DNA-binding motifs formed from two alpha-helixes which intertwine for about eight turns into a coiled coil and then bifurcate to form Y shaped structures. Leucines occurring in heptad repeats end up on the same sides of the helixes and are adjacent to each other in the stem of the Y (the "zipper" region). The DNA-binding residues are located in the bifurcated region of the Y.
A large superfamily of transcription factors that contain a region rich in BASIC AMINO ACID residues followed by a LEUCINE ZIPPER domain.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
A basic-leucine zipper transcription factor that was originally described as a transcriptional regulator controlling expression of the BETA-GLOBIN gene. It may regulate the expression of a wide variety of genes that play a role in protecting cells from oxidative damage.
Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
A family of transcription factors found primarily in PLANTS that bind to the G-box DNA sequence CACGTG or to a consensus sequence CANNTG.
Maf proto-oncogene protein is the major cellular homolog of the V-MAF ONCOGENE PROTEIN. It was the first of the mammalian MAF TRANSCRIPTION FACTORS identified, and it is induced in activated T-LYMPHOCYTES and regulates GENETIC TRANSCRIPTION of INTERLEUKIN-4. c-maf is frequently translocated to an immunoglobulin locus in MULTIPLE MYELOMA.
A family of transcription factors that contain regions rich in basic residues, LEUCINE ZIPPER domains, and HELIX-LOOP-HELIX MOTIFS.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
A basic helix-loop-helix leucine zipper transcription factor that regulates the CELL DIFFERENTIATION and development of a variety of cell types including MELANOCYTES; OSTEOCLASTS; and RETINAL PIGMENT EPITHELIUM. Mutations in MITF protein have been associated with OSTEOPETROSIS and WAARDENBURG SYNDROME.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A CCAAT-enhancer-binding protein found in LIVER; INTESTINES; LUNG and ADIPOSE TISSUE. It is an important mediator of INTERLEUKIN-6 signaling.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.
Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
A family of high molecular weight Maf transcription factors that contain distinct activation domains.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Recurring supersecondary structures characterized by 20 amino acids folding into two alpha helices connected by a non-helical "loop" segment. They are found in many sequence-specific DNA-BINDING PROTEINS and in CALCIUM-BINDING PROTEINS.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A CCAAT-enhancer-binding protein found in LIVER; ADIPOSE TISSUE; INTESTINES; LUNG; ADRENAL GLANDS; PLACENTA; OVARY and peripheral blood mononuclear cells (LEUKOCYTES, MONONUCLEAR). Experiments with knock-out mice have demonstrated that CCAAT-enhancer binding protein-alpha is essential for the functioning and differentiation of HEPATOCYTES and ADIPOCYTES.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Established cell cultures that have the potential to propagate indefinitely.
Ubiquitously expressed basic HELIX-LOOP-HELIX MOTIF transcription factors. They bind CANNTG sequences in the promoters of a variety of GENES involved in carbohydrate and lipid metabolism.
A class of proteins that were originally identified by their ability to bind the DNA sequence CCAAT. The typical CCAAT-enhancer binding protein forms dimers and consists of an activation domain, a DNA-binding basic region, and a leucine-rich dimerization domain (LEUCINE ZIPPERS). CCAAT-BINDING FACTOR is structurally distinct type of CCAAT-enhancer binding protein consisting of a trimer of three different subunits.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
An activating transcription factor that plays a key role in cellular responses to GENOTOXIC STRESS and OXIDATIVE STRESS.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Activating transcription factors were originally identified as DNA-BINDING PROTEINS that interact with early promoters from ADENOVIRUSES. They are a family of basic leucine zipper transcription factors that bind to the consensus site TGACGTCA of the cyclic AMP response element, and are closely related to CYCLIC AMP-RESPONSIVE DNA-BINDING PROTEIN.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Cellular DNA-binding proteins encoded by the c-jun genes (GENES, JUN). They are involved in growth-related transcriptional control. There appear to be three distinct functions: dimerization (with c-fos), DNA-binding, and transcriptional activation. Oncogenic transformation can take place by constitutive expression of c-jun.
The process by which two molecules of the same chemical composition form a condensation product or polymer.
An activating transcription factor that regulates the expression of a variety of GENES involved in amino acid metabolism and transport. It also interacts with HTLV-I transactivator protein.
A multiprotein complex composed of the products of c-jun and c-fos proto-oncogenes. These proteins must dimerize in order to bind to the AP-1 recognition site, also known as the TPA-responsive element (TRE). AP-1 controls both basal and inducible transcription of several genes.
Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A protein that has been shown to function as a calcium-regulated transcription factor as well as a substrate for depolarization-activated CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. This protein functions to integrate both calcium and cAMP signals.
An activating transcription factor that regulates expression of a variety of GENES including C-JUN GENES; CYCLIN A; CYCLIN D1; and ACTIVATING TRANSCRIPTION FACTOR 3.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A transcription factor that controls the expression of variety of proteins including CYTOCHROME C and 5-AMINOLEVULINATE SYNTHETASE. It plays an important role in maintenance of the RESPIRATORY CHAIN of MITOCHONDRIA.
A basic-leucine zipper transcription factor that regulates GLOBIN gene expression and is related to TRANSCRIPTION FACTOR AP-1. NF-E2 consists of a small MAF protein subunit and a tissue-restricted 45 kDa subunit.
A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.
An electrophoretic technique for assaying the binding of one compound to another. Typically one compound is labeled to follow its mobility during electrophoresis. If the labeled compound is bound by the other compound, then the mobility of the labeled compound through the electrophoretic medium will be retarded.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
A small Maf protein involved in differentiation of ERYTHROID CELLS. MafK was originally described as the small subunit of the NF-E2 Transcription Factor, but other small MAF PROTEINS also serve as NF-E2 subunits.
A tissue-specific subunit of NF-E2 transcription factor that interacts with small MAF PROTEINS to regulate gene expression. P45 NF-E2 protein is expressed primarily in MEGAKARYOCYTES; ERYTHROID CELLS; and MAST CELLS.
Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).
A family of transcription factors that control expression of a variety of nuclear GENES encoding proteins that function in the RESPIRATORY CHAIN of the MITOCHONDRIA.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Proteins found in any species of fungus.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
A subclass of winged helix DNA-binding proteins that share homology with their founding member fork head protein, Drosophila.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Proteins prepared by recombinant DNA technology.
A family of DNA binding proteins that regulate expression of a variety of GENES during CELL DIFFERENTIATION and APOPTOSIS. Family members contain a highly conserved carboxy-terminal basic HELIX-TURN-HELIX MOTIF involved in dimerization and sequence-specific DNA binding.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Motifs in DNA- and RNA-binding proteins whose amino acids are folded into a single structural unit around a zinc atom. In the classic zinc finger, one zinc atom is bound to two cysteines and two histidines. In between the cysteines and histidines are 12 residues which form a DNA binding fingertip. By variations in the composition of the sequences in the fingertip and the number and spacing of tandem repeats of the motif, zinc fingers can form a large number of different sequence specific binding sites.
A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.
The functional hereditary units of PLANTS.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.
A family of zinc finger transcription factors that share homology with Kruppel protein, Drosophila. They contain a highly conserved seven amino acid spacer sequence in between their ZINC FINGER MOTIFS.
The so-called general transcription factors that bind to RNA POLYMERASE II and that are required to initiate transcription. They include TFIIA; TFIIB; TFIID; TFIIE; TFIIF; TFIIH; TFII-I; and TFIIJ. In vivo they apparently bind in an ordered multi-step process and/or may form a large preinitiation complex called RNA polymerase II holoenzyme.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Annual cereal grass of the family POACEAE and its edible starchy grain, rice, which is the staple food of roughly one-half of the world's population.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.
Nucleic acid sequences involved in regulating the expression of genes.
A ubiquitously expressed zinc finger-containing protein that acts both as a repressor and activator of transcription. It interacts with key regulatory proteins such as TATA-BINDING PROTEIN; TFIIB; and ADENOVIRUS E1A PROTEINS.
A signal transducer and activator of transcription that mediates cellular responses to INTERLEUKIN-6 family members. STAT3 is constitutively activated in a variety of TUMORS and is a major downstream transducer for the CYTOKINE RECEPTOR GP130.
A GATA transcription factor that is expressed in the MYOCARDIUM of developing heart and has been implicated in the differentiation of CARDIAC MYOCYTES. GATA4 is activated by PHOSPHORYLATION and regulates transcription of cardiac-specific genes.
Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.
The major sequence-specific DNA-binding component involved in the activation of transcription of RNA POLYMERASE II. It was originally described as a complex of TATA-BOX BINDING PROTEIN and TATA-BINDING PROTEIN ASSOCIATED FACTORS. It is now know that TATA BOX BINDING PROTEIN-LIKE PROTEINS may take the place of TATA-box binding protein in the complex.

Molecular cloning and functional characterization of a new Cap'n' collar family transcription factor Nrf3. (1/1416)

The NF-E2-binding sites or Maf recognition elements (MARE) are essential cis-acting elements in the regulatory regions of erythroid-specific genes recognized by the erythroid transcription factor NF-E2, composed of p45 and MafK. Recently, two p45-related factors Nrf1 and Nrf2 were isolated, and they are now collectively grouped as the Cap'n' collar (CNC) family. CNC factors bind to MARE through heterodimer formation with small Maf proteins. We report here the identification and characterization of a novel CNC factor, Nrf3, encoding a predicted 73-kDa protein with a basic region-leucine zipper domain highly homologous to those of other CNC proteins. In vitro and in vivo analyses showed that Nrf3 can heterodimerize with MafK and that this complex binds to the MARE in the chicken beta-globin enhancer and can activate transcription. Nrf3 mRNA is highly expressed in human placenta and B cell and monocyte lineage. Chromosomal localization of human Nrf3 is 7p14-15, which lies near the hoxA gene locus. As the genetic loci of p45, nrf1, and nrf2 have been mapped close to those of hoxC, hoxB, and hoxD, respectively, the present study strongly argues for the idea that a single ancestral gene for the CNC family members may have been localized near the ancestral Hox cluster and have diverged to give rise to four closely related CNC factors through chromosome duplication.  (+info)

Silencing of the Epstein-Barr virus latent membrane protein 1 gene by the Max-Mad1-mSin3A modulator of chromatin structure. (2/1416)

The tumor-associated latent membrane protein 1 (LMP1) gene in the Epstein-Barr virus (EBV) genome is activated by EBV-encoded proteins and cellular factors that are part of general signal transduction pathways. As previously demonstrated, the proximal region of the LMP1 promoter regulatory sequence (LRS) contains a negative cis element with a major role in EBNA2-mediated regulation of LMP1 gene expression in B cells. Here, we show that this silencing activity overlaps with a transcriptional enhancer in an LRS sequence that contains an E-box-homologous motif. Mutation of the putative repressor binding site relieved the repression both in a promoter-proximal context and in a complete LRS context, indicating a functional role of the repressor. Gel retardation assays showed that members of the basic helix-loop-helix transcription factor family, including Max, Mad1, USF, E12, and E47, and the corepressor mSin3A bound to the E-box-containing sequence. The enhancer activity correlated with the binding of USF. Moreover, the activity of the LMP1 promoter in reporter constructs was upregulated by overexpression of USF1 and USF2a, and the transactivation was inhibited by the concurrent expression of Max and Mad1. This suggests that Max-Mad1-mediated anchorage of a multiprotein complex including mSin3A and histone deacetylases to the E-box site constitutes the basis for the repression. Removal of acetyl moieties from histones H3 and H4 should result in a chromatin structure that is inaccessible to transcription factors. Accordingly, inhibition of deacetylase activity with trichostatin A induced expression of the endogenous LMP1 gene in EBV-transformed cells.  (+info)

Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. (3/1416)

Box alpha is an essential element of both the upstream regulatory sequence of the core promoter and the second enhancer, which positively regulate the transcription of human hepatitis B virus (HBV) genes. In this paper, we describe the cloning and characterization of a box alpha binding protein, E4BP4. E4BP4 is a bZIP type of transcription factor. Overexpression of E4BP4 represses the stimulating activity of box alpha in the upstream regulatory sequence of the core promoter and the second enhancer in differentiated human hepatoma cell lines. E4BP4 can also suppress the transcription of HBV genes and the production of HBV virions in a transient-transfection system that mimics the viral infection in vivo. Expression of an E4BP4 antisense transcript can, instead, elevate the transcription of the core promoter. A low abundance of E4BP4 protein and mRNA in differentiated human hepatoma cell lines is detected, and E4BP4 is not a major component of box alpha binding proteins in untransfected differentiated human hepatoma cell lines. C/EBPalpha and C/EBPbeta, in contrast, are major components of the box alpha binding activity present in nuclear extracts. E4BP4 has a stronger binding affinity towards box alpha than the endogenous box alpha binding activity present in nuclear extracts. Structure and function analysis of E4BP4 reveals that DNA binding activity is sufficient to confer the negative regulatory function of E4BP4. These results indicate that binding site occlusion is the mechanism whereby E4BP4 suppresses transcription in HBV.  (+info)

Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. (4/1416)

Hematopoietic cells require cytokine-initiated signals for survival as well as proliferation. The pathways that transduce these signals, ensuring timely regulation of cell fate genes, remain largely undefined. The NFIL3 (E4BP4) transcription factor, Bcl-xL, and constitutively active mutants of components in Ras signal transduction pathways have been identified as key regulation proteins affecting murine interleukin-3 (IL-3)-dependent cell survival. Here we show that expression of NFIL3 is regulated by oncogenic Ras mutants through both the Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. NFIL3 inhibits apoptosis without affecting Bcl-xL expression. By contrast, Bcl-xL levels are regulated through the membrane proximal portion in the cytoplasmic domain of the receptor (betac chain), which is shared by IL-3 and granulocyte-macrophage colony-stimulating factor. Activation of either pathway alone is insufficient to ensure cell survival, indicating that multiple independent signal transduction pathways mediate the survival of developing B-lymphoid cells.  (+info)

Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) encodes a homologue of the Epstein-Barr virus bZip protein EB1. (5/1416)

Analysis of the recently completed genomic sequence of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) revealed that ORF 50 encodes a protein with homology to the Epstein-Barr virus (EBV) transcription factor R. In this report, we show that ORF K8, contiguous to ORF 50, is interrupted by two introns and that the spliced RNA is translated into a bZip protein that has homology to the EBV transcription factor EB1. The newly characterized K8 protein forms homodimers but does not heterodimerize with other members of the bZip protein family.  (+info)

Multiple regulatory elements control the expression of the yeast ACR1 gene. (6/1416)

The ACR1 gene, encoding a succinate-fumarate transporter, is required by the yeast Saccharomyces cerevisiae for ethanol utilization. Accordingly, gene expression is induced by ethanol and repressed by glucose. Here, we investigated three carbon source response elements present in its promoter region. Specific deletions as well as functional analysis of the elements in a heterologous promoter confirmed their role in transcriptional regulation. Protein binding to carbon source response elements of the ICL1 promoter was competed by all three elements to various extents by the respective ACR1 sequences. In addition, two putative stress response promoter elements present in the ACR1 promoter were investigated in deletion analyses and shown to contribute to gene expression.  (+info)

A novel human DNA-binding protein with sequence similarity to a subfamily of redox proteins which is able to repress RNA-polymerase-III-driven transcription of the Alu-family retroposons in vitro. (7/1416)

In this study we identified a novel protein which may contribute to the transcriptional inactivity of Alu retroposons in vivo. A human cDNA clone encoding this protein (ACR1) was isolated from a human expression library using South-western screening with an Alu subfragment, implicated in the regulation of Alu in vitro transcription and interacting with a HeLa nuclear protein down-regulated in adenovirus-infected cells. Bacterially expressed ACR1 is demonstrated to inhibit RNA polymerase III (Pol III)-dependent Alu transcription in vitro but showed no repression of transcription of a tRNA gene or of a reporter gene under control of a Pol II promoter. ACR1 mRNA is also found to be down-regulated in adenovirus-infected HeLa cells, consistent with a possible repressor function of the protein in vivo. ACR1 is mainly (but not exclusively) located in cytoplasm and appears to be a member of a weakly characterized redox protein family having a central, highly conserved sequence motif, PGAFTPXCXXXXLP. One member of the family identified earlier as peroxisomal membrane protein (PMP)20 is known to interact in a sequence-specific manner with a yeast homolog of mammalian cyclosporin-A-binding protein cyclophilin, and mammalian cyclophilin A (an abundant ubiquitously expressed protein) is known to interact with human transcriptional repressor YY1, which is a major sequence-specific Alu-binding protein in human cells. It appears, therefore, that transcriptional silencing of Alu in vivo is a result of complex interactions of many proteins which bind to its Pol III promoter.  (+info)

Ubiquitination and degradation of ATF2 are dimerization dependent. (8/1416)

Ubiquitination and proteasome-dependent degradation are key determinants of the half-lives of many transcription factors. Homo- or heterodimerization of basic region-leucine zipper (bZIP) transcription factors is required for their transcriptional activities. Here we show that activating transcription factor 2 (ATF2) heterodimerization with specific bZIP proteins is an important determinant of the ubiquitination and proteasome-dependent degradation of ATF2. Depletion of c-Jun as one of the ATF2 heterodimer partners from the targeting proteins decreased the efficiency of ATF2 ubiquitination in vitro, whereas the addition of exogenously purified c-Jun restored it. Similarly, overexpression of c-Jun in 293T human embryo kidney cells increased ATF2 ubiquitination in vivo and reduced its half-life in a dose-dependent manner. Mutations of ATF2 that disrupt its dimerization inhibited ATF2 ubiquitination in vitro and in vivo. Conversely, removal of residues 150 to 248, as in a constitutively active ATF2 spliced form, enhanced ATF2 dimerization and transactivation, which coincided with increased ubiquitination and decreased stability. Our findings indicate the increased sensitivity of transcriptionally active dimers of ATF2 to ubiquitination and proteasome-dependent degradation. Based on these observations, we conclude that increased targeting of a transcriptionally active ATF2 form indicates the mechanism by which the magnitude and the duration of the cellular stress response are regulated.  (+info)

I'm sorry for any confusion, but the term "Leucine Zippers" is not a medical term or concept. It is a term used in molecular biology to describe a specific structural motif found in some proteins. Leucine zippers are amino acid sequences that contain regularly spaced leucine residues and form coiled-coil structures, which play a role in protein-protein interactions, particularly in DNA binding transcription factors.

If you have any questions related to medical terminology or concepts, I would be happy to help!

Basic-leucine zipper (bZIP) transcription factors are a family of transcriptional regulatory proteins characterized by the presence of a basic region and a leucine zipper motif. The basic region, which is rich in basic amino acids such as lysine and arginine, is responsible for DNA binding, while the leucine zipper motif mediates protein-protein interactions and dimerization.

BZIP transcription factors play important roles in various cellular processes, including gene expression regulation, cell growth, differentiation, and stress response. They bind to specific DNA sequences called AP-1 sites, which are often found in the promoter regions of target genes. BZIP transcription factors can form homodimers or heterodimers with other bZIP proteins, allowing for combinatorial control of gene expression.

Examples of bZIP transcription factors include c-Jun, c-Fos, ATF (activating transcription factor), and CREB (cAMP response element-binding protein). Dysregulation of bZIP transcription factors has been implicated in various diseases, including cancer, inflammation, and neurodegenerative disorders.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

Nuclear factor erythroid-derived 2-like 2 (NFE2L2), also known as NF-E2-related factor 2 (NRF2), is a protein that plays a crucial role in the regulation of cellular responses to oxidative stress and electrophilic substances. It is a transcription factor that binds to the antioxidant response element (ARE) in the promoter region of various genes, inducing their expression and promoting cellular defense against harmful stimuli.

Under normal conditions, NRF2 is bound to its inhibitor, Kelch-like ECH-associated protein 1 (KEAP1), in the cytoplasm, where it is targeted for degradation by the proteasome. However, upon exposure to oxidative stress or electrophilic substances, KEAP1 undergoes conformational changes, leading to the release and stabilization of NRF2. Subsequently, NRF2 translocates to the nucleus, forms a complex with small Maf proteins, and binds to AREs, inducing the expression of genes involved in antioxidant response, detoxification, and cellular protection.

Genetic variations or dysregulation of the NFE2L2/KEAP1 pathway have been implicated in several diseases, including cancer, neurodegenerative disorders, and pulmonary fibrosis, highlighting its importance in maintaining cellular homeostasis and preventing disease progression.

Abscisic acid (ABA) is a plant hormone that plays a crucial role in the regulation of various physiological processes, including seed dormancy, bud dormancy, leaf senescence, and response to abiotic stresses such as drought, salinity, and cold temperatures. It is a sesquiterpene compound that is synthesized in plants primarily in response to environmental stimuli that trigger the onset of stress responses.

ABA functions by regulating gene expression, cell growth and development, and stomatal closure, which helps prevent water loss from plants under drought conditions. It also plays a role in the regulation of plant metabolism and the activation of defense mechanisms against pathogens and other environmental stressors. Overall, abscisic acid is an essential hormone that enables plants to adapt to changing environmental conditions and optimize their growth and development.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

I'm sorry for any confusion, but "G-Box Binding Factors" is not a widely recognized or established term in medical or molecular biology literature. The "G-box" is a specific sequence of DNA that can be found in the promoter regions of many genes and serves as a binding site for various transcription factors. Transcription factors are proteins that regulate gene expression by binding to specific DNA sequences and either promoting or inhibiting the initiation of transcription.

However, "G-Box Binding Factors" is too broad since multiple transcription factors can bind to the G-box sequence. Some examples of transcription factors known to bind to the G-box include proteins like GBF (G-box binding factor), HSF (heat shock transcription factor), and bZIP (basic region/leucine zipper) proteins, among others.

If you have a more specific context or reference related to "G-Box Binding Factors," I would be happy to help provide further information based on that context.

Proto-oncogene proteins, such as c-MAF, are normal cellular proteins that play crucial roles in various biological processes including cell growth, differentiation, and apoptosis (programmed cell death). When these genes undergo mutations or become overexpressed, they can transform into oncogenes, which contribute to the development of cancer.

The c-MAF protein is a transcription factor that regulates gene expression by binding to specific DNA sequences. It belongs to the basic region-leucine zipper (bZIP) family of transcription factors and plays essential roles in immune system function, cell cycle regulation, and tumorigenesis.

In cancer, c-MAF can contribute to tumor development and progression by promoting cell proliferation, survival, and angiogenesis (the formation of new blood vessels). Dysregulation of c-MAF has been implicated in various types of cancer, such as multiple myeloma, lung cancer, and breast cancer.

Basic Helix-Loop-Helix (bHLH) Leucine Zipper Transcription Factors are a type of transcription factors that share a common structural feature consisting of two amphipathic α-helices connected by a loop. The bHLH domain is involved in DNA binding and dimerization, while the leucine zipper motif mediates further stabilization of the dimer. These transcription factors play crucial roles in various biological processes such as cell fate determination, proliferation, differentiation, and apoptosis. They bind to specific DNA sequences called E-box motifs, which are CANNTG nucleotide sequences, often found in the promoter or enhancer regions of their target genes.

Gene expression regulation in plants refers to the processes that control the production of proteins and RNA from the genes present in the plant's DNA. This regulation is crucial for normal growth, development, and response to environmental stimuli in plants. It can occur at various levels, including transcription (the first step in gene expression, where the DNA sequence is copied into RNA), RNA processing (such as alternative splicing, which generates different mRNA molecules from a single gene), translation (where the information in the mRNA is used to produce a protein), and post-translational modification (where proteins are chemically modified after they have been synthesized).

In plants, gene expression regulation can be influenced by various factors such as hormones, light, temperature, and stress. Plants use complex networks of transcription factors, chromatin remodeling complexes, and small RNAs to regulate gene expression in response to these signals. Understanding the mechanisms of gene expression regulation in plants is important for basic research, as well as for developing crops with improved traits such as increased yield, stress tolerance, and disease resistance.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

'Arabidopsis' is a genus of small flowering plants that are part of the mustard family (Brassicaceae). The most commonly studied species within this genus is 'Arabidopsis thaliana', which is often used as a model organism in plant biology and genetics research. This plant is native to Eurasia and Africa, and it has a small genome that has been fully sequenced. It is known for its short life cycle, self-fertilization, and ease of growth, making it an ideal subject for studying various aspects of plant biology, including development, metabolism, and response to environmental stresses.

The Microphthalmia-Associated Transcription Factor (MITF) is a protein that functions as a transcription factor, which means it regulates the expression of specific genes. It belongs to the basic helix-loop-helix leucine zipper (bHLH-Zip) family of transcription factors and plays crucial roles in various biological processes such as cell growth, differentiation, and survival.

MITF is particularly well-known for its role in the development and function of melanocytes, the pigment-producing cells found in the skin, eyes, and inner ear. It regulates the expression of genes involved in melanin synthesis and thus influences hair and skin color. Mutations in the MITF gene have been associated with certain eye disorders, including microphthalmia (small or underdeveloped eyes), iris coloboma (a gap or hole in the iris), and Waardenburg syndrome type 2A (an inherited disorder characterized by hearing loss and pigmentation abnormalities).

In addition to its role in melanocytes, MITF also plays a part in the development and function of other cell types, including osteoclasts (cells involved in bone resorption), mast cells (immune cells involved in allergic reactions), and retinal pigment epithelial cells (a type of cell found in the eye).

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

CCAAT-Enhancer-Binding Protein-beta (CEBPB) is a transcription factor that plays a crucial role in the regulation of gene expression. It binds to the CCAAT box, a specific DNA sequence found in the promoter or enhancer regions of many genes. CEBPB is involved in various biological processes such as cell growth, development, and immune response. Dysregulation of CEBPB has been implicated in several diseases, including cancer and inflammatory disorders.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

Arabidopsis proteins refer to the proteins that are encoded by the genes in the Arabidopsis thaliana plant, which is a model organism commonly used in plant biology research. This small flowering plant has a compact genome and a short life cycle, making it an ideal subject for studying various biological processes in plants.

Arabidopsis proteins play crucial roles in many cellular functions, such as metabolism, signaling, regulation of gene expression, response to environmental stresses, and developmental processes. Research on Arabidopsis proteins has contributed significantly to our understanding of plant biology and has provided valuable insights into the molecular mechanisms underlying various agronomic traits.

Some examples of Arabidopsis proteins include transcription factors, kinases, phosphatases, receptors, enzymes, and structural proteins. These proteins can be studied using a variety of techniques, such as biochemical assays, protein-protein interaction studies, and genetic approaches, to understand their functions and regulatory mechanisms in plants.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Genetically modified plants (GMPs) are plants that have had their DNA altered through genetic engineering techniques to exhibit desired traits. These modifications can be made to enhance certain characteristics such as increased resistance to pests, improved tolerance to environmental stresses like drought or salinity, or enhanced nutritional content. The process often involves introducing genes from other organisms, such as bacteria or viruses, into the plant's genome. Examples of GMPs include Bt cotton, which has a gene from the bacterium Bacillus thuringiensis that makes it resistant to certain pests, and golden rice, which is engineered to contain higher levels of beta-carotene, a precursor to vitamin A. It's important to note that genetically modified plants are subject to rigorous testing and regulation to ensure their safety for human consumption and environmental impact before they are approved for commercial use.

"Response elements" is a term used in molecular biology, particularly in the study of gene regulation. Response elements are specific DNA sequences that can bind to transcription factors, which are proteins that regulate gene expression. When a transcription factor binds to a response element, it can either activate or repress the transcription of the nearby gene.

Response elements are often found in the promoter region of genes and are typically short, conserved sequences that can be recognized by specific transcription factors. The binding of a transcription factor to a response element can lead to changes in chromatin structure, recruitment of co-activators or co-repressors, and ultimately, the regulation of gene expression.

Response elements are important for many biological processes, including development, differentiation, and response to environmental stimuli such as hormones, growth factors, and stress. The specificity of transcription factor binding to response elements allows for precise control of gene expression in response to changing conditions within the cell or organism.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Transcriptional activation is the process by which a cell increases the rate of transcription of specific genes from DNA to RNA. This process is tightly regulated and plays a crucial role in various biological processes, including development, differentiation, and response to environmental stimuli.

Transcriptional activation occurs when transcription factors (proteins that bind to specific DNA sequences) interact with the promoter region of a gene and recruit co-activator proteins. These co-activators help to remodel the chromatin structure around the gene, making it more accessible for the transcription machinery to bind and initiate transcription.

Transcriptional activation can be regulated at multiple levels, including the availability and activity of transcription factors, the modification of histone proteins, and the recruitment of co-activators or co-repressors. Dysregulation of transcriptional activation has been implicated in various diseases, including cancer and genetic disorders.

MAF transcription factors are a family of proteins that regulate gene expression by binding to specific DNA sequences. "Large" MAF transcription factors, also known as MLTF or MAFA, are one subgroup within this family and include the proteins MAFA, MAFB, and NRL. These proteins contain a basic leucine zipper (bZIP) domain, which is responsible for their DNA-binding activity. They play critical roles in the development and function of various tissues, including the eye, pancreas, and immune system. Dysregulation of MAF transcription factors has been implicated in several diseases, including cancer and diabetes.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Helix-loop-helix (HLH) motifs are structural domains found in certain proteins, particularly transcription factors, that play a crucial role in DNA binding and protein-protein interactions. These motifs consist of two amphipathic α-helices connected by a loop region. The first helix is known as the "helix-1" or "recognition helix," while the second one is called the "helix-2" or "dimerization helix."

In many HLH proteins, the helices come together to form a dimer through interactions between their hydrophobic residues located in the core of the helix-2. This dimerization enables DNA binding by positioning the recognition helices in close proximity to each other and allowing them to interact with specific DNA sequences, often referred to as E-box motifs (CANNTG).

HLH motifs can be further classified into basic HLH (bHLH) proteins and HLH-only proteins. bHLH proteins contain a basic region adjacent to the N-terminal end of the first helix, which facilitates DNA binding. In contrast, HLH-only proteins lack this basic region and primarily function as dimerization partners for bHLH proteins or participate in other protein-protein interactions.

These motifs are involved in various cellular processes, including cell fate determination, differentiation, proliferation, and apoptosis. Dysregulation of HLH proteins has been implicated in several diseases, such as cancer and neurodevelopmental disorders.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

CCAAT-Enhancer-Binding Protein-alpha (CEBPA) is a transcription factor that plays a crucial role in the regulation of genes involved in the differentiation and proliferation of hematopoietic cells, which are the precursor cells to all blood cells. The protein binds to the CCAAT box, a specific DNA sequence found in the promoter regions of many genes, and activates or represses their transcription.

Mutations in the CEBPA gene have been associated with acute myeloid leukemia (AML), a type of cancer that affects the blood and bone marrow. These mutations can lead to an increased risk of developing AML, as well as resistance to chemotherapy treatments. Therefore, understanding the function of CEBPA and its role in hematopoiesis is essential for the development of new therapies for AML and other hematological disorders.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Upstream stimulatory factors (USF) are a group of transcription factors that bind to the promoter or enhancer regions of genes and regulate their expression. They are called "upstream" because they bind to the DNA upstream of the gene's transcription start site. USFs are widely expressed in many tissues and play important roles in various cellular processes, including cell growth, differentiation, and metabolism.

There are two main members of the USF family, USF-1 and USF-2, which are encoded by separate genes but share a high degree of sequence similarity. Both USF proteins contain a conserved basic helix-loop-helix (bHLH) domain that mediates DNA binding and a conserved adjacent leucine zipper motif that facilitates protein dimerization. USFs can form homodimers or heterodimers with each other, as well as with other bHLH proteins, to regulate gene expression.

USFs have been shown to bind to and activate the transcription of a wide range of genes involved in various cellular processes, such as glycolysis, gluconeogenesis, lipid metabolism, and DNA repair. Dysregulation of USF activity has been implicated in several human diseases, including cancer, diabetes, and neurodegenerative disorders. Therefore, understanding the mechanisms of USF-mediated gene regulation may provide insights into the pathophysiology of these diseases and lead to the development of novel therapeutic strategies.

CCAAT-Enhancer-Binding Proteins (C/EBPs) are a family of transcription factors that play crucial roles in the regulation of various biological processes, including cell growth, development, and differentiation. They bind to specific DNA sequences called CCAAT boxes, which are found in the promoter or enhancer regions of many genes.

The C/EBP family consists of several members, including C/EBPα, C/EBPβ, C/EBPγ, C/EBPδ, and C/EBPε. These proteins share a highly conserved basic region-leucine zipper (bZIP) domain, which is responsible for their DNA-binding and dimerization activities.

C/EBPs can form homodimers or heterodimers with other bZIP proteins, allowing them to regulate gene expression in a combinatorial manner. They are involved in the regulation of various physiological processes, such as inflammation, immune response, metabolism, and cell cycle control. Dysregulation of C/EBP function has been implicated in several diseases, including cancer, diabetes, and inflammatory disorders.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Activating Transcription Factor 3 (ATF3) is a protein involved in the regulation of gene expression. It belongs to the ATF/CREB family of basic region-leucine zipper (bZIP) transcription factors, which bind to specific DNA sequences and regulate the transcription of target genes.

ATF3 is known to be rapidly induced in response to various cellular stresses, such as oxidative stress, DNA damage, and inflammation. It can act as a transcriptional activator or repressor, depending on the context and the presence of other co-factors. ATF3 has been implicated in a variety of biological processes, including cell survival, differentiation, and apoptosis.

In the medical field, abnormal regulation of ATF3 has been linked to several diseases, such as cancer, neurodegenerative disorders, and autoimmune diseases. For example, ATF3 has been shown to play a role in tumorigenesis by regulating the expression of genes involved in cell proliferation, apoptosis, and metastasis. Additionally, ATF3 has been implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, where it may contribute to neuronal death and inflammation.

Overall, Activating Transcription Factor 3 is an important protein involved in the regulation of gene expression in response to cellular stress, and its dysregulation has been linked to several diseases.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Activating transcription factors (ATFs) are a family of proteins that regulate gene expression by binding to specific DNA sequences and promoting the initiation of transcription. They play crucial roles in various cellular processes, including development, differentiation, and stress response. ATFs can form homodimers or heterodimers with other transcription factors, such as cAMP response element-binding protein (CREB), and bind to the consensus sequence called the cyclic AMP response element (CRE) in the promoter region of target genes. The activation of ATFs can be regulated through various post-translational modifications, such as phosphorylation, which can alter their DNA-binding ability and transcriptional activity.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Proto-oncogene proteins, such as c-Jun, are normal cellular proteins that play crucial roles in various cellular processes including cell growth, differentiation, and apoptosis (programmed cell death). When proto-oncogenes undergo mutations or are overexpressed, they can become oncogenes, promoting uncontrolled cell growth and leading to cancer.

The c-Jun protein is a component of the AP-1 transcription factor complex, which regulates gene expression by binding to specific DNA sequences. It is involved in various cellular responses such as proliferation, differentiation, and survival. Dysregulation of c-Jun has been implicated in several types of cancer, including lung, breast, and colon cancers.

Dimerization is a process in which two molecules, usually proteins or similar structures, bind together to form a larger complex. This can occur through various mechanisms, such as the formation of disulfide bonds, hydrogen bonding, or other non-covalent interactions. Dimerization can play important roles in cell signaling, enzyme function, and the regulation of gene expression.

In the context of medical research and therapy, dimerization is often studied in relation to specific proteins that are involved in diseases such as cancer. For example, some drugs have been developed to target and inhibit the dimerization of certain proteins, with the goal of disrupting their function and slowing or stopping the progression of the disease.

Activating Transcription Factor 4 (ATF4) is a protein that plays a crucial role in the regulation of gene expression, particularly during times of cellular stress. It belongs to the family of basic leucine zipper (bZIP) transcription factors and is involved in various biological processes such as endoplasmic reticulum (ER) stress response, amino acid metabolism, and protein synthesis.

ATF4 is encoded by the ATF4 gene, located on human chromosome 22q13.1. The protein contains several functional domains, including a bZIP domain that facilitates its dimerization with other bZIP proteins and binding to specific DNA sequences called ER stress response elements (ERSE) or amino acid response elements (AARE).

Under normal conditions, ATF4 levels are relatively low in cells. However, during periods of cellular stress, such as nutrient deprivation, hypoxia, or ER stress, the translation of ATF4 mRNA is selectively enhanced, leading to increased ATF4 protein levels. This upregulation of ATF4 triggers the expression of various target genes involved in adapting to stress conditions, promoting cell survival, or initiating programmed cell death (apoptosis) if the stress cannot be resolved.

In summary, Activating Transcription Factor 4 is a crucial protein that helps regulate gene expression during cellular stress, playing essential roles in maintaining cellular homeostasis and responding to various environmental challenges.

Transcription Factor AP-1 (Activator Protein 1) is a heterodimeric transcription factor that belongs to the bZIP (basic region-leucine zipper) family. It is formed by the dimerization of Jun (c-Jun, JunB, JunD) and Fos (c-Fos, FosB, Fra1, Fra2) protein families, or alternatively by homodimers of Jun proteins. AP-1 plays a crucial role in regulating gene expression in various cellular processes such as proliferation, differentiation, and apoptosis. Its activity is tightly controlled through various signaling pathways, including the MAPK (mitogen-activated protein kinase) cascades, which lead to phosphorylation and activation of its components. Once activated, AP-1 binds to specific DNA sequences called TPA response elements (TREs) or AP-1 sites, thereby modulating the transcription of target genes involved in various cellular responses, such as inflammation, immune response, stress response, and oncogenic transformation.

Sp1 (Specificity Protein 1) transcription factor is a protein that binds to specific DNA sequences, known as GC boxes, in the promoter regions of many genes. It plays a crucial role in the regulation of gene expression by controlling the initiation of transcription. Sp1 recognizes and binds to the consensus sequence of GGGCGG upstream of the transcription start site, thereby recruiting other co-activators or co-repressors to modulate the rate of transcription. Sp1 is involved in various cellular processes, including cell growth, differentiation, and apoptosis, and its dysregulation has been implicated in several human diseases, such as cancer.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

CREB (Cyclic AMP Response Element-Binding Protein) is a transcription factor that plays a crucial role in regulating gene expression in response to various cellular signals. CREB binds to the cAMP response element (CRE) sequence in the promoter region of target genes and regulates their transcription.

When activated, CREB undergoes phosphorylation at a specific serine residue (Ser-133), which leads to its binding to the coactivator protein CBP/p300 and recruitment of additional transcriptional machinery to the promoter region. This results in the activation of target gene transcription.

CREB is involved in various cellular processes, including metabolism, differentiation, survival, and memory formation. Dysregulation of CREB has been implicated in several diseases, such as cancer, neurodegenerative disorders, and mood disorders.

Activating Transcription Factor 2 (ATF-2) is a protein that belongs to the family of leucine zipper transcription factors. It plays a crucial role in regulating gene expression in response to various cellular stress signals, such as inflammation, DNA damage, and oxidative stress. ATF-2 can bind to specific DNA sequences called cis-acting elements, located within the promoter regions of target genes, and activate their transcription.

ATF-2 forms homodimers or heterodimers with other proteins, such as c-Jun, to regulate gene expression. The activity of ATF-2 is tightly controlled through various post-translational modifications, including phosphorylation, which can modulate its DNA binding and transactivation properties.

ATF-2 has been implicated in several biological processes, such as cell growth, differentiation, and apoptosis, and its dysregulation has been associated with various diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Nuclear Respiratory Factor 1 (NRF-1) is a transcription factor that plays a crucial role in the regulation of genes involved in nuclear and mitochondrial respiratory chain function, as well as in the biogenesis of mitochondria. It is a member of the Cap'n'Collar (CNC) family of basic region-leucine zipper (bZIP) transcription factors. NRF-1 regulates the expression of genes encoding subunits of complexes I, III, IV, and V of the electron transport chain, as well as enzymes involved in heme and iron-sulfur cluster biosynthesis. It also plays a role in the regulation of cellular antioxidant response by regulating the expression of genes encoding antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. NRF-1 is widely expressed in various tissues, including the heart, brain, liver, and skeletal muscle.

Nuclear factor, erythroid-derived 2 (NFE2), also known as NF-E2 transcription factor, is a protein that plays a crucial role in the regulation of gene expression. It belongs to the cap'n'collar (CNC) subfamily of basic region-leucine zipper (bZIP) transcription factors.

NFE2 forms a heterodimer with small Maf proteins and binds to antioxidant response elements (AREs) in the promoter regions of target genes. These target genes are often involved in cellular defense against oxidative stress, electrophiles, and inflammation. NFE2 regulates the expression of various enzymes and proteins that protect cells from damage caused by reactive oxygen species (ROS) and other harmful substances.

Mutations in the NFE2 gene have been associated with several diseases, including chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and certain types of cancer. Proper regulation of NFE2 is essential for maintaining cellular homeostasis and preventing the development of various pathological conditions.

Basic Helix-Loop-Helix (bHLH) transcription factors are a type of proteins that regulate gene expression through binding to specific DNA sequences. They play crucial roles in various biological processes, including cell growth, differentiation, and apoptosis. The bHLH domain is composed of two amphipathic α-helices separated by a loop region. This structure allows the formation of homodimers or heterodimers, which then bind to the E-box DNA motif (5'-CANNTG-3') to regulate transcription.

The bHLH family can be further divided into several subfamilies based on their sequence similarities and functional characteristics. Some members of this family are involved in the development and function of the nervous system, while others play critical roles in the development of muscle and bone. Dysregulation of bHLH transcription factors has been implicated in various human diseases, including cancer and neurodevelopmental disorders.

An Electrophoretic Mobility Shift Assay (EMSA) is a laboratory technique used to detect and analyze protein-DNA interactions. In this assay, a mixture of proteins and fluorescently or radioactively labeled DNA probes are loaded onto a native polyacrylamide gel matrix and subjected to an electric field. The negatively charged DNA probe migrates towards the positive electrode, and the rate of migration (mobility) is dependent on the size and charge of the molecule. When a protein binds to the DNA probe, it forms a complex that has a different size and/or charge than the unbound probe, resulting in a shift in its mobility on the gel.

The EMSA can be used to identify specific protein-DNA interactions, determine the binding affinity of proteins for specific DNA sequences, and investigate the effects of mutations or post-translational modifications on protein-DNA interactions. The technique is widely used in molecular biology research, including studies of gene regulation, DNA damage repair, and epigenetic modifications.

In summary, Electrophoretic Mobility Shift Assay (EMSA) is a laboratory technique that detects and analyzes protein-DNA interactions by subjecting a mixture of proteins and labeled DNA probes to an electric field in a native polyacrylamide gel matrix. The binding of proteins to the DNA probe results in a shift in its mobility on the gel, allowing for the detection and analysis of specific protein-DNA interactions.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

MAFK (Musculoaponeurotic fibrosarcoma oncogene homolog K) is a transcription factor that belongs to the basic region-leucine zipper (bZIP) family. Transcription factors are proteins that regulate gene expression by binding to specific DNA sequences and controlling the initiation of transcription. The bZIP family of transcription factors is characterized by a highly conserved basic region for DNA binding and a leucine zipper domain for dimerization.

MAFK can form homodimers or heterodimers with other bZIP proteins, which allows it to regulate the expression of various genes involved in different cellular processes such as proliferation, differentiation, and stress response. Dysregulation of MAFK has been implicated in several diseases, including cancer, where it can act as an oncogene by promoting cell growth and survival.

MAFK is also known to play a role in the development and function of the nervous system. It is widely expressed in the brain, where it regulates the expression of genes involved in neuronal differentiation, synaptic plasticity, and neuroprotection. Mutations in MAFK have been associated with neurological disorders such as intellectual disability and epilepsy.

In summary, MafK transcription factor is a bZIP protein that regulates gene expression through DNA binding and dimerization. It plays important roles in cellular processes such as proliferation, differentiation, and stress response, and has been implicated in various diseases, including cancer and neurological disorders.

The NF-E2 (Nuclear Factor, Erythroid-derived 2) transcription factor is a heterodimeric protein that plays a crucial role in the regulation of gene expression. It is composed of two subunits: p18 and p45. The p45 subunit, also known as NFE2L2 or GABPalpha, is a member of the basic region-leucine zipper (bZIP) family of transcription factors.

The p45 subunit forms a complex with the p18 subunit, and this complex binds to specific DNA sequences called antioxidant response elements (AREs) or electrophile response elements (EpREs), which are present in the promoter regions of various genes involved in cellular defense against oxidative stress and xenobiotic metabolism.

The p45 subunit is responsible for recognizing and binding to the DNA sequence, while the p18 subunit stabilizes the complex and enhances its DNA-binding affinity. Together, they regulate the expression of genes involved in heme biosynthesis, cytochrome P450 activity, antioxidant defense, and other cellular processes.

Mutations in the NFE2L2 gene, which encodes the p45 subunit, have been associated with various diseases, including chronic obstructive pulmonary disease (COPD), neurodegenerative disorders, and cancer.

Homeodomain proteins are a group of transcription factors that play crucial roles in the development and differentiation of cells in animals and plants. They are characterized by the presence of a highly conserved DNA-binding domain called the homeodomain, which is typically about 60 amino acids long. The homeodomain consists of three helices, with the third helix responsible for recognizing and binding to specific DNA sequences.

Homeodomain proteins are involved in regulating gene expression during embryonic development, tissue maintenance, and organismal growth. They can act as activators or repressors of transcription, depending on the context and the presence of cofactors. Mutations in homeodomain proteins have been associated with various human diseases, including cancer, congenital abnormalities, and neurological disorders.

Some examples of homeodomain proteins include PAX6, which is essential for eye development, HOX genes, which are involved in body patterning, and NANOG, which plays a role in maintaining pluripotency in stem cells.

Nuclear respiratory factors (NRFs) are a family of transcription factors that play crucial roles in the regulation of mitochondrial biogenesis and function. They are involved in the expression of genes encoding for proteins required for oxidative phosphorylation, the electron transport chain, and the tricarboxylic acid cycle (TCA cycle).

There are two main types of NRFs: NRF-1 and NRF-2. Both of these factors bind to specific DNA sequences called antioxidant response elements (AREs) in the promoter regions of their target genes, thereby activating their transcription.

NRF-1 is involved in the regulation of both nuclear and mitochondrial genes that are required for oxidative phosphorylation and other mitochondrial functions. It also plays a role in the biogenesis of mitochondria by regulating the expression of proteins involved in mitochondrial DNA replication, transcription, and translation.

NRF-2 is primarily involved in the regulation of antioxidant response genes that protect cells from oxidative stress. However, it also plays a role in mitochondrial biogenesis by regulating the expression of proteins involved in mitochondrial respiration and metabolism.

Overall, NRFs are essential for maintaining mitochondrial function and cellular homeostasis, and their dysregulation has been implicated in various diseases, including neurodegenerative disorders, cancer, and metabolic diseases.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Forkhead transcription factors (FOX) are a family of proteins that play crucial roles in the regulation of gene expression through the process of binding to specific DNA sequences, thereby controlling various biological processes such as cell growth, differentiation, and apoptosis. These proteins are characterized by a conserved DNA-binding domain, known as the forkhead box or FOX domain, which adopts a winged helix structure that recognizes and binds to the consensus sequence 5'-(G/A)(T/C)AA(C/A)A-3'.

The FOX family is further divided into subfamilies based on the structure of their DNA-binding domains, with each subfamily having distinct functions. For example, FOXP proteins are involved in brain development and function, while FOXO proteins play a key role in regulating cellular responses to stress and metabolism. Dysregulation of forkhead transcription factors has been implicated in various diseases, including cancer, diabetes, and neurodegenerative disorders.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

Luciferases are a class of enzymes that catalyze the oxidation of their substrates, leading to the emission of light. This bioluminescent process is often associated with certain species of bacteria, insects, and fish. The term "luciferase" comes from the Latin word "lucifer," which means "light bearer."

The most well-known example of luciferase is probably that found in fireflies, where the enzyme reacts with a compound called luciferin to produce light. This reaction requires the presence of oxygen and ATP (adenosine triphosphate), which provides the energy needed for the reaction to occur.

Luciferases have important applications in scientific research, particularly in the development of sensitive assays for detecting gene expression and protein-protein interactions. By labeling a protein or gene of interest with luciferase, researchers can measure its activity by detecting the light emitted during the enzymatic reaction. This allows for highly sensitive and specific measurements, making luciferases valuable tools in molecular biology and biochemistry.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Transcription Factor AP-2 is a specific protein involved in the process of gene transcription. It belongs to a family of transcription factors known as Activating Enhancer-Binding Proteins (AP-2). These proteins regulate gene expression by binding to specific DNA sequences called enhancers, which are located near the genes they control.

AP-2 is composed of four subunits that form a homo- or heterodimer, which then binds to the consensus sequence 5'-GCCNNNGGC-3'. This sequence is typically found in the promoter regions of target genes. Once bound, AP-2 can either activate or repress gene transcription, depending on the context and the presence of cofactors.

AP-2 plays crucial roles during embryonic development, particularly in the formation of the nervous system, limbs, and face. It is also involved in cell cycle regulation, differentiation, and apoptosis (programmed cell death). Dysregulation of AP-2 has been implicated in several diseases, including various types of cancer.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Zinc fingers are a type of protein structural motif involved in specific DNA binding and, by extension, in the regulation of gene expression. They are so named because of their characteristic "finger-like" shape that is formed when a zinc ion binds to the amino acids within the protein. This structure allows the protein to interact with and recognize specific DNA sequences, thereby playing a crucial role in various biological processes such as transcription, repair, and recombination of genetic material.

Chromatin Immunoprecipitation (ChIP) is a molecular biology technique used to analyze the interaction between proteins and DNA in the cell. It is a powerful tool for studying protein-DNA binding, such as transcription factor binding to specific DNA sequences, histone modification, and chromatin structure.

In ChIP assays, cells are first crosslinked with formaldehyde to preserve protein-DNA interactions. The chromatin is then fragmented into small pieces using sonication or other methods. Specific antibodies against the protein of interest are added to precipitate the protein-DNA complexes. After reversing the crosslinking, the DNA associated with the protein is purified and analyzed using PCR, sequencing, or microarray technologies.

ChIP assays can provide valuable information about the regulation of gene expression, epigenetic modifications, and chromatin structure in various biological processes and diseases, including cancer, development, and differentiation.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

A two-hybrid system technique is a type of genetic screening method used in molecular biology to identify protein-protein interactions within an organism, most commonly baker's yeast (Saccharomyces cerevisiae) or Escherichia coli. The name "two-hybrid" refers to the fact that two separate proteins are being examined for their ability to interact with each other.

The technique is based on the modular nature of transcription factors, which typically consist of two distinct domains: a DNA-binding domain (DBD) and an activation domain (AD). In a two-hybrid system, one protein of interest is fused to the DBD, while the second protein of interest is fused to the AD. If the two proteins interact, the DBD and AD are brought in close proximity, allowing for transcriptional activation of a reporter gene that is linked to a specific promoter sequence recognized by the DBD.

The main components of a two-hybrid system include:

1. Bait protein (fused to the DNA-binding domain)
2. Prey protein (fused to the activation domain)
3. Reporter gene (transcribed upon interaction between bait and prey proteins)
4. Promoter sequence (recognized by the DBD when brought in proximity due to interaction)

The two-hybrid system technique has several advantages, including:

1. Ability to screen large libraries of potential interacting partners
2. High sensitivity for detecting weak or transient interactions
3. Applicability to various organisms and protein types
4. Potential for high-throughput analysis

However, there are also limitations to the technique, such as false positives (interactions that do not occur in vivo) and false negatives (lack of detection of true interactions). Additionally, the fusion proteins may not always fold or localize correctly, leading to potential artifacts. Despite these limitations, two-hybrid system techniques remain a valuable tool for studying protein-protein interactions and have contributed significantly to our understanding of various cellular processes.

Kruppel-like transcription factors (KLFs) are a family of transcription factors that are characterized by their highly conserved DNA-binding domain, known as the Kruppel-like zinc finger domain. This domain consists of approximately 30 amino acids and is responsible for binding to specific DNA sequences, thereby regulating gene expression.

KLFs play important roles in various biological processes, including cell proliferation, differentiation, apoptosis, and inflammation. They are involved in the development and function of many tissues and organs, such as the hematopoietic system, cardiovascular system, nervous system, and gastrointestinal tract.

There are 17 known members of the KLF family in humans, each with distinct functions and expression patterns. Some KLFs act as transcriptional activators, while others function as repressors. Dysregulation of KLFs has been implicated in various diseases, including cancer, cardiovascular disease, and diabetes.

Overall, Kruppel-like transcription factors are crucial regulators of gene expression that play important roles in normal development and physiology, as well as in the pathogenesis of various diseases.

Transcription factors (TFs) are proteins that regulate the transcription of genetic information from DNA to RNA by binding to specific DNA sequences. They play a crucial role in controlling gene expression, which is the process by which information in genes is converted into a functional product, such as a protein.

TFII, on the other hand, refers to a general class of transcription factors that are involved in the initiation of RNA polymerase II-dependent transcription. These proteins are often referred to as "general transcription factors" because they are required for the transcription of most protein-coding genes in eukaryotic cells.

TFII factors help to assemble the preinitiation complex (PIC) at the promoter region of a gene, which is a group of proteins that includes RNA polymerase II and other cofactors necessary for transcription. Once the PIC is assembled, TFII factors help to recruit RNA polymerase II to the promoter and initiate transcription.

Some examples of TFII factors include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Each of these factors plays a specific role in the initiation of transcription, such as recognizing and binding to specific DNA sequences or modifying the chromatin structure around the promoter to make it more accessible to RNA polymerase II.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

"Oryza sativa" is the scientific name for Asian rice, which is a species of grass and one of the most important food crops in the world. It is a staple food for more than half of the global population, providing a significant source of calories and carbohydrates. There are several varieties of Oryza sativa, including indica and japonica, which differ in their genetic makeup, growth habits, and grain characteristics.

Oryza sativa is an annual plant that grows to a height of 1-2 meters and produces long slender leaves and clusters of flowers at the top of the stem. The grains are enclosed within a tough husk, which must be removed before consumption. Rice is typically grown in flooded fields or paddies, which provide the necessary moisture for germination and growth.

Rice is an important source of nutrition for people around the world, particularly in developing countries where it may be one of the few reliable sources of food. It is rich in carbohydrates, fiber, and various vitamins and minerals, including thiamin, riboflavin, niacin, iron, and magnesium. However, rice can also be a significant source of arsenic, a toxic heavy metal that can accumulate in the grain during growth.

In medical terms, Oryza sativa may be used as a component of nutritional interventions for individuals who are at risk of malnutrition or who have specific dietary needs. It may also be studied in clinical trials to evaluate its potential health benefits or risks.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

Genetic enhancer elements are DNA sequences that increase the transcription of specific genes. They work by binding to regulatory proteins called transcription factors, which in turn recruit RNA polymerase II, the enzyme responsible for transcribing DNA into messenger RNA (mRNA). This results in the activation of gene transcription and increased production of the protein encoded by that gene.

Enhancer elements can be located upstream, downstream, or even within introns of the genes they regulate, and they can act over long distances along the DNA molecule. They are an important mechanism for controlling gene expression in a tissue-specific and developmental stage-specific manner, allowing for the precise regulation of gene activity during embryonic development and throughout adult life.

It's worth noting that genetic enhancer elements are often referred to simply as "enhancers," and they are distinct from other types of regulatory DNA sequences such as promoters, silencers, and insulators.

Regulatory sequences in nucleic acid refer to specific DNA or RNA segments that control the spatial and temporal expression of genes without encoding proteins. They are crucial for the proper functioning of cells as they regulate various cellular processes such as transcription, translation, mRNA stability, and localization. Regulatory sequences can be found in both coding and non-coding regions of DNA or RNA.

Some common types of regulatory sequences in nucleic acid include:

1. Promoters: DNA sequences typically located upstream of the gene that provide a binding site for RNA polymerase and transcription factors to initiate transcription.
2. Enhancers: DNA sequences, often located at a distance from the gene, that enhance transcription by binding to specific transcription factors and increasing the recruitment of RNA polymerase.
3. Silencers: DNA sequences that repress transcription by binding to specific proteins that inhibit the recruitment of RNA polymerase or promote chromatin compaction.
4. Intron splice sites: Specific nucleotide sequences within introns (non-coding regions) that mark the boundaries between exons (coding regions) and are essential for correct splicing of pre-mRNA.
5. 5' untranslated regions (UTRs): Regions located at the 5' end of an mRNA molecule that contain regulatory elements affecting translation efficiency, stability, and localization.
6. 3' untranslated regions (UTRs): Regions located at the 3' end of an mRNA molecule that contain regulatory elements influencing translation termination, stability, and localization.
7. miRNA target sites: Specific sequences in mRNAs that bind to microRNAs (miRNAs) leading to translational repression or degradation of the target mRNA.

The YY1 transcription factor, also known as Yin Yang 1, is a protein that plays a crucial role in the regulation of gene expression. It functions as a transcriptional repressor or activator, depending on the context and target gene. YY1 can bind to DNA at specific sites, known as YY1-binding sites, and it interacts with various other proteins to form complexes that modulate the activity of RNA polymerase II, which is responsible for transcribing protein-coding genes.

YY1 has been implicated in a wide range of biological processes, including embryonic development, cell growth, differentiation, and DNA damage response. Mutations or dysregulation of YY1 have been associated with various human diseases, such as cancer, neurodevelopmental disorders, and heart disease.

STAT3 (Signal Transducer and Activator of Transcription 3) is a transcription factor protein that plays a crucial role in signal transduction and gene regulation. It is activated through phosphorylation by various cytokines and growth factors, which leads to its dimerization, nuclear translocation, and binding to specific DNA sequences. Once bound to the DNA, STAT3 regulates the expression of target genes involved in various cellular processes such as proliferation, differentiation, survival, and angiogenesis. Dysregulation of STAT3 has been implicated in several diseases, including cancer, autoimmune disorders, and inflammatory conditions.

GATA4 is a transcription factor that belongs to the GATA family of zinc finger proteins, which are characterized by their ability to bind to DNA sequences containing the core motif (A/T)GATA(A/G). GATA4 specifically recognizes and binds to GATA motifs in the promoter and enhancer regions of target genes, where it can modulate their transcription.

GATA4 is widely expressed in various tissues, including the heart, gut, lungs, and gonads. In the heart, GATA4 plays critical roles during cardiac development, such as promoting cardiomyocyte differentiation and regulating heart tube formation. It also continues to be expressed in adult hearts, where it helps maintain cardiac function and can contribute to heart repair after injury.

Mutations in the GATA4 gene have been associated with congenital heart defects, suggesting its essential role in heart development. Additionally, GATA4 has been implicated in cancer progression, particularly in gastrointestinal and lung cancers, where it can act as an oncogene by promoting cell proliferation and survival.

NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) is a protein complex that plays a crucial role in regulating the immune response to infection and inflammation, as well as in cell survival, differentiation, and proliferation. It is composed of several subunits, including p50, p52, p65 (RelA), c-Rel, and RelB, which can form homodimers or heterodimers that bind to specific DNA sequences called κB sites in the promoter regions of target genes.

Under normal conditions, NF-κB is sequestered in the cytoplasm by inhibitory proteins known as IκBs (inhibitors of κB). However, upon stimulation by various signals such as cytokines, bacterial or viral products, and stress, IκBs are phosphorylated, ubiquitinated, and degraded, leading to the release and activation of NF-κB. Activated NF-κB then translocates to the nucleus, where it binds to κB sites and regulates the expression of target genes involved in inflammation, immunity, cell survival, and proliferation.

Dysregulation of NF-κB signaling has been implicated in various pathological conditions such as cancer, chronic inflammation, autoimmune diseases, and neurodegenerative disorders. Therefore, targeting NF-κB signaling has emerged as a potential therapeutic strategy for the treatment of these diseases.

Transcription Factor TFIID is a multi-subunit protein complex that plays a crucial role in the process of transcription, which is the first step in gene expression. In eukaryotic cells, TFIID is responsible for recognizing and binding to the promoter region of genes, specifically to the TATA box, a sequence found in many promoters that acts as a binding site for the general transcription factors.

TFIID is composed of the TATA-box binding protein (TBP) and several TBP-associated factors (TAFs). The TBP subunit initially recognizes and binds to the TATA box, followed by the recruitment of other general transcription factors and RNA polymerase II to form a preinitiation complex. This complex then initiates the transcription of DNA into messenger RNA (mRNA), allowing for the production of proteins and the regulation of gene expression.

Transcription Factor TFIID is essential for accurate and efficient transcription, and its dysfunction can lead to various developmental and physiological abnormalities, including diseases such as cancer.

... are, as their name indicates, transcription factors containing both ... Basic+helix-loop-helix+leucine+zipper+transcription+factors at the U.S. National Library of Medicine Medical Subject Headings ( ... Basic helix-loop-helix and leucine zipper motifs. Examples include Microphthalmia-associated transcription factor and Sterol ... Transcription factors, All stub articles, Genetics stubs). ...
ATF6 (activating transcription factor 6) is a basic leucine zipper transcription factor. Upon Grp78 dissociation, the entire ... Involvement of basic leucine zipper transcription factors". The Journal of Biological Chemistry. 273 (50): 33741-9. doi:10.1074 ... is upregulated downstream of the bZIP transcription factor ATF4 (activating transcription factor 4) and uniquely responsive to ... The activated transcription factor upregulates UPR 'stress genes' by directly binding to stress element promoters in the ...
Involvement of basic leucine zipper transcription factors". The Journal of Biological Chemistry. 273 (50): 33741-9. doi:10.1074 ... "Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins". ... MIT domain of UBPY constitutes a CHMP binding and endosomal localization signal required for efficient epidermal growth factor ...
... leucine zipper transcription factors PDB: 1x0o​; Card PB, Erbel PJ, Gardner KH (October 2005). " ... The word "basic" does not refer to complexity but to the chemistry of the motif because transcription factors in general ... PDOC00038 in PROSITE Basic+Helix-Loop-Helix+Transcription+Factors at the U.S. National Library of Medicine Medical Subject ... In general, transcription factors (including this type) are dimeric, each with one helix containing basic amino acid residues ...
This gene encodes a basic leucine zipper (bZIP) transcription factor. The gene is located on the long arm of chromosome 20 ( ... This condition is caused by mutations in the transcription factor MafB, or V-maf musculoaponeurotic fibrosarcoma oncogene ...
Basic leucine zipper transcription factor, ATF-like, also known as BATF, is a protein which in humans is encoded by the BATF ... "Entrez Gene: BATF basic leucine zipper transcription factor, ATF-like". Schraml BU, Hildner K, Ise W, Lee WL, Smith WA, Solomon ... protein that belongs to the AP-1/ATF superfamily of transcription factors. The leucine zipper of this protein mediates ... The protein encoded by this gene is a nuclear basic leucine zipper (bZIP) ...
Basic leucine zipper transcription factor, ATF-like 2 is a protein that, in humans, is encoded by the BATF2 gene. "Entrez Gene ... Basic leucine zipper transcription factor, ATF-like 2". Retrieved 2014-07-06. Ma, H; Liang, X; Chen, Y; Pan, K; Sun, J; Wang, H ... Huang, Q; Yang, Y; Li, X; Huang, S (2011). "Transcription suppression of SARI (suppressor of AP-1, regulated by IFN) by BCR-ABL ...
... basic-leucine zipper (bZIP) transcription factor. Several isoforms of NFE2L1 have been described for both human and mouse genes ... Kwong M, Kan YW, Chan JY (Dec 1999). "The CNC basic leucine zipper factor, Nrf1, is essential for cell survival in response to ... "The Fbw7 tumor suppressor regulates nuclear factor E2-related factor 1 transcription factor turnover through proteasome- ... Oh DH, Rigas D, Cho A, Chan JY (Nov 2012). "Deficiency in the nuclear-related factor erythroid 2 transcription factor (Nrf1) ...
It has a basic leucine zipper domain, a characteristic of many transcription factors. ZEBRA binds to the oriLyt (lytic origin ... Schepers, A.; Pich, D.; Hammerschmidt, W.(1993). Transcription factor with homology to the AP-1 family links RNA transcription ... 2009). Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1 ... It interacts with the viral helicase-primase complex and BMRF1, the viral polymerase accessory factor. It has been shown to ...
Leucine zippers are a dimerization motif of the bZIP (Basic-region leucine zipper) class of eukaryotic transcription factors. ... "Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice". Plant Physiology ... Leucine zipper regulatory proteins include c-fos and c-jun (the AP1 transcription factor), important regulators of normal ... Nantel A, Quatrano RS (December 1996). "Characterization of three rice basic/leucine zipper factors, including two inhibitors ...
This gene encodes a transcription factor that belongs to the cap'n'collar type of basic region leucine zipper factor family ( ... "Entrez Gene: BACH1 BTB and CNC homology 1, basic leucine zipper transcription factor 1". Ozono R (Apr 2006). "New ... belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription ... of the mouse Bach1 gene encoding a BTB-basic leucine zipper transcription factor and its mapping to chromosome 21q22.1". ...
MafB is a basic leucine zipper (bZIP) transcription factor that plays an important role in the regulation of lineage-specific ... "The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor". Cell. 79 (6): 1025-34. doi: ... "The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor". Cell. 79 (6): 1025-34. doi: ... Transcription factor MafB also known as V-maf musculoaponeurotic fibrosarcoma oncogene homolog B is a protein that in humans is ...
SREBPs belong to the basic-helix-loop-helix leucine zipper class of transcription factors. Unactivated SREBPs are attached to ... a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene". Cell ... Gasic GP (Apr 1994). "Basic-helix-loop-helix transcription factor and sterol sensor in a single membrane-bound molecule". Cell ... Wang X, Sato R, Brown MS, Hua X, Goldstein JL (Apr 1994). "SREBP-1, a membrane-bound transcription factor released by sterol- ...
"Entrez Gene: BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2". Rosbrook GO, Stead MA, Carr SB, Wright ... belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription ... "A combinatorial code for gene expression generated by transcription factor Bach2 and MAZR (MAZ-related factor) through the BTB/ ... In T cells, BACH2 is recruited by the transcription factor Vitamin D receptor (VDR) both in vitro and in vivo (for example, in ...
This gene encodes a basic motif-leucine zipper transcription factor of the Maf subfamily. The encoded protein is conserved ... "The minimal transactivation domain of the basic motif-leucine zipper transcription factor NRL interacts with TATA-binding ... "A conserved retina-specific gene encodes a basic motif/leucine zipper domain". Proceedings of the National Academy of Sciences ... Neural retina-specific leucine zipper protein is a protein that in humans is encoded by the NRL gene. ...
C/EBPs, transcription factors, are members of the basic-leucine zipper class. cAMP, an inducer of adipogenesis, can promote ... Therefore, transcription factors are crucial for adipogenesis. Transcription factors, peroxis proliferator-activated receptor γ ... other transcription factors function in the progression of differentiation. Adipocyte determination and differentiation factor ... The second phase of growth arrest is the expression of two key transcription factors PPARγ and C/EBPα which promote expression ...
As a chaperone, ALY promotes dimerization of transcription factors containing basic leucine zipper (bZIP) domains., thereby ... The ALYREF gene encodes Aly/REF export factor (ALY; THO complex subunit 4, Tho4; RNA and export factor binding protein 1, ... Aly/REF export factor, also known as THO complex subunit 4 is a protein that in humans is encoded by the ALYREF gene. ... The TRanscription-EXport (TREX) complex, a key player in mRNA export, includes the THO subcomplex, the RNA helicase UAP56, and ...
Involvement of basic leucine zipper transcription factors". J. Biol. Chem. 273 (50): 33741-9. doi:10.1074/jbc.273.50.33741. ... Hai TW, Liu F, Coukos WJ, Green MR (1990). "Transcription factor ATF cDNA clones: an extensive family of leucine zipper ... "Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding ... Activating transcription factor ATF6 has been shown to interact with YY1 and Serum response factor. GRCh38: Ensembl release 89 ...
NRF2 is a basic leucine zipper (bZip) transcription factor with a Cap "n" Collar (CNC) structure. NRF2 possesses seven highly ... NFE2L2 and other genes, such as NFE2, NFE2L1 and NFE2L3, encode basic leucine zipper (bZIP) transcription factors. They share ... is a transcription factor that in humans is encoded by the NFE2L2 gene. NRF2 is a basic leucine zipper (bZIP) protein that may ... Moi P, Chan K, Asunis I, Cao A, Kan YW (October 1994). "Isolation of NF-E2-related factor 2 (NRF2), a NF-E2-like basic leucine ...
The product of this gene belongs to the family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors. These ... a gene at 17q21.1 encoding a putative basic helix-loop-helix leucine-zipper transcription factor". Gene. 181 (1-2): 7-11. doi: ... Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE (December 2000). "MondoA, a novel basic helix-loop-helix-leucine zipper ... Song Z, Yang H, Zhou L, Yang F (2019). "Glucose-Sensing Transcription Factor MondoA/ChREBP as Targets for Type 2 Diabetes: ...
This gene encodes a basic helix-loop-helix leucine zipper transcription factor of the Myc / Max / Mad superfamily. This protein ... Song Z, Yang H, Zhou L, Yang F (October 2019). "Glucose-Sensing Transcription Factor MondoA/ChREBP as Targets for Type 2 ... de Luis O, Valero MC, Jurado LA (March 2000). "WBSCR14, a putative transcription factor gene deleted in Williams-Beuren ... is a new member of the Mlx transcription factor network". Human Molecular Genetics. 10 (6): 617-627. doi:10.1093/hmg/10.6.617. ...
The protein is a member of the basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor family. SREBP-1a regulates ... a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene". Cell ... a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element ... Wang X, Sato R, Brown MS, Hua X, Goldstein JL (Apr 1994). "SREBP-1, a membrane-bound transcription factor released by sterol- ...
MITF is a basic helix-loop-helix leucine zipper transcription factor involved in lineage-specific pathway regulation of many ... MITF, TFE3 and TFEB are part of the basic helix-loop-helix-leucine zipper family of transcription factors. Each protein encoded ... "The microphthalmia transcription factor and the related helix-loop-helix zipper factors TFE-3 and TFE-C collaborate to activate ... Microphthalmia-associated transcription factor also known as class E basic helix-loop-helix protein 32 or bHLHe32 is a protein ...
"Structural basis for DNA recognition by the basic region leucine zipper transcription factor CCAAT/enhancer-binding protein ... This domain is involved in dimerization and DNA binding, as are other transcription factors of the leucine zipper domain- ... They are characterized by a highly conserved basic-leucine zipper (bZIP) domain at the C-terminus. ... CCAAT-enhancer-binding proteins (or C/EBPs) is a family of transcription factors composed of six members, named from C/EBPα to ...
"The basic region and leucine zipper transcription factor MafK is a new nerve growth factor-responsive immediate early gene that ... MafK is one of the small Maf proteins, which are basic region and leucine zipper (bZIP)-type transcription factors. The HUGO ... belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription ... belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription ...
"A Basic Leucine Zipper Transcription Factor, G-box-binding Factor 1, Regulates Blue Light-mediated Photomorphogenic Growth in ... They have also been successful in demonstrating the correlation between Z-box binding factors and other transcription factors ... The team led by him was successful in synthesizing Z-box binding transcription factors such as ZBF1, ZBF2 and ZBF3 and ... Mallappa, Chandrashekara; Singh, Aparna; Ram, Hathi; Chattopadhyay, Sudip (19 December 2008). "GBF1, a Transcription Factor of ...
... is one of the small Maf proteins, which are basic region and leucine zipper (bZIP)-type transcription factors. The HUGO ... belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription ... Transcription factor MafG is a bZip Maf transcription factor protein that in humans is encoded by the MAFG gene. ... MafG has a bZIP structure that consists of a basic region for DNA binding and a leucine zipper structure for dimer formation. ...
MafF is one of the small Maf proteins, which are basic region and leucine zipper (bZIP)-type transcription factors. The HUGO ... belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription ... Transcription factor MafF is a bZip Maf transcription factor protein that in humans is encoded by the MAFF gene. ... MafF has a bZIP structure that consists of a basic region for DNA binding and a leucine zipper structure for dimer formation. ...
DBP is a member of the PAR bZIP (Proline and Acidic amino acid-Rich basic leucine ZIPper) transcription factor family. DBP ... and transcription factor 1, TCF1, respectively) and of the hepatocyte growth factor/scatter factor gene (HGF)". Genomics. 13 (2 ... and transcription factor 1, TCF1, respectively) and of the hepatocyte growth factor/scatter factor gene (HGF)". Genomics. 13 (2 ... "Synergy between transcription factors DBP and C/EBP compensates for a haemophilia B Leyden factor IX mutation". Nature Genetics ...
Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 1993; 362:722-8. Fleming ... and the position of Dean for Basic Sciences and Graduate Studies at Harvard Medical School. In 2007, Andrews left to take a ... in Academic Pediatrics 2000 American Federation for Medical Research Foundation Outstanding Investigator Award in Basic Science ...
Basic helix-loop-helix leucine zipper transcription factors are, as their name indicates, transcription factors containing both ... Basic+helix-loop-helix+leucine+zipper+transcription+factors at the U.S. National Library of Medicine Medical Subject Headings ( ... Basic helix-loop-helix and leucine zipper motifs. Examples include Microphthalmia-associated transcription factor and Sterol ... Transcription factors, All stub articles, Genetics stubs). ...
Data from: Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. Wang ... 2016). Data from: Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume ... a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional ... based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some ...
Basic-Leucine Zipper Transcription Factors [D12.776.260.108]. *Basic Helix-Loop-Helix Leucine Zipper Transcription Factors [ ... Basic-Leucine Zipper Transcription Factors [D12.776.930.127]. *Basic Helix-Loop-Helix Leucine Zipper Transcription Factors [ ... Basic Helix-Loop-Helix Leucine Zipper Transcription Factors*Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ... Basic Helix-Loop-Helix Transcription Factors [D12.776.260.103]. *Basic Helix-Loop-Helix Leucine Zipper Transcription Factors [ ...
... and transcription. A variety of G4 topologies (intra- and intermolecular) can form i … ... Basic-Leucine Zipper Transcription Factors / chemistry* * Basic-Leucine Zipper Transcription Factors / genetics ... A variety of G4 topologies (intra- and intermolecular) can form in vitro, but the molecular architecture and cellular factors ...
Basic helix-loop-helix leucine zipper transcription factor. ENSSARP00000002284. Pfam. PF00010. IPR011598. 312. 365. 2.40e-16. ... Basic helix-loop-helix leucine zipper transcrition factor MiT/TFE. ENSSARP00000002284. ProSiteProfiles. PS50888. IPR011598. 311 ... Copyright © 2017 REGULATOR: a database of metazoan transcription factors and maternal factors for developmental studies ... Myc-type, basic helix-loop-helix (bHLH) domain. ENSSARP00000002284. SMART. SM00353. IPR011598. 317. 370. 1.80e-19. Myc-type, ...
... basic leucine zipper transcription factor 2. 3.83. 76.67. ENSG00000157765. SLC34A2. Homo sapiens cDNA FLJ90534 fis, highly ... A number of members of the Sp1-like/KLF family of transcription factors (SP1, SP5, KLF10, KLF11, KLF13, KLF15, KLF16, KLF3, ... The AT-hook transcription factors, of which AKNA is a member, repress or activate gene networks controlling inflammation, ... Figure 5. Increased expression of AT-hook transcription factor (AKNA, Chr 9, − strand) during acute HCV infection. (A) RNA ...
... is a basic leucine zipper transcription factor that generally activates ABA signaling (Yu et al., 2015; Figure 6). The ... and basic leucine zipper (bZIP) transcription factor homologous gene (ABI5: Chloris7667c000010) were downregulated during the ... MAX2 is required to repress bud outgrowth at each node (Stirnberg et al., 2007). BRC1 is a positive transcription factor in SL ... 2009). Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors ...
Involvement of basic leucine zipper transcription factors. J Biol Chem. 273:33741-33749. 1998. View Article : Google Scholar : ... CHOP, is a key ER stress-induced transcription factor and transcription activation is through ATF-6 and ATF-4 (29). Deficiency ... and activating transcription factor-6 (ATF-6). Activated and released IRE1α acts as an RNase to initiate transcription of XBP1 ... CHOP is a transcription factor that regulates the expression of the Bcl-2 family members. Overexpression of CHOP induces ...
... cellular counterpart of oncogenic v-maf that belongs to the family of basic region leucine zipper domain transcription factors ... The leucine-zipper domain is involved in the interaction with LRPICD. There are two forms of human c-maf mRNA, c-maf-long and c ... c-maf is a transcription factor for IL-10 gene expression in LPS-activated macrophages. Chromosomal aberration involving maf is ... negative regulation of transcription from RNA polymerase II promoter cytokine production regulation of transcription from RNA ...
basic leucine zipper transcription factor, ATF-like 3; basic leucine zipper transcriptional factor ATF-like 3; BATF3; B-ATF-3; ... BATF3 (Basic leucine zipper transcriptional factor ATF-like 3; also p21SNFT) is a 20 kDa nuclear member of the bZIP family of ... It contains one DNA binding motif (aa 41-59) with an adjacent leucine-zipper (aa 63-84), but lacks a transactivation domain. ... and serves to downregulate AP-1 mediated transcription. BATF3 accomplishes this by heterodimerizing with Jun and binding to AP- ...
Next-day shipping cDNA ORF clones derived from BATF2 basic leucine zipper ATF-like transcription factor 2 available at ... basic leucine zipper ATF-like transcription factor 2. Names. basic leucine zipper transcriptional factor ATF-like 2. basic ... basic leucine zipper transcriptional factor ATF-like 2 isoform X2. XM_508537.4. XP_508537.2. basic leucine zipper ... basic leucine zipper ATF-like transcription factor 2. General protein information. Preferred Names. ...
Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid ... The Arabidopsis NIM I protein shows homology to the mammalian transcription factor inhibitor 1/κB. Plant Cell 9: 425-439. ... Cytokine responsive Iκ-B kinase that activates transcription factor NF-κB. Nature 388: 548-554. ... Activation of the CaMV as-1 cis-element by salicylic acid: differential DNA-binding of a factor related to TGAla. EMBO J. 15: ...
Significant progress has been made in the determination and characterization of key ABA-mediated molecular factors involved in ... Bensmihen, S.; Giraudat, J.; Parcy, F. Characterization of three homologous basic leucine zipper transcription factors (bZIP) ... Kang, J.Y.; Choi, H.I.; Im, M.Y.; Kim, S.Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic ... Tan, W.R.; Zhang, D.W.; Zhou, H.P.; Zheng, T.; Yin, Y.H.; Lin, H.H. Transcription factor HAT1 is a substrate of SnRK2.3 kinase ...
String-based protein-protein interaction analysis suggested that bZIP53, a transcription factor might be involved in the ... activation of transcription of ELO/KCS genes. The presence of biotic and abiotic stress-related cis-regulatory elements in the ... Alonso, R. et al. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed ... a transcription factor might be involved in the activation of transcription of ELO/KCS genes. The presence of biotic and ...
Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription ... Factors in Arabidopsis Journal of Biological Chemistry, Rockville: The American Society for Biochemistry and Molecular Biology ...
2021). Transcription factor MAFF (MAF basic leucine zipper transcription factor F) regulates an atherosclerosis relevant ... MAFF, one of the basic region leucine zipper (bZIP)-type transcription factors, participates in transcriptional activation or ... 2018). Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by ... 2016). Increased DNA methylation and reduced expression of transcription factors in human osteoarthritis cartilage. Arthritis ...
Transcription Factors [D12.776.930]. *Basic-Leucine Zipper Transcription Factors [D12.776.930.127]. *Activating Transcription ... "Activating Transcription Factor 1" by people in this website by year, and whether "Activating Transcription Factor 1" was a ... An activating transcription factor that regulates expression of a variety of genes including C-JUN GENES and TRANSFORMING ... "Activating Transcription Factor 1" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ...
... transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly ... The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is ... Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D. The Arabidopsis basic leucine zipper transcription factor ... Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol. ...
MLX belongs to the family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors. These factors form ... Mad1 and Mad4.The product of this gene belongs to the family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription ... These cookies ensure basic functionalities and security features of the website, anonymously. Cookie. Duration. Description. ... These factors form heterodimers with Mad proteins and play a role in proliferation, determination and differentiation. This ...
SREBP1 (sterol-regulatory-element-binding protein 2) is a basic-helix-loop-helix-leucine zipper (bHLH-ZIP) transcription factor ... Along with another transcription factor LXR, SREBP... Read full blog post.. ABCA1 Expression is Down-Regulated by SREBP ... Sterol regulatory element-binding proteins (SREBP) are important transcription factors regulating the synthesis and uptake of ... Sterol-regulatory-element-binding protein 2 (SREBP2) is a transcription factor that regulates cholesterol homeostasis by ...
... and invasion by T47D and MCF-7 breast cancer cells by downregulating basic leucine zipper ATF-like transcription factor ...
Bethesda he examined the role of basic leucine zipper transcription factors in lipoatrophic diabetes, carcinogenesis and ... and Heat Shock Factor 1 (HSF1). Dr. Orosz has a diverse portfolio that overarches a broad range of alcohol induced pathologies ... Bethesda investigating the eukaryotic transcriptional master stress regulator Heat Shock Factor (HSF) in Drosophila. ...
A basic Leucine Zipper (bZIP) transcription factor protein is the candidate gene for bc-u. bZIP protein gene Phvul.005G124100 ...
The various biochemical, physiological, and genomic factors that can influence BBB permeability in ALS and other ... Nrf2 is a basic region leucine zipper transcription factor [38] that forms heterodimers in the nucleus of cells which ... 2.1.1. Nrf2 Transcription Factor. It is worth noting the importance of the transcription factor, nuclear factor erythroid 2- ... P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan, "Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine ...
Interferon regulatory factor 8) and BATF (Basic Leucine Zipper ATF-Like Transcription Factor) are very crucial in developing ... 3.3 Identification of transcription factors and miRNAs binding to DEGs. The Enrichr webtool [13] was exploited to extract miRNA ... is a nuclear hormone receptor superfamily transcription factor involved in metabolic functions as well as a suppressor of ... Lpl is found to suppress TNFa and IFNg associated inflammation activating genes through inactivation of transcription factor NF ...
... transcription factor Maf family and is commonly downregulated in multiple cancers. But the expression and function of MafF in ... MafF is a member of the basic leucine zipper (bZIP) ... MafF is a member of the basic leucine zipper (bZIP) ... transcription factor Maf family and is commonly downregulated in multiple cancers. But the expression and function of MafF in ...
The basic leucine-zipper transcription factor c-Maf and the ets domain protein Er81 are required for the formation of the ... The runt domain transcription factor Runx1 is known to play a pivotal role in controlling the development of a diverse array of ... 2006) ETS transcription factor ER81 is required for the Pacinian corpuscle development. Dev Dyn 235:1081-1089. ... 2012) The transcription factor c-Maf controls touch receptor development and function. Science 335:1373-1376. ...
... a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in ... phosphorylated eukaryotic initiation factor 2,i,α,/i, (eIF2,i,α,/i,), phosphorylated protein endoplasmic-reticular- ... Activating transcription factor-(ATF-) 3 is a member of the ATF/CREB family of basic-region leucine zipper-(bZIP-) type ... T. Hai, F. Liu, W. J. Coukos, and M. R. Green, "Transcription factor ATF cDNA clones: an extensive family of leucine zipper ...
... the product of the vrille gene encoding a basic leucine zipper (bZIP) transcription factor, bridges between the interlocked ... Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells ... Transcriptions of per and tim genes are activated by a heterodimer of bHLH-PAS containing transcription factors CLK and CYC. ... PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259-262. Google Scholar ...
DBP is a member of the PAR bZIP (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. It is ... proline and acidic amino acid-rich basic leucine zipper) transcription factor family (Khatib et al., 1994 [PubMed 7835883]).[ ... RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in ...
  • A family of transcription factors that contain regions rich in basic residues, LEUCINE ZIPPER domains, and HELIX-LOOP-HELIX MOTIFS. (uams.edu)
  • Background: Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. (datadryad.org)
  • These factors form heterodimers with Mad proteins and play a role in proliferation, determination and differentiation. (prosci-inc.com)
  • Sterol regulatory element-binding proteins (SREBPs) compose a family of transcriptional factors that regulate the expression of various genes required for the synthesis of phospholipids, fatty acids, and cholesterol. (novusbio.com)
  • Before joining NIAAA Dr. Orosz has been a research instructor at the Cardiology Division at the University of Utah Health Sciences Center in Salt Lake City, Utah where his research focused on elucidating the cardioprotective functions of Heat Shock Proteins (HSPs) and Heat Shock Factor 1 (HSF1). (nih.gov)
  • GS-002 also induced endoplasmic reticular (ER) stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153), phosphorylated eukaryotic initiation factor 2 α (eIF2 α ), phosphorylated protein endoplasmic-reticular-resident kinase (PERK), and ATF-3. (hindawi.com)
  • In the CYTOPLASM, I-kappa B proteins bind to the transcription factor NF-KAPPA B. Cell stimulation causes its dissociation and translocation of active NF-kappa B to the nucleus. (bvsalud.org)
  • Rapid and transient activation of myelin basic protein kinase in tobacco leaves treated with hairpin from Erwinia amylovora . (springer.com)
  • Conclusions: In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses. (datadryad.org)
  • Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. (biomedcentral.com)
  • c-maf is the cellular counterpart of oncogenic v-maf that belongs to the family of basic region leucine zipper domain transcription factors. (thermofisher.com)
  • MLX belongs to the family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors. (prosci-inc.com)
  • MLX may act to diversify Mad family function by its restricted association with a subset of the Mad family of transcriptional repressors, namely, Mad1 and Mad4.The product of this gene belongs to the family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors. (prosci-inc.com)
  • Basic helix-loop-helix leucine zipper transcription factors are, as their name indicates, transcription factors containing both Basic helix-loop-helix and leucine zipper motifs. (wikipedia.org)
  • Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. (datadryad.org)
  • The encoded protein can activate transcription through pyrimidine-rich initiator (Inr) elements and E-box motifs. (cancerindex.org)
  • MafF is a member of the basic leucine zipper (bZIP) transcription factor Maf family and is commonly downregulated in multiple cancers. (techscience.com)
  • DBP is a member of the PAR bZIP (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. (avivasysbio.com)
  • The protein is not essential for circadian rhythm generation, but modulates important clock output genes.DBP is a member of the PAR bZIP (proline and acidic amino acid-rich basic leucine zipper) transcription factor family (Khatib et al. (avivasysbio.com)
  • MAX dimerization (MXD) protein 3 (MXD3) is a member of the MXD family of basic-helix-loop-helix-leucine-zipper (bHLHZ) transcription factors that plays pivotal roles in cell cycle progression and cell proliferation. (researchgate.net)
  • This gene encodes a member of the basic helix-loop-helix leucine zipper family, and can function as a cellular transcription factor. (cancerindex.org)
  • The transcription of ALK1 , encoding a predominant cytochrome P450ALK, is regulated in response to n -alkanes by two basic helix-loop-helix transcription activators, Yas1p and Yas2p, and Opi1-family transcription repressor Yas3p. (go.jp)
  • Transcription of the genes involved in fatty acid utilization and peroxisome biogenesis is controlled by Ctf1-family Zn 2 Cys 6 type transcription factor Por1p in response to fatty acids in Y. lipolytica . (go.jp)
  • MYC associated factor X (MAX) is a gene that encodes a protein belongs to the basic helix-loop-helix leucine zipper (bHLHZ) transcription factor family. (mycancergenome.org)
  • Activated and released IRE1α acts as an RNase to initiate transcription of XBP1 mRNA and it becomes a transcriptional activator for unfolded protein response (UPR) gene targets, such as BiP and calreticulin ( 10 ). (spandidos-publications.com)
  • Examples include Microphthalmia-associated transcription factor and Sterol regulatory element binding protein (SREBP). (wikipedia.org)
  • Sterol regulatory element binding protein (SREBP)-1 is a transcription factor with important roles in the control of fatty acid metabolism and adipogenesis. (diabetesjournals.org)
  • Subsequently, as a Research Fellow at the Laboratory of Metabolism, NCI, Bethesda he examined the role of basic leucine zipper transcription factors in lipoatrophic diabetes, carcinogenesis and addiction. (nih.gov)
  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (uams.edu)
  • The various biochemical, physiological, and genomic factors that can influence BBB permeability in ALS and other neurodegenerative diseases are also discussed, in addition to novel therapeutic strategies centred upon the BBB. (hindawi.com)
  • Pan troglodytes basic leucine zipper ATF-like transcription factor 2 (BATF2), transcript variant X1, mRNA. (genscript.com)
  • Exposure of isolated human adipocytes to tumor necrosis factor-α (TNF-α) produced a marked and specific decrease in the mRNA encoding the SREBP1c isoform and completely blocked the insulin-induced cleavage of SREBP1 protein. (diabetesjournals.org)
  • We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. (datadryad.org)
  • Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. (bvsalud.org)
  • The second is a relatively poorly conserved leucine zipper region characterised by leucine in the last position of every seven amino acids, and hydrophobic residues at positions 3 and 4. (biomedcentral.com)
  • He received postdoctoral training at NCI, Bethesda investigating the eukaryotic transcriptional master stress regulator Heat Shock Factor (HSF) in Drosophila . (nih.gov)
  • In addition, a basic leucine zipper transcription factor, OsTGAP1, was identified as a key regulator of the coordinated expression of the clustered genes and the methylerythritol phosphate pathway genes. (go.jp)
  • However, BATF did not modulate the functions of fibroblast-like synoviocytes (FLS), including the expressions of chemokines, matrix-degrading enzymes, vascular endothelial growth factor, and receptor activator of NF-κB ligand (RANKL). (biomedcentral.com)
  • they can combine with the promoter regions of key genes in signaling pathways to regulate their transcription levels and, in turn, plant resistance to stress. (biomedcentral.com)
  • Important regulatory factors, TFs bind to the promoter regions of target genes and activate or inhibit their transcription. (biomedcentral.com)
  • Studies on rodent UGT genes have demonstrated that the transcription factors hepatocyte nuclear factor 1 (HNF1) and CAAT-enhancer binding protein are important positive regulators of UGT expression in the liver (Hansen et al. (aspetjournals.org)
  • Transcription factors (TFs) play vital roles in almost all plant biological processes. (biomedcentral.com)
  • G-quadruplex (G4) DNA, an alternate structure formed by Hoogsteen hydrogen bonds between guanines in G-rich sequences, threatens genomic stability by perturbing normal DNA transactions including replication, repair, and transcription. (nih.gov)
  • A variety of G4 topologies (intra- and intermolecular) can form in vitro, but the molecular architecture and cellular factors influencing G4 landscape in vivo are not clear. (nih.gov)
  • The basic leucine zipper (bZIP) transcription factor represents exclusively in eukaryotes and can be related to many biological processes. (biomedcentral.com)
  • These receptors trigger inflammation through the NFkB-dependent and interferon regulatory factor-dependent signaling pathway. (medscape.com)
  • Therefore, a basic understanding of immune function is often useful. (medscape.com)
  • Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. (tamu.edu)
  • Binding of complement to a foreign substance, or antigen, amplifies and augments the body's innate immune system by means of its role as an opsonin (a factor that enhances phagocytosis of unwanted particles) and as a chemoattractant (a factor that recruits cells to areas of inflammation). (medscape.com)
  • The factors that govern this specificity of UGT expression remain largely unknown. (aspetjournals.org)
  • Activating transcription factor-(ATF-) 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. (hindawi.com)
  • Chronic ER stress promotes apoptosis, at least in part through the UPR-induced transcription factor C/EBP homologous protein (CHOP). (jci.org)
  • These findings suggest that CHOP is a fundamental factor that links protein misfolding in the ER to oxidative stress and apoptosis in β cells under conditions of increased insulin demand. (jci.org)
  • It is expressed in Th1 cells and conventional dendritic cells (CD11c + ), and serves to downregulate AP-1 mediated transcription. (rndsystems.com)
  • Calycosin dose- and time-dependently inhibited proliferation, migration, and invasion by T47D and MCF-7 breast cancer cells by downregulating basic leucine zipper ATF-like transcription factor expression. (news-medical.net)
  • On the other hand, ATF-3 is rapidly induced in cells treated with growth stimulators such as serum and growth factors [ 20 ]. (hindawi.com)
  • The leucine-zipper domain is involved in the interaction with LRPICD. (thermofisher.com)
  • It contains one DNA binding motif (aa 41-59) with an adjacent leucine-zipper (aa 63-84), but lacks a transactivation domain. (rndsystems.com)
  • We then found that VGLUT3-persistent neurons express the runt domain transcription factor Runx1. (jneurosci.org)
  • Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namely AtRAV2) and basic leucine zipper (bZIPs) AtABI5 or AtABF3 transactivated ABA-inducible promoter:GUS reporter expression in a maize mesophyll protoplast transient assay and showed synergies in reporter transactivation when coexpressed. (tamu.edu)
  • String-based protein-protein interaction analysis suggested that bZIP53, a transcription factor might be involved in the activation of transcription of ELO / KCS genes. (nature.com)
  • A potent ability to assimilate hydrophobic compounds, including n -alkanes and fatty acids as carbon sources, is one of important characteristics of the yeast Yarrowia lipolytica , and has been studied for both basic microbiological interest and biotechnological applications. (go.jp)
  • The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). (biomedcentral.com)
  • c-maf is a transcription factor for IL-10 gene expression in LPS-activated macrophages. (thermofisher.com)
  • Protein expression is influenced by many factors that may vary between experiments or laboratories. (genscript.com)
  • An activating transcription factor that regulates expression of a variety of genes including C-JUN GENES and TRANSFORMING GROWTH FACTOR BETA2. (umassmed.edu)
  • The major risk factors include chronic hepatitis B virus (HBV) infection, chronic hepatitis C virus (HCV) infection, environmental carcinogens such as aflatoxin B1 (AFB1), alcoholic cirrhosis, and inherited genetic disorder such as hemochromatosis, Wilson's disease, and tyrosinemia. (hindawi.com)
  • A basic helix-loop-helix leucine zipper (bHLHZ) transcription factor and proto-oncogene protein that functions in cell growth and proliferation. (bvsalud.org)