The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA.
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.
A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.
The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
Formation of an acetyl derivative. (Stedman, 25th ed)
An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A histone chaperone protein that plays a role in the deposition of NUCLEOSOMES on newly synthesized DNA. It is comprised of three different subunits of 48, 60, and 150 kDa molecular size. The 48 kDa subunit, RETINOBLASTOMA-BINDING PROTEIN 4, is also a component of several other protein complexes involved in chromatin remodeling.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
In the interphase nucleus, a condensed mass of chromatin representing an inactivated X chromosome. Each X CHROMOSOME, in excess of one, forms sex chromatin (Barr body) in the mammalian nucleus. (from King & Stansfield, A Dictionary of Genetics, 4th ed)
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE.
A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)
An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA.
Interruption or suppression of the expression of a gene at transcriptional or translational levels.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Established cell cultures that have the potential to propagate indefinitely.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. EC 2.1.1.43.
Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The process by which a DNA molecule is duplicated.
An essential amino acid. It is often added to animal feed.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
Chromosome regions that are loosely packaged and more accessible to RNA polymerases than HETEROCHROMATIN. These regions also stain differentially in CHROMOSOME BANDING preparations.
Nucleic acid regulatory sequences that limit or oppose the action of ENHANCER ELEMENTS and define the boundary between differentially regulated gene loci.
A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.
The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.
Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
A family of proteins that play a role in CHROMATIN REMODELING. They are best known for silencing HOX GENES and the regulation of EPIGENETIC PROCESSES.
Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands.
Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
Proteins involved in the assembly and disassembly of HISTONES into NUCLEOSOMES.
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A cell line derived from cultured tumor cells.
A family of low-molecular weight, non-histone proteins found in chromatin.
Proteins conjugated with nucleic acids.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.
A class of weak acids with the general formula R-CONHOH.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.
A enzyme complex involved in the remodeling of NUCLEOSOMES. The complex is comprised of at least seven subunits and includes both histone deacetylase and ATPase activities.
Glycosidic antibiotic from Streptomyces griseus used as a fluorescent stain of DNA and as an antineoplastic agent.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A family of histone acetyltransferases that is structurally-related to CREB-BINDING PROTEIN and to E1A-ASSOCIATED P300 PROTEIN. They function as transcriptional coactivators by bridging between DNA-binding TRANSCRIPTION FACTORS and the basal transcription machinery. They also modify transcription factors and CHROMATIN through ACETYLATION.
Compounds that inhibit HISTONE DEACETYLASES. This class of drugs may influence gene expression by increasing the level of acetylated HISTONES in specific CHROMATIN domains.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The first nucleotide of a transcribed DNA sequence where RNA polymerase (DNA-DIRECTED RNA POLYMERASE) begins synthesizing the RNA transcript.
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
The specific patterns of changes made to HISTONES, that are involved in assembly, maintenance, and alteration of chromatin structural states (such as EUCHROMATIN and HETEROCHROMATIN). The changes are made by various HISTONE MODIFICATION PROCESSES that include ACETYLATION; METHYLATION; PHOSPHORYLATION; and UBIQUITINATION.
An evolutionarily-conserved 10-kDa nuclear protein that binds NUCLEOSOMES and may be involved in the process of CHROMATIN unfolding.
The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE).
Enzymes that catalyze the methylation of amino acids after their incorporation into a polypeptide chain. S-Adenosyl-L-methionine acts as the methylating agent. EC 2.1.1.
The residual framework structure of the CELL NUCLEUS that maintains many of the overall architectural features of the cell nucleus including the nuclear lamina with NUCLEAR PORE complex structures, residual CELL NUCLEOLI and an extensive fibrogranular structure in the nuclear interior. (Advan. Enzyme Regul. 2002; 42:39-52)
A group of simple proteins that yield basic amino acids on hydrolysis and that occur combined with nucleic acid in the sperm of fish. Protamines contain very few kinds of amino acids. Protamine sulfate combines with heparin to form a stable inactive complex; it is used to neutralize the anticoagulant action of heparin in the treatment of heparin overdose. (From Merck Index, 11th ed; Martindale, The Extra Pharmacopoeia, 30th ed, p692)
Proteins conjugated with deoxyribonucleic acids (DNA) or specific DNA.
Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed)
A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 2; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A family of histone molecular chaperones that play roles in sperm CHROMATIN decondensation and CHROMATIN ASSEMBLY in fertilized eggs. They were originally discovered in XENOPUS egg extracts as histone-binding factors that mediate nucleosome formation in vitro.
A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.
The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.
A regulatory region first identified in the human beta-globin locus but subsequently found in other loci. The region is believed to regulate GENETIC TRANSCRIPTION by opening and remodeling CHROMATIN structure. It may also have enhancer activity.
Enzymes that catalyse the removal of methyl groups from LYSINE or ARGININE residues found on HISTONES. Many histone demethylases generally function through an oxidoreductive mechanism.
A sirtuin family member found primarily in the CYTOPLASM. It is a multifunctional enzyme that contains a NAD-dependent deacetylase activity that is specific for HISTONES and a mono-ADP-ribosyltransferase activity.
RNA which does not code for protein but has some enzymatic, structural or regulatory function. Although ribosomal RNA (RNA, RIBOSOMAL) and transfer RNA (RNA, TRANSFER) are also untranslated RNAs they are not included in this scope.
Macromolecular complexes formed from the association of defined protein subunits.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
Ducts that serve exclusively for the passage of eggs from the ovaries to the exterior of the body. In non-mammals, they are termed oviducts. In mammals, they are highly specialized and known as FALLOPIAN TUBES.
A multisubunit polycomb protein complex with affinity for CHROMATIN that contains methylated HISTONE H3. It contains an E3 ubiquitin ligase activity that is specific for HISTONE H2A and works in conjunction with POLYCOMB REPRESSIVE COMPLEX 2 to effect EPIGENETIC REPRESSION.
A set of nuclear proteins in SACCHAROMYCES CEREVISIAE that are required for the transcriptional repression of the silent mating type loci. They mediate the formation of silenced CHROMATIN and repress both transcription and recombination at other loci as well. They are comprised of 4 non-homologous, interacting proteins, Sir1p, Sir2p, Sir3p, and Sir4p. Sir2p, an NAD-dependent HISTONE DEACETYLASE, is the founding member of the family of SIRTUINS.
Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently.
Areas of increased density of the dinucleotide sequence cytosine--phosphate diester--guanine. They form stretches of DNA several hundred to several thousand base pairs long. In humans there are about 45,000 CpG islands, mostly found at the 5' ends of genes. They are unmethylated except for those on the inactive X chromosome and some associated with imprinted genes.
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
Proteins found in any species of fungus.
The mechanisms of eukaryotic CELLS that place or keep the CHROMOSOMES in a particular SUBNUCLEAR SPACE.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure.
Nucleotide sequences of a gene that are involved in the regulation of GENETIC TRANSCRIPTION.
Splitting the DNA into shorter pieces by endonucleolytic DNA CLEAVAGE at multiple sites. It includes the internucleosomal DNA fragmentation, which along with chromatin condensation, are considered to be the hallmarks of APOPTOSIS.
A family of HIGH MOBILITY GROUP PROTEINS that bind to NUCLEOSOMES.
Structures within the nucleus of fungal cells consisting of or containing DNA, which carry genetic information essential to the cell.
Highly repetitive DNA sequences found in HETEROCHROMATIN, mainly near centromeres. They are composed of simple sequences (very short) (see MINISATELLITE REPEATS) repeated in tandem many times to form large blocks of sequence. Additionally, following the accumulation of mutations, these blocks of repeats have been repeated in tandem themselves. The degree of repetition is on the order of 1000 to 10 million at each locus. Loci are few, usually one or two per chromosome. They were called satellites since in density gradients, they often sediment as distinct, satellite bands separate from the bulk of genomic DNA owing to a distinct BASE COMPOSITION.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual.
Nucleic acid sequences that are involved in the negative regulation of GENETIC TRANSCRIPTION by chromatin silencing.
Nucleic acid sequences involved in regulating the expression of genes.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.
The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.
A homologous family of regulatory enzymes that are structurally related to the protein silent mating type information regulator 2 (Sir2) found in Saccharomyces cerevisiae. Sirtuins contain a central catalytic core region which binds NAD. Several of the sirtuins utilize NAD to deacetylate proteins such as HISTONES and are categorized as GROUP III HISTONE DEACETYLASES. Several other sirtuin members utilize NAD to transfer ADP-RIBOSE to proteins and are categorized as MONO ADP-RIBOSE TRANSFERASES, while a third group of sirtuins appears to have both deacetylase and ADP ribose transferase activities.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Transcription factors whose primary function is to regulate the rate in which RNA is transcribed.
A method for determining the sequence specificity of DNA-binding proteins. DNA footprinting utilizes a DNA damaging agent (either a chemical reagent or a nuclease) which cleaves DNA at every base pair. DNA cleavage is inhibited where the ligand binds to DNA. (from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
A histone chaperone that facilitates nucleosome assembly by mediating the formation of the histone octamer and its transfer to DNA.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
An electrophoretic technique for assaying the binding of one compound to another. Typically one compound is labeled to follow its mobility during electrophoresis. If the labeled compound is bound by the other compound, then the mobility of the labeled compound through the electrophoretic medium will be retarded.
A DNA-binding protein that interacts with methylated CPG ISLANDS. It plays a role in repressing GENETIC TRANSCRIPTION and is frequently mutated in RETT SYNDROME.
The rate dynamics in chemical or physical systems.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The origin recognition complex is a multi-subunit DNA-binding protein that initiates DNA REPLICATION in eukaryotes.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Preparations of cell constituents or subcellular materials, isolates, or substances.
The functional hereditary units of FUNGI.
Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES.
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
A polynucleotide formed from the ADP-RIBOSE moiety of nicotinamide-adenine dinucleotide (NAD) by POLY(ADP-RIBOSE) POLYMERASES.
A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.
Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Proteins that bind to the MATRIX ATTACHMENT REGIONS of DNA.
A member of the p300-CBP transcription factors that was originally identified as a binding partner for ADENOVIRUS E1A PROTEINS.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A method used to study the lateral movement of MEMBRANE PROTEINS and LIPIDS. A small area of a cell membrane is bleached by laser light and the amount of time necessary for unbleached fluorescent marker-tagged proteins to diffuse back into the bleached site is a measurement of the cell membrane's fluidity. The diffusion coefficient of a protein or lipid in the membrane can be calculated from the data. (From Segen, Current Med Talk, 1995).
A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin.
Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity.
Nuclear matrix proteins that are structural components of the NUCLEAR LAMINA. They are found in most multicellular organisms.
Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES.
A multisubunit polycomb protein complex that catalyzes the METHYLATION of chromosomal HISTONE H3. It works in conjunction with POLYCOMB REPRESSIVE COMPLEX 1 to effect EPIGENETIC REPRESSION.
A retinoblastoma-binding protein that is involved in CHROMATIN REMODELING, histone deacetylation, and repression of GENETIC TRANSCRIPTION. Although initially discovered as a retinoblastoma binding protein it has an affinity for core HISTONES and is a subunit of chromatin assembly factor-1 and polycomb repressive complex 2.
Members of the beta-globin family. In humans, they are encoded in a gene cluster on CHROMOSOME 11. They include epsilon-globin, gamma-globin, delta-globin and beta-globin. There is also a pseudogene of beta (theta-beta) in the gene cluster. Adult HEMOGLOBIN is comprised of two ALPHA-GLOBIN chains and two beta-globin chains.
Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.
A family of histone demethylases that share a conserved Jumonji C domain. The enzymes function via an iron-dependent dioxygenase mechanism that couples the conversion of 2-oxoglutarate to succinate to the hydroxylation of N-methyl groups.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.