A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system.
The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem.
Nucleoside-2',3'-cyclic phosphate nucleotidohydrolase. Enzymes that catalyze the hydrolysis of the 2'- or 3'- phosphate bonds of 2',3'-cyclic nucleotides. Also hydrolyzes nucleoside monophosphates. Includes EC 3.1.4.16 and EC 3.1.4.37. EC 3.1.4.-.
A myelin protein that is the major component of the organic solvent extractable lipoprotein complexes of whole brain. It has been the subject of much study because of its unusual physical properties. It remains soluble in chloroform even after essentially all of its bound lipids have been removed. (From Siegel et al., Basic Neurochemistry, 4th ed, p122)
Neutral glycosphingolipids that contain a monosaccharide, normally glucose or galactose, in 1-ortho-beta-glycosidic linkage with the primary alcohol of an N-acyl sphingoid (ceramide). In plants the monosaccharide is normally glucose and the sphingoid usually phytosphingosine. In animals, the monosaccharide is usually galactose, though this may vary with the tissue and the sphingoid is usually sphingosine or dihydrosphingosine. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1st ed)
A general term indicating inflammation of the BRAIN and SPINAL CORD, often used to indicate an infectious process, but also applicable to a variety of autoimmune and toxic-metabolic conditions. There is significant overlap regarding the usage of this term and ENCEPHALITIS in the literature.
The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear.
Copper chelator that inhibits monoamine oxidase and causes liver and brain damage.
Virus diseases caused by the CORONAVIRUS genus. Some specifics include transmissible enteritis of turkeys (ENTERITIS, TRANSMISSIBLE, OF TURKEYS); FELINE INFECTIOUS PERITONITIS; and transmissible gastroenteritis of swine (GASTROENTERITIS, TRANSMISSIBLE, OF SWINE).
An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes.
Viral infections of the brain, spinal cord, meninges, or perimeningeal spaces.
A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury.
MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure.
Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system.
A species of the CORONAVIRUS genus causing hepatitis in mice. Four strains have been identified as MHV 1, MHV 2, MHV 3, and MHV 4 (also known as MHV-JHM, which is neurotropic and causes disseminated encephalomyelitis with demyelination as well as focal liver necrosis).
Transference of fetal tissue between individuals of the same species or between individuals of different species.
Agents that promote the production and release of interferons. They include mitogens, lipopolysaccharides, and the synthetic polymers Poly A-U and Poly I-C. Viruses, bacteria, and protozoa have been also known to induce interferons.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
Refers to animals in the period of time just after birth.
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Established cell cultures that have the potential to propagate indefinitely.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.