBI). 199, 500. PA2513. antB. anthranilate dioxygenase small subunit (NCBI). 199, 500 ... catechol 1,2-dioxygenase (NCBI). 104, 500. PA2508. catC. muconolactone delta-isomerase (NCBI). 104, 500. ... anthranilate dioxygenase reductase (NCBI). 199, 500. PA2515. xylL. cis-1,2-dihydroxycyclohexa-3,4-diene carboxylate ... POSITION A C G T 1 0.6 0.0 0.4 0.0 2 0.0 1.0 0.0 0.0 3 0.2 0.5 0.0 0.3 4 1.0 0.0 0.0 0.0 5 0.3 0.1 0.0 0.6 6 0.0 0.7 0.3 0.0 7 ...
1.13.11.1 catechol 1,2-dioxygenase 1.13.11.M6 - - MK BRENDA: BS260575 ... 2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate <=> 3-chloro-cis,cis-muconate + H+ 5.5.1.1 muconate cycloisomerase 5.5.1.7 ... 3-chloro-cis,cis-muconate <=> cis-4-carboxymethylenebut-2-en-4-olide + protoanemonin + Cl- + H2O + CO2 5.5.1.1 muconate ... 3-chloro-cis,cis-muconate <=> cis-4-carboxymethylenebut-2-en-4-olide + Hydrochloric_acid 5.5.1.7 chloromuconate cycloisomerase ...
Align catechol 1,2-dioxygenase 1; EC 1.13.11.1 (characterized) to candidate H281DRAFT_01643 H281DRAFT_01643 catechol 1,2- ... dioxygenase. Query= CharProtDB::CH_014952 (311 letters) >FitnessBrowser__Burk376:H281DRAFT_01643 Length = 312 Score = 520 bits ... Align candidate H281DRAFT_01643 H281DRAFT_01643 (catechol 1,2-dioxygenase) to HMM TIGR02439 (catA: catechol 1,2-dioxygenase (EC ... catechol_proteo: catechol 1,2-dioxygenase Scores for complete sequences (score includes all domains): --- full sequence ...
3-dioxygenase Obtained from Crude Oil Contaminated Soil in Ilaje, Ondo State, Nigeria ... Effects of Temperature and pH on the Activities of Catechol 2, ... 3-Dioxygenase Activity. *pH and Temperature Optima of Catechol ... Palaniandavar M, Mayilmurugan R. Mononuclear non-hemiron(III) complex as functional models for catechol dioxygenases C R Chim ... 3-dioxygenase. The activity of catechol 2,3-dioxygenase for most of the bacteria were dormant at pH 3.0 and 12 (Fig. 6) while ...
Empty vector-bearing (EV) and dioxygenase-overexpressing cells (T7-RBS-Dioxygenase) were induced by 0.3 mM IPTG at OD600 = 0.4 ... Catechol 1,2-dioxygenase is resposible for phenol degredation (Naiem ,em>et al,/em>., 2011). Before it is integrated into our ... Characterization of Catechol 1,2-dioxygenase,/h1> ,h3>1. Biobrick DNA length verification,/h3> ,p align="center">,img src=" ... was used as a substrate to test Catechol 1,2-dioxygenase expression and activity.,/p> ,p> Time series analysis were performed. ...
Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties. abstract::Procedures for the ... Fructose 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa. ... purification of catechol 1,2-dioxygenase from extracts of Acinetobacter calcoaceticus strain ADP-96 are described. The purified ... The enzyme contained 2 g-atoms of iron per mol of protein. The enzyme had a broa... ...
Catechol 1,2-dioxygenase is structurally similar to 3,4-PCD. Both enzymes are specialized for their substrate. However, studies ... The enzyme protocatechuate 3,4-dioxygenase (3,4-PCD) catalyzes the ring cleavage of protocatechuate (PCA) in Acinetobacter ... A blue white screening was established to identify mutants with acquired ability of 3,4-PCD to use catechol as substrate. In ... Analysis of 3,4-PCD activity toward catechol and PCA revealed further substitutions with changed substrate specificity. Carbon ...
... and is a major class of non-heme-iron containing dioxygenase [10]. Moreover, a dioxygenase gene, nidA3B3, was detected in ... The pdoA2 gene had role in the oxidation of PAHs and the detoxification of PAH catechols into more hydrosoluble compounds [12, ... The naphthalene inducible pyrene dioxygenase gene (nidA), with the α-subunit pyrene dioxygenase, has a critical role in the ... nidA and nidB genes are encoding genes for large and small subunits of napthalene-inducible dioxygenase [7,8]. The pcaH was ...
Comment: In MetaCyc pathway catechol degradation to HPD I (meta-cleavage, link), dioxygenase xylE converts catechol to (2Z,4E)- ... or catechol degradation II, link.) Or, hydrolase xylF forms HPD and formate. (This is part of a MetaCyc pathway for catechol ... Catechol degradation to HPD II also involves xylE and HPD, link.) In MetaCyc pathway catechol degradation III (ortho-cleavage, ... catechol 2,3-dioxygenase. RR42_RS32655. RR42_RS34600. praB. 2-hydroxymuconate 6-semialdehyde dehydrogenase. RR42_RS05110. RR42_ ...
Catechol dioxygenase N terminus [Interproscan].","protein_coding" "CRP44210","fabF_3","Pseudomonas aeruginosa","3-oxoacyl-[acyl ... Glyoxalase/fosfomycin resistance/dioxygenase domain, Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily [ ... "catechol 1,2-dioxygenase [Ensembl].","protein_coding" "AGT24145","N559_2452","Klebsiella pneumoniae","hypothetical protein [ ... propionate dioxygenase [Ensembl].","protein_coding" "AGT23884","N559_2172","Klebsiella pneumoniae","acetaldehyde dehydrogenase ...
Isolation and partial characterization of catechol 1,2-dioxygenase of phenol degrading yeast Candida tropicalis. ... Isolation and partial characterization of catechol 1,2-dioxygenase of phenol degrading yeast Candida tropicalis. Neuro ... CONCLUSIONS: HA can react with MDA to form stable products, a non-fluorescent enamine (product 1) and a fluorescent 1,4- ... dihydropyridine (product 2) which are ceroid/lipofuscin-related adducts. The reaction of HA with MDA may reveal toxic effect of ...
Thus, it was shown that the metabolism of benzoate in the isolated strains occurs with the induction of catechol 1,2- ... dioxygenase. Some of the isolated strains showed high antagonistic activity against fungi-phytopathogens. The new Pseudomonas ... 7-1 should be specially noted. Thus, a number of bacterial strains have been identified that are promising for use in plant ... characteristic of 2-hydroxymuconic semialdehyde formed as a result of meta-cleavage of catechol, a product of benzoate ...
3-dioxygenase, six as benzene/toluene/chlorobenzene dioxygenase, five as ethylbenzene dioxygenase, and three as naphthalene 1,2 ... Neidle EL, Hartnett C, Bonitz S, Ornston LN (1988) DNA sequence of the Acinetobacter calcoaceticus catechol 1,2-dioxygenase I ... 3-dioxygenase (bphA) for biphenyl and alkylbiphenyls, and PAH dioxygenase (nidA) for phenanthrene, alkylphenanthrenes, and ... dioxygenase (Table 1).. Table 1 Key monooxygenases and dioxygenases involved in the activation and ring cleavage of aromatic ...
An aromatic compound ring cleavage enzyme of catechol 1,2-dioxygenase was detected but catechol 2,3-dioxygenase was not ... 3-dioxygenase was not detected in 2C6-43T. A fatty acid profile with anteiso-C15: 0, iso-C15: 0 and C16: 0 as the major ... An aromatic compound ring cleavage enzyme of catechol 1,2-dioxygenase was detected but catechol 2,3-dioxygenase was not ... An aromatic compound ring cleavage enzyme of catechol 1,2-dioxygenase was detected but catechol 2,3-dioxygenase was not ...
Molecular cloning and characterization of catechol 2, 3-dioxygenase gene from aniline-degrading psseudomonas acidovorans Leem ... 2, 4, 5-trichlorophenoxyacetic acid 분해균의 유전적 특성에 관한 연구 윤소영 · 손홍주 · 이건 · 이상준 · 이종근 * vol.30,No.4,1992. 260-264. ... 1. 유전공학기법으로 변형시킨 내성유전자네 대한 수질환경에서의 전이동태 이성기 · 김치경 * vol.30,No.4,1992. 322-331. ... 06130] 서울시 강남구 테헤란로 7길 22 한국과학기술회관 1관 810호 ...
  • Thus far, 1,2-CTD has been observed to exist in the following species of soil bacteria and fungi: Pseudomonas sp. (wikipedia.org)
  • the 1,2-CTD enzyme produced by Pseudomonas arvilla is the exception to this rule, containing two highly homologous subunits that can form either a homo- or hetero- dimer. (wikipedia.org)
  • The aim of the study was to purify, characterize and predict template-based three-dimensional structure of catechol 1,2-dioxygenase (C12O) from indigenous Pseudomonas chlororaphis strain UFB2 ( Pc UFB2). (preprints.org)
  • ES-MS spectra of tryptic digested SDS-PAGE band and bioinformatics studies revealed that C12O share 81% homology to homogentisate 1,2-dioxygenase reported in other Pseudomonas chlororaphis strains. (preprints.org)
  • They isolated a Pseudomonas azelaica strain HPB1 which was able to degrade OPP through the production of 2,3-dihydroxybiphenyl. (nature.com)
  • His primary areas of investigation include Organic chemistry, Toluene dioxygenase, Pseudomonas putida, Biochemistry and NAD+ kinase. (research.com)
  • The concepts of his Pseudomonas putida study are interwoven with issues in Escherichia coli, Electron donor, Dioxygenase, Dehydrogenase and Naphthalene. (research.com)
  • His Pseudomonas putida research is multidisciplinary, incorporating elements of Nuclear chemistry, Escherichia coli, Toluene, Chromatography and Toluene dioxygenase. (research.com)
  • His Escherichia coli research integrates issues from Regioselectivity, Microorganism, Pseudomonas putida, Metabolite and Toluene dioxygenase. (research.com)
  • The catalytic mechanism of catechol 1,2-dioxygenase was elucidated using a combination of O18 labeling experiments and crystallography. (wikipedia.org)
  • The two enzymes were identified to be a part of two separate catechol dioxygenase families: 1,2-CTD was classified as an intradiol dioxygenase while 2,3-CTD was classified as an extradiol dioxygenase. (wikipedia.org)
  • It exhibited a half life of 30 min at 80 C and 81 min at 75 C, making it the most thermostable extradiol dioxygenase studied. (muni.cz)
  • A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. (muni.cz)
  • The enzyme protocatechuate 3,4-dioxygenase (3,4-PCD) catalyzes the ring cleavage of protocatechuate (PCA) in Acinetobacter baylyi. (uni-ulm.de)
  • Comment: In MetaCyc pathway catechol degradation to HPD I (meta-cleavage, link ), dioxygenase xylE converts catechol to (2Z,4E)-2-hydroxy-6-oxohexa-2,4-dienoate (also known as 2-hydroxymuconate 6-semialdehyde). (lbl.gov)
  • In MetaCyc pathway catechol degradation III (ortho-cleavage, link ), the 1,2-dioxygenase catA forms cis,cis-muconate, a cycloisomerase forms (+)-muconolactone, an isomerase converts this to (4,5-dihydro-5-oxofuran-2-yl)-acetate (also known as 3-oxoadipate enol lactone), and a hydrolase cleaves this to 3-oxoadipate. (lbl.gov)
  • This series of steps is part of protocatechuate para-cleavage, link , or catechol degradation II, link . (lbl.gov)
  • It is important to emphasize that the isolation of soil microorganisms on a mineral medium with benzoate made it possible to quickly assess the presence of one of two biodegradative pathways - ortho - or meta -cleavage of catechol. (sciforum.net)
  • The data obtained did not allow us to detect strains decomposing benzoate via the pathway of meta -cleavage, since there was no yellow coloration of the medium, characteristic of 2-hydroxymuconic semialdehyde formed as a result of meta -cleavage of catechol, a product of benzoate biodegradation. (sciforum.net)
  • An aromatic compound ring cleavage enzyme of catechol 1,2-dioxygenase was detected but catechol 2,3-dioxygenase was not detected in 2C6-43 T . A fatty acid profile with anteiso-C 15: 0 , iso-C 15: 0 and C 16: 0 as the major components supported the affiliation of strain 2C6-43 T to the genus Georgenia. (elsevierpure.com)
  • 2021. Separate upper pathway ring cleavage dioxygenases are required for growth of Sphingomonas wittichii strain RW1 on dibenzofuran and dibenzo-p-dioxin. (nih.gov)
  • Dehydrogenation of phenanthrene-cis-9,10-dihydrodiol to produce the corresponding diol, followed by ortho-cleavage of the oxygenated ring, produced 2,2'-diphenic acid. (afpm.org.my)
  • Dioxygenase NbaC cleaves the aromatic ring, yielding 2-amino-3-carboxymuconate 6-semialdehyde, a decarboxylase forms (2Z,4E)-2-aminomuconate semialdehyde, a dehydrogenase forms (2Z,4E)-2-aminomuconate, a deaminase forms (3E)-2-oxo-3-hexenedioate (also known as 2-oxalocrotonate), and a decarboxylase forms (2Z)-2-hydroxypenta-2,4-dienoate (HPD). (lbl.gov)
  • Comment: Dehydrogenase praB forms 2-hydroxymuconate, tautomerase praC forms (3E)-2-oxohex-3-enedioate (2-oxalocrotonate), and decarboxylase praD yields 2-hydroxypenta-2,4-dienoate (HPD). (lbl.gov)
  • p-Xylene-grown cells contained an inducible NAD+-dependent dehydrogenase which formed catechols from cis-p-toluate diol and the analogous acid diols formed from the other hydrocarbon substrates listed above. (rhea-db.org)
  • aldehyde dehydrogenase 1 family memb. (gsea-msigdb.org)
  • Catechol 2,3-dioxygenase (C23O) gene was found andamplified with the designed primers from the total DNA of C-14-1. (researchgate.net)
  • The result of Southern blot indicated that there isonly one C23O gene in the genome of C-14-1. (researchgate.net)
  • Complementation of the E. coli phr-1 mutation was observed, strongly suggesting that the yeast PHR1 gene encodes a. (shengsci.com)
  • Moreover, a dioxygenase gene, nidA3B3, was detected in Mycobacterium vanbaalenii PYR-1 as an alternate degradation pathway which could catalyze both the initial dihydroxylation of pyrene [ 11 ] to be pyrene cis-4,5-dihydrodiol, and an alternate detoxification pyrene pathway to be pyrene cis-1,2-dihydrodiol [ 12 ]. (omicsonline.org)
  • For all significantly differentially expressed microRNAs inside of the 2 groups, we now have produced gene sets from their expressed target genes. (pdpksignaling.com)
  • 2006. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. (nih.gov)
  • 6 identified a gene cluster, hbpCAD , encoding the upper metabolic pathway of OPP which involves the transformation of OPP to 2-hydroxypenta-2,4-dienoateand benzoic acid (BA). (nature.com)
  • Catechol dioxygenases in microorganisms cleave catechol into cis - cis -muconic acid or 2-hydroxymuconic semialdehyde via the ortho- or meta- pathway, respectively. (preprints.org)
  • Characterization and optimization of C12O activity can assist in understanding the 2,4-DCP metabolic pathway in Pc UFB2 and its possible application in bioremediation strategies. (preprints.org)
  • The pcaH was significant in the β-ketoadipate pathway [9] where the pathway as it conserves biochemically, and is a major class of non-heme-iron containing dioxygenase [ 10 ]. (omicsonline.org)
  • Comment: In pathway I, dioxygenase kynA opens the non-aromatic ring, to N-formyl-L-kynureine, a hydrolase yields L-kynurenine (and formate), and a hydrolase yields anthranilate and L-alanine. (lbl.gov)
  • Comment: In MetaCyc pathway anthranilate degradation I ( link ), a dioxygenase cleaves off carbon dioxide and ammonia, leaving catechol. (lbl.gov)
  • This is part of a MetaCyc pathway for catechol degradation, link . (lbl.gov)
  • 1,2-CTD uses Fe3+ as a cofactor to cleave the carbon-carbon bond between the phenolic hydroxyl groups of catechol, thus yielding muconic acid as its product. (wikipedia.org)
  • They synthesized catechol 1, 2 - dioxygense enzyme which is unique its properties to transform catechol to cis, cis - muconic acid. (researchbib.com)
  • An enzyme that catalyzes the oxidation of catechol to muconic acid with the use of Fe3+ as a cofactor. (nih.gov)
  • Comment: There are two forms of anthranilate dioxygenase, 3-subunit antABC or 4-subunit andAabcd. (lbl.gov)
  • Two alpha-ketoglutarate dependent non-heme iron dioxygenases are responsible for the regulation of HIF-1 through hydroxylation of residues on the HIF-1a subunit. (umass.edu)
  • The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mM 2,3-dihydroxybiphenyl. (muni.cz)
  • 2003. Characterization of a novel Acinetobacter species containing a toluene dioxygenase. (nih.gov)
  • His Toluene dioxygenase research includes themes of Indole test, Toluene, Spectrophotometry and Tryptophanase. (research.com)
  • An aerobic bacterial strain C-14-1 was isolated from an acrylic fiber wastewater. (researchgate.net)
  • Procedures for the purification of catechol 1,2-dioxygenase from extracts of Acinetobacter calcoaceticus strain ADP-96 are described. (shengsci.com)
  • Treatment of P. putida BG1 with nitrosoguanidine led to the isolation of a mutant strain which, when grown with fructose, oxidized both p-xylene and p-toluate to (-)-cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylic acid (cis-p-toluate diol). (rhea-db.org)
  • TIM barrel domain, Glyoxalase/fosfomycin resistance/dioxygenase domain, Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily [InterProScan]. (ntu.edu.sg)
  • Pre-Steady-State Kinetic Analysis of 2-Hydroxy-6-keto-nona-2,4-diene-1,9-dioic Acid 5,6-Hydrolase: Kinetic Evidence for Enol/Keto Tautomerization. (warwick.ac.uk)
  • Purification, Characterization, and Stereochemical Analysis of a C-C Hydrolase: 2-Hydroxy-6-keto-nona-2,4-diene-1,9-Dioic Acid 5,6-Hydrolase. (warwick.ac.uk)
  • Thus, it was shown that the metabolism of benzoate in the isolated strains occurs with the induction of catechol 1,2-dioxygenase. (sciforum.net)
  • The metal ligands and active site residues of extradiol dioxygenases are conserved although several amino acid residues found exclusively in enzymes which preferentially cleave bicyclic substrates are missing in BphC_JF8. (muni.cz)
  • One of these enzymes, known as the factor inhibiting HIF-1 (FIH-1) is responsible for hydroxylating residue Asn 803 on HIF-1a, preventing the transcription of hypoxia related genes controlled by HIF-1. (umass.edu)
  • Therefore, engineering of Catechol 2,3-dioxygenase may be employed for application on bioremediation of polluted sites. (openmicrobiologyjournal.com)
  • Chemical and biochemical properties of 2-hydroxypentadienoic acid, a homolog of enolpyruvic acid. (warwick.ac.uk)
  • cis,cis-tetrachloromuconic_acid = 2 reactions were found. (brenda-enzymes.org)
  • The identification of 2,2'-diphenic acid in culture extracts indicates that phenanthrene was initially attacked through dioxigenation at C9 and C10 to give cis-9,10-dihydrodiol. (afpm.org.my)
  • Exploring the catalytic mechanism of the extradiol catechol dioxygenases. (warwick.ac.uk)
  • New metabolic pathways of phenanthrene and a better understanding of the phenoloxidases and dioxygenase mechanism involved in degradation of phenanthrene were explored in this research. (afpm.org.my)
  • Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties. (shengsci.com)
  • 1. Fischer, D., Ebenau-Jehle, C. and Grisebach, H. Phytoalexin synthesis in soybean: purification and characterization of NADPH:2'-hydroxydaidzein oxidoreductase from elicitor-challenged soybean cell cultures. (qmul.ac.uk)
  • These bacteria subsequently employ 1,2-CTD in the last step of the degradation of aromatic compounds to aliphatic products. (wikipedia.org)
  • PAHs could be degraded by bacteria under aerobic conditions through the initial oxidation of the aromatic ring, which is catalyzed by the dioxygenase enzyme. (omicsonline.org)
  • Identification of metabolites from phenanthrene oxidation by phenoloxidases and dioxygenases of Polyporus sp. (afpm.org.my)
  • A blue white screening was established to identify mutants with acquired ability of 3,4-PCD to use catechol as substrate. (uni-ulm.de)
  • Analysis of 3,4-PCD activity toward catechol and PCA revealed further substitutions with changed substrate specificity. (uni-ulm.de)
  • In contrast, 2,3-CTD utilizes Fe2+ as a cofactor to cleave the carbon-carbon bond adjacent to the phenolic hydroxyl groups of catechol, thus yielding 2-hydroxymuconaldehye as its product. (wikipedia.org)
  • The second catechol hydroxyl group on carbon 3 (C3) is coordinated to Fe3+ after its deprotonation by the Tyr200 ligand. (wikipedia.org)
  • Polycyclic aromatic hydrocarbons (PAHs) are one class of organic pollutants that are considered the most hazardous due to their toxic, mutagenic, and carcinogenic properties [ 1 ]. (omicsonline.org)
  • It was hypothesized that there would be a difference in inhibition of FIH-1 from the other HIF-1 regulating enzyme, the prolyl hydroxylase domain-2 (PHD2), when testing a series of ten small molecule inhibitors. (umass.edu)
  • The ten inhibitors chosen fell into three classes: pyrones, pyridines, and catechols. (umass.edu)
  • Of these inhibitors, it was found that catechols produced a significant inhibitory difference between PHD2 and FIH, and may provide useful in further inhibitor design and synthesis work. (umass.edu)
  • The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. (muni.cz)
  • Additional pathways are not included: the fate of 2-amino-5-oxocyclohex-1-enecarboxyl-CoA is not known ( link ), and anthraniloyl-CoA reductase (the only anaerobic route known, link ) has not been linked to sequence. (lbl.gov)
  • The enzyme contained 2 g-atoms of iron per mol of protein. (shengsci.com)
  • B, solute carrier relatives six member 2, solute carrier relatives 18 member one, and transcription factors and homeobox genes involved in neural crest derived cell de velopment, paired like homeobox 2a and 2b, GATA binding protein two and 3, heart and neural crest derivatives expressed two. (pdpksignaling.com)
  • docking protein 2 [Source:HGNC Symbo. (gsea-msigdb.org)
  • Comment: (2Z)-2-hydroxypenta-2,4-dienoate (HPD) is a common intermediate in the aerobic degradation of many aromatic compounds. (lbl.gov)